
An Approach for Test Selection for EFSMs

Using a Theorem Prover

Mahadevan Subramaniam1, Ling Xiao1, Bo Guo1, and Zoltan Pap2

1 Computer Science Department
University of Nebraska at Omaha

Omaha, NE 68182, USA
msubramaniam@mail.unomaha.edu

2 Ericsson, Hungary
pap@tmit.bme.hu

Abstract. This paper describes an automatic approach for selecting
tests from a test suite to validate the changes made to an extended finite
state machine (EFSM). EFSMs supporting variables over commonly used
data types including booleans, numbers, arrays, queues, and records, and
communicating with the environment using parameterized messages are
considered. Changes to the EFSM add/delete/replace one or more transi-
tions. Tests are described using a sequence of input and output messages
with parameter values. We introduce a class of fully-observable tests.
The description of a fully-observable test contains all the information
to accurately determine the transitions executed by the test. Interaction
among the EFSM transitions captured in terms of a compatibility rela-
tion is used along with a given test description to automatically identify
fully-observable tests. A procedure is described for selecting a test for
a given change based on accurately predicting if the test executes the
change transition. We then describe how several tests can be simultane-
ously selected by grouping them based on overlap of their descriptions.
The proposed approach has been implemented using a theorem prover
and applied to several examples including protocols and web services
with encouraging results.

1 Introduction

Evolution and maintenance of communication systems is a challenging prob-
lem. Comprehensive testing of the changes in each evolution step is essential to
gain confidence that the modifications behave as intended without any adverse
consequences. Test suites used to validate these systems are usually very large,
comprised of both hand-crafted and generated tests. Re-running the entire test
suite at each evolution step is impractical [8].

Regression test selection addresses this problem by identifying tests in a given
test suite that are relevant to validate the changes performed in an evolution step.
This is an active area of research with earlier works involving the evolution and
maintenance of software programs (see [9] for an excellent survey) as well as
state-based communication system models [2, 5, 6].

M. Núñez et al. (Eds.): TESTCOM/FATES 2009, LNCS 5826, pp. 146–162, 2009.
c© IFIP International Federation for Information Processing 2009

An Approach for Test Selection for EFSMs Using a Theorem Prover 147

In this paper, we describe a novel and automatic approach for test selection for
extended finite state machines(EFSMs) supporting a rich set of commonly used
data types including booleans, numbers, arrays, queues, and records. Changes to
the EFSM in each evolution step are performed at the transition level. Changes
can add/delete/replace one or more transitions. Test descriptions contain a se-
quence of input and output messages with parameter values over the supported
data types. EFSMs have been extensively used to model communication sys-
tems and also serve as formal models underlying several state-based concurrent
specification languages. More recently, there has been a lot of interest in EFSMs
supporting various data types to model web services1.

Given a change and a test description, the proposed approach automatically
analyzes the test description to determine whether the test will exercise the
change in which case the test is selected. A class of tests called fully-observable
tests is identified. The description of a fully-observable test contains adequate
information to accurately determine if the test exercises a given change with-
out actually executing the test. Interaction among the transitions, captured in
terms of compatibility of transitions, is used to identify fully-observable tests.
A procedure for identifying fully-observable tests that uses a theorem prover in
a push-button manner to reason about data types is described. A given change
is matched with a test description and it is shown that it suffices for a test to
be fully-observable up to the point of the match to accurately predict whether
a change will be exercised. A procedure to select tests is described. We also de-
scribe how several tests can be simultaneously selected by grouping them based
on overlap of their descriptions.

The proposed approach has been implemented using the theorem prover Sim-
plify extended with an in-house rewrite engine and has been applied to several
EFSMs. Our initial results from preliminary experiments on seven examples in-
cluding protocols and web services from the literature are highly promising. They
show that the time for test selection together with the running of the selected
tests is always lesser than re-running the entire test suite [8].

An overview of the approach using an example follows next. Section 2 de-
scribes related work. Section 3 defines a compatibility relation among transi-
tions. Section 4 introduces fully-observable tests and a procedure for identifying
these tests. Section 5 discusses how tests are selected for a given change and ex-
tends this approach to handle multiple tests in a test suite. Section 6 describes
experiments and Section 7 concludes the paper.

1.1 A Simple Example

Consider a simple bank web service EFSM depicted in Figure 1. Users start by
opening an account with a cash amount greater than or equal to a minimum
balance amount (min) and are given a unique account id (a positive integer).
They can then perform deposits and withdrawals using the id until closing the
account. Withdrawals exceeding the current account balance represented by the

1 Please see Testcom2006, Testcom2007, Testcom 2008 for relevant papers.

148 M. Subramaniam et al.

s0

s1

t1 t8

t2 t3 t4

s2

t5

t7

t6

t9

Fig. 1. Bank web service
with Overdraft Update

t1 open(v), (v >= min), s0 s1, {id += 1; bal[id] = v; ack(id)}

t2 deposit(i, v), (i == id ∧ v > 0), s1 s1, {bal[i] += v; ack(bal[i])}

t3 wdraw(i, v), (i == id ∧ v > 0 ∧ (bal[i] - v) >= min), s1 s1, {bal[i] -= v; ack(v)}

t4 wdraw(i, v), (i == id ∧ v > 0 ∧ (bal[i] - v) < 0), s1 s1, {ack(0)}

t5 wdraw(i, v), (i == id ∧ v > 0 ∧ 0 <= (bal[i] – v) < min), s1 s2, {bal[i]-= v; ack(v)}

t6 deposit(i, v), (i == id ∧ v > 0 ∧ (bal[i] + v) >= min), s2 s1, {bal[i] += v; ack(bal[i])}

t7 close(i), (i == id), s2 s0, {ack(bal[i])}

t8 close(i), (i == id), s1 s0, {ack(bal[i])}

t9 wdraw(i, v), (i == id ∧ v > 0 ∧ (bal[i] - v) >= 0) , s2 s2, {bal[i] -= v; ack(bal[i])}

Tests

λ1 open(100)/ack(1), deposit(1,50)/ack(150), close(1, 50)/ack(150).

