
Design of a Stream-Based

IP Flow Record Query Language

Vladislav Marinov and Jürgen Schönwälder

Computer Science, Jacobs University Bremen, Germany
{v.marinov,j.schoenwaelder}@jacobs-university.de

Abstract. Analyzing Internet traffic has become an important and chal-
lenging task. NetFlow/IPFIX flow records are widely used to provide a
summary of the Internet traffic carried on a link or forwarded by a router.
Several tools exist to filter or to search for specific flows in a collection
of flow records, however the filtering or query languages that these tools
use have limited capabilities when it comes to describing more complex
network activity. This paper proposes a framework and a new stream-
based flow record query language, which allows certain types of traffic
patterns to be defined and matched in a collection of flow records. The
usage of the proposed new language is exemplified by constructing a
query identifying the Blaster.A worm.

Keywords: Network measurement, NetFlow, IPFIX.

1 Introduction

The NetFlow protocol [1], originally designed by Cisco Systems, enables routers
to export summary information about the traffic flows that traverse a router.
Inspired by Cisco’s early work, the IETF created a standard IP flow information
export protocol called IPFIX [2] A network flow is defined as an unidirectional
sequence of packets between given source and destination endpoints. Specifically,
a flow is usually identified by the combination of the following seven key fields:
source and destination IP address, source and destination port number, IP pro-
tocol type (TCP, UDP, etc.), ToS byte, and the input interface (ifIndex). In
addition to the key fields, a flow record contains other accounting fields such as
packet and byte counts, input and output interfaces, bit-wise logical or of TCP
flags, timestamps, MPLS labels etc. Network elements (routers and switches)
gather flow data and export it to collectors for analysis.

The flow records exported via NetFlow/IPFIX provide a summary about the
traffic traversing a specific router. However, raw collections of flow records still
contain too many details for network administrators and they are not useful
unless processed by network analysis tools. Most of the existent flow record
processing tools provide mechanisms for searching of specific flows through some
simple operations like filtering by an IP address or port number or generating
Top-N talkers reports. However, in order to match more complex flow patterns
against collections of flow records, one needs a useful flow record query language.

C. Bartolini and L.P. Gaspary (Eds.): DSOM 2009, LNCS 5841, pp. 15–28, 2009.
c© IFIP International Federation for Information Processing 2009

16 V. Marinov and J. Schönwälder

Given the large number of flow records collected on high-speed networks, it is
necessary to reduce their number to a comprehensible scale using filtering and
aggregation mechanisms. Each flow or aggregated flow has a set of properties
attached to it that characterize the flow. It is to be expected that flows that
correspond to similar network activities (certain applications or certain attacks)
have similar properties. In addition to the properties recorded in flow records,
one can derive further properties that are even more suitable to characterize the
behavior of a flows. One objective when investigating traces is to detect traffic
regularities such as repeating patterns, which can be associated with the usage
of common network services. This approach can be further extended to detect
traffic irregularities such as network anomalies or attacks, which also generate
specific patterns. These patterns typically spread over several flows. For example,
if an intensity peak in flow X always occurs after an intensity peak in flow Y
with a fixed delay, they form a pattern describing a certain network behavior.
The goal of network administrators is to detect such patterns of correlated flows.

For example, one would be interested in finding out where, when, and how
often a certain Internet service is used. A concrete scenario is a network admin-
istrator who wants to detect VoIP applications by finding STUN flows generated
by VoIP applications when they try to discover whether they are located behind a
Network Address Translator (NAT). If one knew the pattern that is created when
a service is trying to establish a connection, one could search for this specific
pattern in the selected flows. We are aware that although the presence/absence
of a certain pattern may be a hint for the presence/absence of a particular service
this by no means proves that the service is really running/missing.