λ2 open(100)/ack(1), deposit(1,50)/ack(150), wdraw (1,75)/ack(75), wdraw(1,50)/ack(50),
close(1)/ack(25).

λ3 open(100)/ack(1), deposit(1, 50)/ack(150), wdraw (1, 110)/ack(110), wdraw(1,
40)/ack(40), close(1)/ack(0).

λ4 open(100)/ack(1), deposit(1, 50)/ack(150), wdraw(1, 10)/ack(10), wdraw (1,
100)/ack(100), wdraw(1, 40)/ack(40), close(1)/ack(0).

λ5 open(100)/ack(1), deposit(1, 50)/ack(150), wdraw (1, 110)/ack(110), wdraw(1,
40)/ack(40), deposit(1,40)/ack(40), wdraw(1, 40)/ack(40), close(1)/ack(0).

Fig. 2. Transitions and tests

array bal[] are returned and a withdrawal resulting in balance falling below the
min amount suspends future withdrawals until the balance becomes at least the
min amount.

The EFSM has 8 transitions t1-t8, depicted in Figure 2. Suppose we modify
this EFSM by adding a transition t9 to allow withdrawals not exceeding the
balance even when the balance falls below min2.

Consider the test suite in Figure 2, with tests λ1-λ5 for validating this new
EFSM. Each test in this suite starts the EFSM with global variables min =
50; (account id) id = 0; bal[] = initarray (array with all accounts having an
undefined value) and serially applies the test inputs and compares the generated
outputs with the corresponding outputs in the test to assign pass/fail verdict.
Each test input is processed after executing all the transitions enabled by the
previous test input. Such a test suite may include tests used for original EFSM
and new tests generated using approaches like constrained path selection [5].

2 Note that unspecified inputs received in an EFSM state are simply ignored. For e.g.,
withdrawals exceeding balance in state s1 return 0 whereas they are ignored in state
s2 without affecting the balance.

An Approach for Test Selection for EFSMs Using a Theorem Prover 149

We want to find which tests from the test suite in Figure 2, if any, are to be
re-run to check the newly added transition t9. Usually, tests which execute t9,
are the candidates3.

First, considering each test one by one, the input conditions (and the output
message) of t9 are matched with those in the test description4. Transition t9 is
likely to be executed by a test to process its matching test input(s).

Test λ1 where there is no match need not be re-run.
The next test λ2 is matched by transition t9 at its third and fourth inputs and

is further analyzed to determine if t9 is guaranteed to be executed by this test.
A sequence of sets of transitions, φ = [{t1}, {t2,t6}, {t3,t4,t5,t9}, {t3,t4,t5,t9},
{t7,t8}], point-wise matching the inputs of λ2 is obtained. Note that, if any of
the sets in φ are empty then the test has unspecified inputs and is discarded.
Pairs of transitions from consecutive sets of φ are analyzed to see if φ has all the
information about the transitions that the test λ2 will execute. If so, we form an
executable path up to (and including) the processing of the test input(s) matched
by t9 and choose the test as a candidate to be re-run if this path includes t9.

The first test input of λ2 must be processed by the transition t1 in the first set
in φ. Hence the description of λ2 has all the information about the transitions
that λ2 will execute to process the first test input.

Now, we check if the second input of λ2 can be processed by t2 or t6 from
the second set in φ, immediately following t1. Transition t6 cannot immediately
follow t1 since the input state of t6 differs from the output state of t1. However,
transition t2 can process the second test input immediately following t15.

Note that it may be possible to execute a transition such as t6 after exe-
cuting some other transition following transition t1. Since we cannot find this
intermediate transition based on the test description, we rule out t6. If all the
transitions in some set in φ of a test are ruled out then we can stop since this
means that the test description does not contain all the information about the
transitions that the test will execute. Such tests are not re-run and may either
involve unspecified inputs or may execute transitions not appearing in φ.

For the third input of λ2, we consider each transition in the corresponding set
of φ with t2. Transition t9 cannot immediately follow t2. Nor can t4 immediately
follow t2 since t4’s input guard instantiated with the test input: id == 1 ∧ 75
> 0 ∧ (bal[1] - 75) < 0, requires that the formula: (bal[1] - 75 + 50) < 0 to be
true after executing t2 which requires: (bal[1] - 75 + 50) < 0 ∧ (bal[1] == 100)
to be true after executing t1, which is not possible. Similarly, we can rule out
transition t5. The only remaining transition t3 can immediately follow t2 and
can process the third input and hence we go to the next input of λ2.

3 These tests are called modification-traversing tests [9].
4 Input conditions match if the messages in the description are instances of those in

the transition and the transition guard is satisfied by the test input values. More
details are in Section 3.

5 Interaction among transitions is analyzed using post-images and pre-images com-
puted from the transitions. For more details see Section 4.

150 M. Subramaniam et al.

Transition t9 cannot immediately follow t3. However, t5 can immediately fol-
low and process the fourth test input. Since the description of λ2 contains all
the information about the transitions executed up to (and including) the pro-
cessing of the last test input matched by t9, we can guarantee that t9 will not
be executed by λ2. Therefore, test λ2 need not be re-run to test t9.

Test λ3 has the same sequence of matching transitions as λ2, except that the
parameters in its third and fourth inputs are different. Analysis of λ3 as described
above, shows that t1 and t2 will process the first two test inputs. The third input
will be processed by t5 since its instantiated guard: id == 1 ∧ 110 > 0 ∧ (0 <=
bal[1] - 110 < min) can be satisfied after executing t1 and t2. Similarly, it can
be shown that the next test input will be processed by t9, which guarantees that
t9 will appear in its test run. Hence test λ3 will be re-run and is a candidate
to test t9. It can be similarly verified that t9 will be executed by the last two
tests λ4 and λ5 to process their fifth and sixth inputs respectively making them
candidates to test t9 as well. Changes that delete and replace transitions can
also be handled by the proposed approach and are discussed in Section 4.

The reader would have noticed the repetitive analysis of tests λ3-λ5 due to the
sharing of test inputs in their descriptions. Tests can be grouped together based
on the overlapping inputs in their descriptions to reduce selective re-testing costs.
Section 5 gives more details.

2 Related Work

There is a lot of earlier work on regression test selection (see [9] for an excellent
survey). Regression test selection for EFSMs has been studied earlier [2,5,6] for
model-based regression test selection and test prioritization. In [5], Korel et. al,
discuss a method for model-based test selection of EFSMs involving addition and
deletion of transitions. Using control and data dependencies between the change
transition and the rest of the model they identify equivalent tests to reduce the
test suite. Since a test may cover multiple changes, tests are included only if
their changes are not covered by others. In [2], Chen et. al, extend the work
in [5] to consider new type of replacements called change transitions and refine
control and data dependencies proposed in [5]. The work in [6] focusses on test
prioritization and proposes several heuristics for the same.

The proposed approach extends these earlier works in several ways. First, we
support more expressive, executable EFSMs with a rich set of data types in-
cluding booleans, numbers, arrays, queues, and records. In this sense, this work
bridges the gap between the code-based [9] and the model-based [2, 5, 6] ap-
proaches. Second, unlike model-based approaches, we do not consider tests to be
explicit sequence of transitions. Our tests are a sequence of input assignments to
the data variables (much like programs), with expected outputs and a verdict of
pass/fail. We use a theorem prover to analyze a test to determine if it executes
a given modified transition and select such tests. In this sense our notion of af-
fected tests is similar to that of modification-traversing tests of [9]. Finally, we
use a theorem prover to support richer set of data types than that have been tra-
ditionally considered by model-based approaches. Most importantly, this allows

An Approach for Test Selection for EFSMs Using a Theorem Prover 151

us to be more precise in comparison to the conservative data flow techniques
used by model-based approaches.

3 Preliminaries

Extended Finite State Machines: An extended finite state machine (EFSM)
[1,7,10] is a finite state machine extended with variables and communicates with
the environment by exchanging parameterized messages using (possibly infinite)
FIFO queues. An EFSM E = (I, O, S, V , T), is a 5-tuple where I, O, S, V , and
T are finite sets of parameterized input and output messages, states, variables,
and transitions respectively. Message m has typed, distinct, parameters p1, · · · ,
pk, written as −→p ; types can be one of – boolean, number, array, queue, and
record. The set V = X ∪ {IQ, OQ}, is the union of the global variables X
and the queue variables IQ and OQ denoting the input and output queues from
(to) the environment respectively. A transition t in T is of the form: mk(−→p), Pt,
st �→ qt, ml(−→e), At where the predicate Pt, action list At, and −→e = (e1, · · · ,
ew) respectively are, a conjunction of atomic predicates, an ordered sequence of
assignments, and a series of expressions over the data and queue variables and
parameters p1, · · · pk. The input(output) messages are optional in a transition.

Transitions having both input and output messages are explicit6 transitions.

Semantics of EFSM: A global state, g = (〈s〉, pred) is a pair whose first
element s ∈ S; second element pred is a conjunction of atomic predicates over V
including a (possibly empty) set of equalities representing the actions executed
by the transitions to reach the global state g7. An atomic predicate is formed by
using relational operators (and, or, not, ==, 	=, <, ≤, >, ≥) over expressions
over the different data types (booleans, numbers, arrays, queues, and records).
An initial global state of E is a global state g in which state s belongs to the
initial state of S, the second element pred is the initial predicate, a conjunction
of atomic predicates over queue variables stating that the output queue has the
initial value initq, the input queue has environment messages, and the data
variables have their initial values. Transition is enabled in a global state if its
input message matches the head of IQ in the state and its input condition is
satisfied at that state. An execution step, g →t g

′, executes the transition t
enabled in g resulting in the global state g′. A run r = g0t0g1· · · tn−1g0 is a
sequence of consecutive execution steps starting and ending in the initial global
state.

Simplify Prover. Theorem prover Simplify [3] extended with rewrite rules
is used to analyze tests in a push-button manner. Quantified formulas called
verification conditions are generated by automatically translating the EFSM
predicates and assignments [10] and input to the prover. The prover returns
valid if input formula F is true under all the assignments to the variables in F

6 Analogous to explicit transitions in SDL.
7 Equalities in pred are represented as rewrite rules to aid equality simplification. More

details are in [10].

152 M. Subramaniam et al.

and returns invalid, otherwise. To check if F is satisfiable, its negation is input to
the prover. Simplify contains decision procedures for numbers, booleans, equality,
partial-orders, and the theory of maps [3]. The theory of maps is used to reason
about data types such as arrays, records including message queues.

A global state whose variables are fully instantiated (with constant values) is
a concrete global state. Each global state represents a (possibly infinite) set
of concrete global states obtained using satisfying assignments to the predicates
(including message queues). Tests and test runs deal with executability and
hence use concrete global states.

EFSMs are deterministic, i.e., in each concrete global state (that includes
message queues) at most one transition is enabled.