In this paper we propose a flow record query language, which allows to de-
scribe patterns in a declarative and easy to understand way. This paper is a
followup of the early paper [5], where we discussed in some detail the motiva-
tion of this research. The proposed language is able to define filter expressions
(needed to select relevant flows) and relationships (needed to relate selected
flows). It allows to express causal dependencies between flows as well as timing
and concurrency constraints. Existent query languages as discussed in Section 2
are not suitable for detecting complex traffic patterns because of either perfor-
mance issues (SQL-based query languages) [3,4] or because they lack a time
and concurrency dimension (BPF expressions and the other query languages
we discuss). Furthermore, the new query language provides support for network
specific aggregation functions, such as IP address prefix aggregation, IP address
suffix aggregation, port number range aggregations, etc. which are not part of
many query languages. Using the new query language, we built a knowledge base
of flow fingerprints that belong to some common network services, applications
and attacks. As an example, we describe the query detecting the flow fingerprint
of the Blaster.A worm.

The rest of the paper is structured as follows. Section 2 provides a short
survey of existing flow filtering and query languages. In Section 3 we present
our stream-based flow query language and in Section 4 we show an application

Design of a Stream-Based IP Flow Record Query Language 17

example by using it to describe a common network traffic pattern. We conclude
in Section 5 with a few remarks on ongoing work.

2 Related Work

According to [5] existing flow record query languages can be split into SQL-based
query languages, filtering languages, and procedural languages.

2.1 SQL-Based Query Languages

Many of the early implementations of network analysis tools used a Relational
Database Management System (RDBMS) to store the data contained in flow
records and therefore they use SQL-based query languages for retrieving flows.
B. Nickless [6] describes a system which uses standard MySQL and Oracle DBMS
for storing the attributes of NetFlow records. Using powerful SQL queries, the
tool was able to provide good support for basic intrusion detection and usage
statistics. With the advance of high-speed links, however, network managers
could not rely on pure DBMS anymore because of performance issues. There
was also a semantic mismatch between the traffic analysis operations and the
operations supported by the commercial DBMS. The data used by network anal-
ysis applications can be best modeled as transient data streams as opposed to
the persistent relational data model used by traditional DBMS. It is recognized
that continuous queries, approximation and adaptivity are some key features
that are common for such stream applications. However, none of these is sup-
ported by standard relational DBMS. Based on these requirements B. Babcock
et al. [4] propose the design of a Data Stream Management System (DSMS).
Together with the model the authors also extend the SQL query language so
that the DSMS can be queried over time and provide examples of network traf-
fic reports that are generated based on flow data that is stored in such a DSMS.
Gigascope [7] is another stream database for network monitoring applications. It
uses GSQL for query and filtering, which is yet another modification of the SQL
query language adopted in a way so that time windows can be defined inside
the query. Tribeca [3] is another extensible, stream-oriented DBMS designed to
support network traffic analysis. It is optimized to analyze streams coming from
the network in real time as well as offline traces. It defines its own stream-based
query language which supports operations such as projection, selection, aggre-
gation, multiplexing and demultiplexing of streams based on stream attributes.
The query language also defines a windowing mechanism to select a timeframe
for the analysis.

2.2 Filtering Languages

The Berkeley Packet Filter (BPF) [8] allows users to construct simple expres-
sions for filtering network traces by IP address, port number, protocol etc. and
translates these expressions into small programs executed by a generic packet

18 V. Marinov and J. Schönwälder

filtering engine. One popular use of the BPF is in the tcpdump utility. The BPF
rules for constructing filter expressions are also used in nfdump [9], which is a
powerful and fast filter engine used to analyze network flow records. nfdump is
currently one of the de facto standard tools for analyzing NetFlow data and gen-
erating reports. BPF expressions are also used in the CoralReef network analysis
tool described in [10,11] in order to generate traffic reports from collected trace
files. The Time Machine tool described in [12] uses BPF expressions to define
classes of traffic and BPF is also part of the query language used by the tool for
retrieval of interesting traffic.

The flow-tools package [13] is another widely-used collection of applica-
tions for collecting and analyzing NetFlow data. Two of the flow-tools appli-
cations are responsible for filtering flows and generating reports: flow-filter
and flow-report. The former application uses the Cisco Access Control List
(ACL) format to specify a filter for IP addresses and command line arguments
for specifying other filtering parameters such as port numbers, ASes etc. The
latter uses a configuration file where reports can be defined by using a number
of primitives.