3.1 Tests, Changes, and Affected Tests

An EFSM test (description) λ = 〈g0, [i1/o1,· · · ,in/on]〉 is a concrete global state
g0 along with a finite sequence of input/output elements where each element is a
sequence of assignments to the data and the message queue variables. Test λ is
applied by starting the machine in the concrete global state g0 and repeatedly
executing the enabled EFSM transitions and serially processing the test inputs.
The test run rλ = g0t0, · · · tmgm· · · g0, is an EFSM run produced by applying
λ to the EFSM in state g0; all the global states in rλ are concrete global states.
Each test λ has a unique run rλ since the EFSM is deterministic, i.e., at most
one transition is enabled in any concrete global state.

In this paper, we focus on tests that are designed to execute specified behav-
iors. Tests that check the EFSM behavior by providing unspecified or inappro-
priate inputs are not considered. However, the approach applies equally to these
as well. Please see [11] for identifying such failing tests.

Changes to the EFSM are done at the transition level. A change δ = 〈sign,
t〉, sign ∈ {+,-} either adds or deletes the transition t respectively. Change
can add explicit transitions having the same input and output messages with
different input states and/or input conditions. Newly added transitions can also
refer to new messages and/or new states. In such cases, we will assume that the
test suite from which tests are to be selected already contains tests with these
new messages [5]. Replacement of transitions can be modeled using addition
and deletion of transitions. Change δ =〈td, ta〉 denotes a replacement deleting
td and adding ta. More complex updates are specified by using a set of order-
independent [11] transition changes.

Test λ is affected by a change δ if the test run executes the transition t in δ.
Then, λ is a candidate to be re-run for testing the change δ.

4 Analyzing Interaction among Transitions

Pre-image of t, Pre(t) = 〈st, (nPt ∧ IQ.hd == mj(−→p) ∧ OQ 	= full8)〉, is a
symbolic global state that includes every global state g (possibly none) where the
8 For brevity, we assume output queues to be unbounded, henceforth.

An Approach for Test Selection for EFSMs Using a Theorem Prover 153

transition is enabled. It is generated using transition t; nPt is got from predicate
Pt of t by renaming variables to refer to their latest instances [10].

Example: Transition t5 in Figure 2, Pre(t5) = 〈s1, (i == id ∧ v > 0 ∧ 0 <=
(bal0[i] − v) ∧ (bal0[i] − v) < min0 ∧ IQ0.hd = wdraw(i, v))〉 where bal0, min0,
and IQ0 refer to the latest instances of these variables. �

The post-image of t, Pos(t) = 〈qt, (nPt ∧ IQ1 == deq(IQ0) ∧ IQ0.hd ==
mj(−→p) ∧ OQ1 == 〈OQ0, ml(−→ne)〉 ∧ nAt)〉, is a symbolic global state that
includes every global state g′ (possibly none) that can be obtained after executing
t. It is automatically generated using t; I(O)Q0 and I(O)Q1 stand for the queues
before and after executing t; −→ne denotes the parameter expressions in the output
message using the latest instances of variables; nAt is similarly obtained from
the action statements At after translating them into equalities [10].

Example: Pos(t5) = 〈s2, (i == id ∧ v > 0 ∧ 0 <= (bal0[i] − v) ∧ (bal0[i] − v) <
min0 ∧ IQ1 == deq(IQ0) ∧ IQ0.hd == wdraw(i, v) ∧ OQ1 == 〈OQ0, ack(v)〉
∧ bal1[i] == bal0[i] − v)〉. �

Below, we view Pre(t) and Pos(t) as formulas with the EFSM state being an
equality predicate over a predefined state variable st.

Compatibility of Transitions. Compatibility relation among transitions de-
termines if a transition can immediately follow another in the EFSM runs. Given
transitions ti and tj with input messages mi and mj respectively, let ψ = (IQ0

== 〈mi(−→pi), mj(−→pj)〉). Formula ψ provides the context with the input queue
having the two input messages and the output queue capacity being set so that
both transitions can enqueue their outputs.

Transition tj is incompatible with ti if tj cannot immediately follow ti in
any EFSM run. Transition tj is found to be incompatible with ti by checking
that ψ ∧ Pos(ti) ∧ Pre(tj) is an unsatisfiable formula.

Example: In Figure 2, transition t9 is incompatible with transition t6. Context
ψ = (IQ0 == 〈 deposit(i1, v1), wdraw(i2 , v2) 〉).
Pos(t6) = 〈s1, (i1 == id ∧ v1 > 0 ∧ (bal0[i1] + v1) >=min0 ∧ IQ1 == deq(IQ0)
∧ IQ0.hd == deposit(i1, v1) ∧ OQ1 == 〈OQ0, ack(bal1[i1])〉 ∧ bal1[i1] ==
bal0[i1] + v1)〉.
Pre(t9) = 〈s2, (i2 == id ∧ v2 > 0 ∧ (bal0[i2] − v2) >= 0 ∧ IQ1.hd = wdraw(i2 ,
v2))〉. It is verified using the prover that ψ ∧ Pos(t6) ∧ Pre(t9) is an unsatisfiable
formula. �

Note that tj being incompatible with ti is independent of the input parameters
in ti and tj since they are renamed and are disjoint.

Transition tj is strongly compatible with ti if tj can immediately follow ti
in all EFSM runs. Transition tj is found to be strongly compatible with ti if (ψ
∧ Pos(ti)) =⇒ PreElim(tj) is a valid formula. PreElim(tj) is obtained from
Pre(tj) by eliminating conjuncts that involve only the input parameters of tj .
This ensures that tj immediately follows tj regardless of the values of the input
parameters.

154 M. Subramaniam et al.

Example: Transition t8 is strongly compatible with transition t6 in Figure 2.
Context ψ = (IQ0 == 〈 wdraw(i1 , v1), close(i2) 〉); Pre(t8) = PreElim(t8) =
〈s1, IQ1.hd = close(i2)〉; Pos(t6) is given above. It is verified using the prover
that (ψ ∧ Pos(t6)) =⇒ PreElim(t8) is a valid formula.

Note also that t6 is also strongly compatible with the t2 in Figure 2 since (ψ
∧ Pos(t6)) =⇒ PreElim(t2) is a valid formula. However, it is evident (ψ ∧
Pos(t6) =⇒ Pre(t2) is not a valid formula since the conjunct in Pre(t2) derived
from the condition v > 0 of t2 is not valid. �

More than one transition can be strongly compatible with a transition provided
these transitions have mutually exclusive predicates over the input parameters.
Consider a deterministic EFSM9 with transitions, t1: m1, true, s0 �→ s1, ack; t2
m2(v), v > 0, s1 �→ s1, ack; t3: m3(v), v < 0, s1 �→ s1, ack. It is easily verified
that both t2 and t3 are strongly compatible with t1. Note however, that only
one of t2 or t3 can immediately follow t1 in any concrete global state.

Transition tj is compatible with ti if tj can immediately follow ti in some
EFSM runs but not in others. Transition tj is found to be compatible with ti if
tj is neither incompatible nor strongly compatible with ti.

Example: Transition t3 is compatible with t1 in Figure 2, since Pos(t1) ∧ Pre(t3)
is not unsatisfiable and Pos(t1) =⇒ PreElim(t3) is not a valid formula. �

Many transitions can be compatible with a given transition. It is also possible to
have transitions tj and tk where tj is strongly compatible and tk is compatible
with a given transition ti. Consider a deterministic EFSM whose transitions
include, t1: m1(), s0 �→ s1, ack, {x = 1;}; t2: m2(), x > 0, s1 �→ s1, ack, {}; t3:
m3(), y > 0, s1 �→ s1, ack, {}. Transition t2 is strongly compatible with t1 since
it can always immediately follow t1. However, since the value of y is unknown
after executing t1, t3 can immediately follow t1 in some runs but not in others.
In this case, for deterministic behavior, the EFSM must ensure that t1 is only
executed in a concrete state in which the value of y is not positive.

The pre-image and post-image of EFSM transitions and the compatibility of
transitions can be pre-computed using a theorem prover before test selection
and used to identify fully-observable tests as described next.

5 Selecting Fully-Observable Tests

Test λ is fully-observable if every transition in the test run rλ is an explicit
transition. Recall from Section 2, that transitions having both input and out-
put messages are explicit transitions. We can identify these tests by using their
descriptions as described below.

Consider test (description) λ= 〈g0, [i1/o1, · · · , in/on]〉. Transition tk matches
ik/ok in λ if input ik (output ok) is an instance of the input (output) message
of tk and the input condition of tk instantiated with parameter values from ik
is a satisfiable formula. As an example, the transition t5 in Figure 2, matches
9 Please see Section 3.

An Approach for Test Selection for EFSMs Using a Theorem Prover 155

the input wdraw(1, 110)/ack(110) of λ3 since the input and output messages
wdraw(i, v) and ack(v) are instances of the test input and test output respec-
tively and the condition of t5 instantiated with the parameters: (1 == id) ∧
(110 > 0) ∧ (bal[1] - 110) >= 0 ∧ (bal[1] - 110) < min is a satisfiable formula.

Let T (ik/ok) denote the set of transitions matching ik/ok and φ=[T (i1/o1),· · · ,
T (in/on)] denote the sequence of sets of transitions that point-wise match the
sequence [i1/o1, · · · , in/on]. As an example, φ = [{t1}, {t2,t6}, {t3,t4,t5,t9},
{t3,t4,t5,t9}, {t7,t8}] for the test λ2 in Figure 2.

Note that if transitions tk and t′k both belong to some set T (ik/ok) then they
cannot both be strongly compatible with a transition ti. If this were to happen
then both of them can immediately follow ti in every EFSM run. Since this is not
possible in a deterministic EFSM they must have mutually exclusive predicates
involving their input parameters in which case they both cannot both match the
input ik and hence cannot both belong to T (ik/ok). However, if transition tk is
strongly compatible with ti whereas t′k is only compatible with ti then we can
conclude that tk must immediately follow ti.

TransitionCompatibilityGraph. Compatibility information among the tran-
sitions in the sequence φ for a test λ is represented by a directed acyclic graph
TCG. In addition to start node, TCG has one node for each occurrence of each
transition in the sequence φ. Transitions in the set T (ik/ok) in φ appear at level k;
start is at level 0. There are labeled directed edges between nodes in consecutive
levels. Edge with label s from tk to tk+1 is present if tk+1 is strongly compatible
with tk; edge with label c from tk to tk+1 is present if tk+1 is compatible with tk.
Edge from start to a node t1 with label s is added if pred =⇒ Pre(t1) is a valid
formula where pred is the predicate in the concrete initial global state g0 of the
test λ.

Note that there can be at most one outgoing edge with label s from any node
since a node can be strongly compatible with at most one element from a set
of transitions matching a test input as discussed above. Further, since all the
variables are fully instantiated in g0 there is exactly one outgoing edge from
start to a node in level 1 and this has the label s.

As an example, the TCG for the test λ3 is given in Figure 3.

5.1 Identifying Fully-Observable Tests

Test λ is initial if every transition in T (i1/o1) is incompatible with every non-
explicit transition i.e., no transition can precede any transition from T (i1/o1).
Similarly, test λ is final if every non-explicit transition is incompatible with every
transition in T (in/on) i.e., no non-explicit transition can follow any transition
in T (in/on).

A test must be both initial and final for the test to be fully-observable. Then,
the TCG is used to check if the test is fully-observable as described below.