2.3 Procedural Languages

FlowScan described in [14] is a collection of perl scripts which glues together a
flow-collection engine such as the flow-capture application from flow-tools,
a high performance RRD database, which is specifically designed for time series
data [15], and a visualization tool. FlowScan has the capability of generating
powerful high-level traffic reports, which might help operators to detect interest-
ing traffic patterns. However, reports must be specified as separate perl modules,
which is not trivial and might involve some heavy scripting.

C.Estan et al. [16] proposes an approach for detecting high-level traffic pat-
terns by aggregating NetFlow records in clusters based on flow record attributes.
Aggregation on several flow attributes results in a multidimensional cluster. Ini-
tially all possible multidimensional clusters are constructed. Then an algorithm
is executed which selects only clusters that are interesting to the network ad-
ministrator. It aims at retaining clusters with the least degree of aggregation
(so that a bigger number of flow attributes is contained). Interesting activities
are considered to be exceeding a certain threshold of traffic volume of a cluster
or significant change of the traffic volume inside the cluster. Finally, all clusters
are prioritized by being tagged with a degree of unexpectedness and presented
to the network administrator as a traffic report.

The SiLK Analysis Suite [17] is another script-based collection of command-
line tools for querying NetFlow data. It provides its own primitives for defining
filtering expressions. Unlike other network analysis tools, SiLK contains two
applications that allow an analyst to label a set of flows sharing common at-
tributes with an identifier. The rwgroup tool walks through a file of flow records
and groups records that have common attributes, such as source/destination IP
pairs. This tool allows an analyst to group together all flows in a long lived ses-
sion such as a FTP connection. rwmatch creates matched groups, which consist

Design of a Stream-Based IP Flow Record Query Language 19

of an initial record (a query) followed by one or more responses. Its most basic
use is to group records into both sides of a bidirectional session, such as a HTTP
request.

3 Stream-Based Flow Query Language

Our framework for IP flow filtering follows a stream-oriented approach — it
consists of a number of processing elements or operators, which are connected
with each other via pipes. Each element receives an input stream, performs some
sort of operation on it (filtering, aggregation etc.) and the output stream is piped
to the next element. Figure 1 shows the framework and in the following sections
we describe each of its elements. A complete definition of the syntax and the
semantics of the elements can be found in [19]. Section 4 provides an example
illustrating the usage of the primitives of the stream-based flow query language.
The names of the filtering primitives in our language are closely linked to the
flow record attributes in RFC 5102 [18].

Fig. 1. IP flow filtering framework

3.1 Splitter

The splitter is the simplest operator in the IP flow filtering framework. It
takes the input stream of flow records and copies them on each output stream
without performing any changes on them. There is one input branch and several
output branches for a splitter.

3.2 Filter

The filter operator takes a stream of flow records as input and copies to its
output stream only the flow records that match the filtering rules. The flow
records, which do not match the filtering rules are dropped. The filter op-
erator performs absolute filtering, it compares the flow attributes of the input

20 V. Marinov and J. Schönwälder

flow records with absolute values (or a range of absolute values). It can also
perform comparison between the various fields of a single flow record, that is
it can compare one field of a flow record against another field of the same flow
record (for example source port number with destination port number). The
filter operator does not support relative filtering between fields from different
flow records i.e., it does not perform comparison between the flow attributes of
different incoming flow records.

3.3 Grouper

The grouper operator takes a stream of flow records as input and partitions
them into groups and subgroups following grouping rules. The grouping rules
themselves are organized into rule modules, where each rule module contains a
number of rules logically linked by an implicit logical and. The different rule
modules on the other hand are logically linked by an implicit logical or. The
rules reflect some relative dependencies and patterns among the attributes of the
input flow records. The grouper tags each flow record with a group label and
each group consists of flow records tagged with the same group label. Internally,
each group consists of several not necessarily non-overlapping subgroups, which
correspond to the different rule modules. The grouper also tags each flow record
with a rule module identifier (also called a subgroup label) if the flow record
satisfies the set of rules within the corresponding rule module. In order to be
added to a group a flow record must satisfy the rules from at least one rule
module. In case a flow record satisfies the rules from several rule modules, it
is tagged with the rule module identifier of all matching rule modules and thus
belongs to several subgroups. The way group and subgroup labels are stored into
flow records is implementation specific, for example the SiLK tool [17] stores the
labels in the next-hop field of the flow records.