1. Terminate with success if there is path from start to some node in the last
level labeled by s.

156 M. Subramaniam et al.

t1

t2

c

t31

c

t41

c

t51

c

start

s

t32

c

t42

c

t52

cc c c

t92

c

t6

cc c

t8

s s

t7

s s

t91

c

Fig. 3. TCG for Test λ3

open(100)

deposit(1,50)

λ1−λ5

close(1)

λ1

wdraw(1,75)

λ2

wdraw(1,110)

λ3,λ5

wdraw(1,10)

λ4

wdraw(1,40)

λ2

wdraw(1,40)

λ3,λ5

wdraw(1,100)

λ4

close(1)

λ2

close(1)

λ3

deposit(1,40)

λ5

wdraw(1,40)

λ4

wdraw(1,40)

λ5

close(1)

λ4

close(1)

λ5

Fig. 4. Test Suite Tree for Bank Example

2. Remove nodes (and corresponding edges) that do not either have any prede-
cessors (except start) or do not have any successors (except those at the last
level) until no more such nodes exist.
3. Remove all outgoing edges from node tk with a label c if there is an out-
going edge from tk with label s. Repeat previous step to remove the resulting
unconnected nodes.
4. The resulting graph is then processed iteratively level by level in an attempt
to construct an executable path from start to some node in the last level. At
each step, a formula labeling a node in the previous level is propagated to all
the successors. A new formula is generated at each successor. If it is a valid
formula then it is assigned to be the label of that node and the process moves
to the next level until reaching the last level, in which case, an executable path
from start to a node in the last level has been found and the test is declared
fully-observable; the path comprises of nodes that have been assigned a label.
If none of the formulas generated at the successors at a level are valid formulas
then the process terminates declaring test to be not fully-observable. At level 1,
the label assigned to the node t1, L(t1) = pred =⇒ Pre(σ(t1))10 where pred
is the predicate of state g0 and σ(t1) is an instance of t1 obtained by uniformly
replacing all occurrences of the input parameters by the corresponding values
from the test input i1. At the kth step, given L(tk), the formula generated at
successor tk+1 is: L(tk) ∧ Pos(σk(tk)) =⇒ Pre(σk+1(tk+1)), which if valid is
assigned as L(tk+1). Note that the process can be terminated with success at a
level k if all the subsequent levels are connected by s label edges.

10 σ is a substitution from input parameters of t1 to the input values in the correspond-
ing test input generated by matching.

An Approach for Test Selection for EFSMs Using a Theorem Prover 157

Example: Test λ3 is both initial and final. The TCG in Figure 3 is constructed
and analyzed level by level since there is no path from start to either t7 or t8
labeled s. Unconnected nodes t6 and t91 and the associated edges are removed.
The formula generated at node t1 is:〈s0, (min == 50) ∧ IQ0 == 〈open(100),
deposit(1, 50), wdraw(1, 110), wdraw(1,40), close(1)〉〉 =⇒ 〈s0, IQ0.hd ==
open(100) ∧ 100 > 0〉 is a valid formula and hence is assigned to be L(t1). The
formula generated at node t2 using L(t1) is again found to be valid and assigned
to be L(t2).

At the third level, t2 has three successors t31, t41 and t51. The formula gener-
ated at level t31 is of the form (L(t2) ∧ Pos(σ2(t2))) =⇒ Pre(σ3(t31)) where σ2

uniformly substitutes i by 1 and v by 50 in t2 and σ3 uniformly substitutes i by
1 and v by 110 in t3. Since a conjunct in the consequent: ((bal1[1] - 110) >= 50)
cannot be established from the conjuncts: (bal1[1] == bal0[1] + 50) and bal0[1]
== 100 in the antecedent, the formula is not valid and the node t31 is skipped.
Similarly, node t41 is also skipped. The relevant conjunct in the formula gener-
ated for t51 : (bal1[1] - 110 < 50), follows from those in the antecedent, resulting
in a valid formula. Hence t51 is labeled with this formula as its label L(t51). The
next two levels have a single successor, nodes t92 and t7 respectively. The formula
generated at t92 using L(t51) is a valid formula and is assigned to L(t92). The
formula generated at t7 is also valid and is assigned to L(t7), resulting in the
executable path that is highlighted in Figure 3. Therefore, the test λ3 is declared
to be fully-observable.

5.2 Selecting Tests

Given a fully-observable test λ and a change δ = (sign, t), the above proce-
dure can be used in a straightforward way to accurately determine whether λ is
affected.

Addition Change. Consider a change δ = (+, ta) that adds a single transition
ta to the EFSM.

To determine if δ affects a test λ, the sequence φ of matching transitions is
extracted from the description of λ. If ta is an explicit transition and does not
appear in φ then the test λ is unaffected. Suppose that the new transition ta
appears exactly once at the kth set in φ. Using the compatibility information
of the original transitions, we construct TCG and determine whether λ is fully-
observable up to (and including) level k of the graph. Then, λ can be declared
unaffected without even analyzing the compatibility of transition ta with other
transitions since λ will execute a transition other than ta at the kth level, the
only level where ta can appear.

Suppose that λ is fully-observable only up to level k - 1 with node tk−1 being
labeled with formula L(tk−1). Now, compatibility of ta with tk−1 is determined.
If ta is strongly compatible then the test is declared affected. If ta is compatible
then we generate: (L(tk−1) ∧ Pos(σk−1(tk−1))) =⇒ Pre(σk(ta)), and check
if it is a valid formula. If so, λ is declared affected. If ta is incompatible with

158 M. Subramaniam et al.

tk−1 or if λ is not fully-observable up to level k - 1 then the approach fails and
cannot accurately determine whether the test is affected. In such cases, λ may
be conservatively selected as being affected since ta matches some element in λ.

Suppose that transition ta matches λ at multiple positions covered by an
interval [i, k] then if λ is fully-observable up to a level m that is greater than or
equal to k then λ can be unaffected regardless of compatibility ta. If m equals a
level that immediately precedes a matching level, say, level k - 1, which contains
node tk−1 such that L(tk−1) is a valid formula then we compute compatibility
of ta with tk−1 and determine whether λ is affected as described above. In all
other cases, λ may be conservatively selected to test ta.

Deletion and Replacement Changes. To determine if a change δ = (−, td)
affects a test λ the above procedure is slightly modified to handle unspecified
behaviors that may arise due to missing transitions. To do this, we allow test
suite to have tests with unexpected inputs to indicate adverse impact of deletion.

Suppose that transition td matches the description of test λ at a level k and
the node td is assigned a label as described above. If test λ ignores its kth input
due to absence of td (and the following inputs) and belongs to the test suite of the
original EFSM then λ is not selected since it results in an expected unspecified
behavior caused by deletion of td. However, if λ is newly generated then it is
selected to indicate the adverse impact of deleting td.

We also select tests which indicate that deleting td does not cause any adverse
effects. Effects of td are first nullified by removing its output actions and making
output state identical to its input state. A test λ is selected to indicate that no
adverse effect happens due to deleting transition td that matches λ provided td
is assigned label and the test is found to be fully-observable. Even if td does
not match a test λ, we can check if the conditions enabling td can occur while
executing λ by adding the modified td to each kth set of transitions of φ whenever
td is compatible or strongly compatible with at least one of the transitions in
previous set. Then the analysis is repeated and test λ is selected as done for
addition with multiple matches as described above.

In situations where the updates contain many changes the above approach for
deletion may miss certain tests because their runs cannot reach a concrete global
state where the deleted transition td is enabled without the new transitions. In
such cases, an interim EFSM [11] can be created by applying all the changes in
the update except for δ and the analysis performed using the transitions available
in this EFSM.

To determine if a replacement change δ = (td, ta) affects a test λ, we view it
as a deletion change involving td followed by addition of ta. A test λ is affected
by δ if it is either affected by the deletion of td or the addition of ta. The effect
of deleting td is computed using both the original system and the intermediate
system obtained by adding ta. The effect of addition of ta is similarly computed
using both the original system as well as the intermediate system obtained after
deleting td.

An Approach for Test Selection for EFSMs Using a Theorem Prover 159

5.3 Handling Multiple Tests

Consider a test suite TS = {λ1, · · · , λn} comprised of fully-observable tests. To
determine the tests in TS that are affected by an addition or deletion change δ
= (sign, t), TS is modeled as a forest with each tree (TST) comprised of all tests
starting with the same state g0 and having same starting test input(outputs are
not used to determine affected tests and are ignored). Nodes in each TST are
test inputs. Edges are labeled by sets of tests. Node u is a parent of node v if
the input of u is applied before that of v at some test λi of TS. Then, the test
λi is added to the set of tests labeling the edge between nodes u and v.If inputs
i1 and i2 can appear in any order then we break the cycle by creating separate
trees. In each TST, the set of tests labeling the edge to each parent is a union of
the sets of tests labeling the edges to its children. So, the set of tests in TST are
refined as we go down the tree. For example, the bank example from Section 1,
has a single test suite tree depicted in Figure 4.

Given a change transition t, and a test suite tree TST, we first find the nodes
u matching td and annotate the paths to each u with matching sets of transi-
tions. Each node has a single matching set of transitions. Let T (u) stand for
the matching set corresponding to a node u. A left-right traversal of the tree
picks the first matching node u in each TST path p = v1v2· · · vnu and checks if
the sequence φ = [T (v1), · · · ,T (vn),T (u)] is fully-observable and td is the labeled
transition in the set T (u). If so, all the tests on the edge incident on node u are
marked affected, the node and its descendants are removed and we analyze the
remaining TST paths. Otherwise, we update transition sets T (v1) = {t1}, · · · ,
T (vn) = {tn}, and T (u) = {tu} where ti are the labeled transitions found while
checking full-observability of p and continue analyzing the extensions of the path
p reaching another matching node u. The process terminates once every path
reaching a matching node is analyzed and all the unmarked tests at the end of
the process are declared unaffected. Note that if node u appears at level k of p
which is fully-observable only up to a level m < k then we can ignore all siblings
of u whose common ancestor is at level l, m < l < k.

The matching nodes u for the bank example are highlighted in Figure 4. A
left-to-right traversal of this tree detects affected tests λ3-λ5 at level 4 after
which the matching node at level 6 can be removed.

6 Preliminary Experiments

We have implemented the proposed approach in Perl using a package support-
ing graph subroutines. Given an EFSM, modified EFSMs are generated by in-
strumenting the transitions as added(+), deleted(-) and replaced(r)11. Addition
and deletion of every transition in the original EFSM is covered. Then, by using
the instrumentations in the modified EFSM files, changes are extracted, test de-
scription templates with uninstantiated parameter values are generated for each

11 Conference protocol also includes more specific changes as discussed below.

160 M. Subramaniam et al.

Example Ntsc Stsc C1(secs) C2(secs) C3(secs)

Atm (9) 9 3 35 8 17
Bnk (9) 46 26 1108 285 621
Cmp (7) 9 1 15 2 4
Cnf (19) 40 11 390 63 134
Tcp (14) 9 3 41 7 8
Thp (15) 16 8 134 28 76
V en (8) 10 4 41 11 27

Fig. 5. Regression Test Selection Costs

change by using transition coverage of the modified (as well as the original EF-
SMs). Test descriptions are produced from these templates by randomly assigning
constant values to the parameters and included in the test suite. Non-executable
test descriptions are removed by performing symbolic execution. We also added
hand-crafted tests. We then analyzed each test in the test suite for each change
using the proposed approach. During analysis, EFSM expressions are automat-
ically translated into the language of the prover, and the prover is invoked in a
push-button manner to check satisfiability of the generated formulas.