For each group of flow records a group record is created. It may consists of
the following attributes:

– Flow record attributes according to which the grouping was performed. This
is usually a set of attributes that are unique for a subgroup and form a key
for that subgroup. If there is a single rule module within a grouper definition
then there will be a single subgroup and these flow record attributes will be
unique for the group as well.

– Aggregated values for other flow record attributes from a single subgroup.
If the subgroups within a single group are identified by g1, g2 etc. then the
group record may contain members such as g1.sum(attr1), g1.min(attr2),
g2.max(attr3) etc.

– Aggregated values for other flow record attributes from the whole group. In
such a case the aggregation is performed over the flow records of the whole
group (as opposed to aggregation over a single subgroup). For example,
the group record may contain members such as sum(attr1), min(attr2),
max(attr3) etc. Note that in this case we can drop the subgroup label.

Once the group record is created the subgroup labels are not needed anymore
and can be deleted. Finally, the group records are copied over the output stream.

Design of a Stream-Based IP Flow Record Query Language 21

During the grouping operation some information from the original flow record
trace is lost because of the aggregation operation during the creation of the group
records. Therefore, after the grouping and tagging is performed and before the
aggregation phase, the tagged flow records are copied to a temporary storage
so that they can be later retrieved by the ungroup operator. The details of the
algorithm are described in [19].

3.4 Group-Filter

The group-filter operator takes a stream of group records as input and copies
to its output stream only those group records that match the filtering rules.
The group records, which do not match the filtering rules are dropped. The
group-filter operator performs absolute filtering on the flow record attributes
or the aggregated flow record attributes contained within the group records. It
compares the flow record attributes (aggregated flow record attributes) of the in-
put group records with absolute values (or a range of absolute values). It can also
compare various group record attributes within the same group record. It does
not support relative filtering i.e., it does not perform comparison between the
flow record attributes (aggregated flow record attributes) of different incoming
group records.

3.5 Merger

The merger operator takes several streams of group records as input and copies
to its output tuples of group records that satisfy some pre-defined merging rules.
The merging rules are organized in merging rule modules. Each rule module
specifies a set of input branches from all branches that meet at the merger and a
number of rules, which use group record attributes to define certain relationships
among the various flow groups. If there are N input branches as input to a specific
merging rule module, the output stream of that rule module will consist of N -
tuples of group records, one group record per input branch. The output stream
of one of the merging rule modules is the output of the whole merger operator.
There is always exactly one rule module that produces the output stream for
the merger operator and that rule module must be the first one defined in the
merger definition.

In most cases there will be only one merging rule module and the tuples of
group records that it generates will produce the merger output stream. Using one
merging rule module allows us to define the existence of certain patterns among
the various flow groups. However, in order to be able to check for patterns that
do not exist we will need more than one merging rule module. For example
consider the following two queries:

Q1 : Find the flow records that correspond to a TCP connection between source
IP address A and destination IP address B, port ftp, followed by a TCP
connection between source IP address B, port ftp-data and destination IP
address A.

22 V. Marinov and J. Schönwälder

Q2 : Find the flow records that correspond to a TCP connection between source
IP address A and destination IP address B, port ftp, followed by a TCP
connection between source IP address B, port ftp-data and destination
IP address A only if these two connections are not preceded by a TCP
connection between source IP address A and destination IP address B, port
http.

In more straightforward words, the first query aims at detecting a FTP file
transfer between A and B, while the second query aims at detecting a FTP file
transfer between A and B only if A did not already download the respective
file using HTTP. While query Q1 is relatively easy to define using a single rule
module, for query Q2 we will need a more complicated mechanism to check for
the condition “A HTTP transfer did not already take place between these two
entities”.