We have studied seven simple examples from the literature: completion, two-
phase commit, and conference protocols (Cmp, Tcp, Cnf)12, third-party call
(Thp), automatic teller machine (Atm) [2,5], bank example (Bnk) web services,
and a vending machine (V en). The main goal was to compare the effectiveness
of the proposed approach with the retest-all approach based on the cost model
of [8]. According to this model test selection is more economical than using the
entire suite if the cost of selection(C3) is less than the cost of running tests that
the selection lets us omit (C1 - C2); C1 is the cost of running the full test suite;
C2 is the cost of running the selected tests.

Our results are summarized in the table in Figure 5. For each example, first
column gives the total number of transitions without instrumentation; second
column Ntsc is the number of test cases in the test suite; third column Stsc
is the average number (rounded) selected tests per change; and the next three
columns give the costs C1, C2 and C3 in terms of the running times. These
times were averaged (rounded) by considering a set of changes that cover every
transition.

Conference protocol Cnf above, is a chatbox-like protocol and has been used
earlier by formal testing approaches. We used the EFSM description (c) available
from the web site and changed to the description (d) in the same web site. The
four changes specified there to do this are additions that allow members to send
data before joining the conference. Our use of the more expressive parameterized
EFSMs allowed us to specify conference id as a parameter because of which two
additions suffice to evolve EFSM (c) to EFSM (d).

12 http://schemas.xmlsoap.org/ws/2004/10/wsat/Completion;
http://schemas.xmlsoap.org/ws/2004/10/wsat/Volatile2PC(Durable2PC);
http://fmt.cs.utwente.nl/ConfCase/

An Approach for Test Selection for EFSMs Using a Theorem Prover 161

As evident from the table, in each case, we were able to select a non-empty set
of tests for the chosen change. The average number of tests selected per change
results in a smaller test suite in all cases. Further, our results show that the cost of
regression selection is economical C3 < (C1 − C2) in all of our examples. For the
examples, Atm and V en, the reduction in test suite size does not reflect on the
economy of regression test selection. Even though a lot of tests are eliminated,
the cost of regression test selection is high in these examples since the tests
removed do not take much time to execute. However, the proposed approach
has the potential to perform highly economical regression test selection since it
can eliminate long running tests by only partially analyzing them. But our initial
experiments did not reflect that since our test descriptions were restricted to be
sequences of no more than size 20 and we averaged over all changes.

7 Conclusion and Future Work

A novel approach for regression test selection for EFSMs supporting a rich set
of commonly used data types including booleans, numbers, arrays, queues, and
records is proposed. Changes to the EFSM are performed at the transition level
by adding/deleting/replacing one or more transitions. Test descriptions support-
ing input and output values from these data types are automatically analyzed
using a theorem prover to identify tests that exercise a given change. A class
of fully-observable tests is identified. It is shown that the description of a fully-
observable test contains adequate information to accurately predict whether the
test will exercise a given change. Procedures to identify fully-observable tests
and select tests to exercise changes that add/delete/replace transitions are de-
scribed. We also extend the proposed approach to simultaneously analyze several
tests in a test suite to reduce analysis costs. Initial results of our experiments
on 3 web services and 4 protocols based on a well-known cost model for regres-
sion testing [8] are promising. They show that the cost to select tests is smaller
than the difference in execution times between running all vs. running only the
selected tests.

Acknowledgements. The first author would like to thank Gregg Rothermal,
for fruitful discussions and help on earlier works on regression test selection.

References

1. Brand, D., Zafiropulo, P.: On Communicating Finite State Machines. JACM 30(2)
(1983)

2. Chen, Y., Probert, R., Ural, H.: Regression test suite reduction using extended
dependence analysis. In: SOQUA 2007, September 3-4 (2007)

3. Detlefs, D., Nelson, G., Saxe, J.B.: Simplify: A Theorem Prover for Program Check-
ing. Journal of the ACM 52(3) (2005)

4. Kapur, D., Zhang, H.: An Overview of Rewrite Rule Laboratory (RRL). In: Der-
showitz, N. (ed.) RTA 1989. LNCS, vol. 355, pp. 559–563. Springer, Heidelberg
(1989)

162 M. Subramaniam et al.

5. Korel, B., Tahat, L., Vaysburg, B.: Model Based Regression Test Reduction Using
Dependency Analysis. In: Proceedings of the International Conference on Software
Maintenance (ICSM 2002), October 03-06, p. 214 (2002)

6. Korel, B., Koutsogiannakis, G., Tahat, L.H.: Application of system models in re-
gression test suite prioritization. In: IEEE International Conference Software Main-
tenance, ICSM 2008, September 28-October 4, vol. (2008)

7. Lee, D., Yiannakakis, M.: Principles and Methods of Testing Finite State Machines
– A Survey. Proceedings of the IEEE 84(8) (1996)

8. Leung, H.K.N., White, L.: A Cost Model to Compare Regression Test Strategies.
IEEE Conf. on Software Maintenance, ICSM (1991)

9. Rothermel, G., Harrold, M.J.: Analyzing Regression Test Selection Techniques.
IEEE Transactions on Software Engineering (1996)

10. Subramaniam, M., Guo, B.: A Rewrite-based Approach for Change Impact Anal-
ysis of Communicating Systems Using a Theorem Prover, CS Dept. University of
Nebraska-Omaha (cst-2008-3) Technical Report (Work in progress paper in Test-
com 2008) (2008)

11. Subramaniam, M., Pap, Z.: Updating Tests Across Protocol Changes. In: Proc. of
IFIP Conference on Testing of Communicating Systems (2006)

	An Approach for Test Selection for EFSMs Using a Theorem Prover
	Introduction
	A Simple Example

	Related Work
	Preliminaries
	Tests, Changes, and Affected Tests

	Analyzing Interaction among Transitions
	Selecting Fully-Observable Tests
	Identifying Fully-Observable Tests
	Selecting Tests
	Handling Multiple Tests

	Preliminary Experiments
	Conclusion and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