In such a scenario we first perform the merging using the module rules that
produce the merger output stream. Before copying the resulting tuples to the
output stream, however, we feed them into the other merging modules and for
each such tuple we check if the corresponding merging module would produce
some output. These additional merging rule modules are used to define certain
patterns that should not be observed and therefore a resulting tuple is only
copied to the merger output stream if it does not generate any result when fed
into any of the additional merging rules modules.

In general, the merger operator allows to perform grouping at a more general
level compared to the grouper operator. Another powerful feature of the merger
operator is its capability to express timing and concurrency constraints among
various traffic groups by using Allen’s time interval algebra [20].

3.6 Ungrouper

The ungrouper operator takes a stream of group record tuples as an input. For
each group record tuple it expands the flow groups contained in the tuple using
the labels and the flows stored in the temporary storage during the grouping
phase of the grouper operator. Finally, for each group record tuple it outputs
a separate stream of flow records. The flow records obtained from each group
record tuple are ordered by their timestamps and presented to the viewer in
capture order. Any flow record repetitions are eliminated, that is if a flow record
is part of several flow groups within the group record tuple it is shown to the
viewer only once. Each output stream is considered to be a result/match of the
query operation performed by using the IP flow filtering framework. A query
operation may return any number of results or no results at all and should
clearly distinguish the flow records that belong to different results.

4 Application

In this section we present the traffic pattern generated by a computer infected
with the Blaster.A worm and define this pattern using our stream-based flow

Design of a Stream-Based IP Flow Record Query Language 23

(a) Packet level breakdown (b) Flow level breakdown

Fig. 2. Packet level and flow level breakdown of a Blaster infection

record query language. The Blaster.A worm [21] is a recent Internet worm,
which exploits the Microsoft Windows Remote Procedure Call DCOM vulnera-
bility. Upon successful execution, the worm attempts to retrieve a copy of the
file msblast.exe from the compromising host. Once this file is retrieved, the
compromised system then runs it and begins scanning for other vulnerable sys-
tems to compromise in the same manner. Dübendorfer et al. [22] describe the
various stages of the Blaster worm infection and perform an in-depth packet and
flow level analysis.

The characteristic network activity (an infected attacker trying to infect other
hosts on the network) associated with such an attack consists of the steps de-
scribed in Figure 2(a). The flow-level breakdown of the Blaster attack is shown
in Figure 2(b). The flow record fingerprint of a Blaster infection consists of the
following sequence of flows (order is important):

– More than 20 flows originating from the attacker directed to port 135 of
different hosts. These flows are small since they only carry a SYN packet.
This represents the scanning activity of the attacker. Some of these scans
may trigger a reverse flow consisting of RST packets.

– In a successful attack there will be a pair of bigger flows (longer and carrying
more data) to and from port 135/TCP of the victim

– The pair of flows representing the TCP connection to port 135 of the victim
is followed by a pair of flows representing the TCP connection to port 4444.

– The next step is a pair of flows to and from port 69/UDP of the attacker
representing the TFTP transfer of msblast.exe. The flow to the attacker
slightly precedes the flow from the attacker since the connection is initiated
by the infected host. These two flows end before the flows representing the
TCP connection on port 4444 from the previous step

In order to describe a Blaster worm infection in our IP flow filtering framework
we use the definitions below. We define one branch for each Blaster stage as
specified in the flow fingerprint.

24 V. Marinov and J. Schönwälder

The first branch detects the scanning activity performed by the attacker.
Initially, the f scan filter picks out the flow records that have a destination port
135/TCP. Then the grouper g scan, which consists of a single group module g1,
partitions the flow records into groups, which have the same source IP address
and the destination IP addresses consist of a block of subsequent IP addresses.

splitter S{}

filter f_scan {
dstport = 135
proto = tcp

}

grouper g_scan {
module g1 {

srcip = srcip
dstip = dstip relative-delta 1
stime = stime relative-delta 5ms
stime = stime absolute-delta 5s

}
aggregate srcip, union(dstip),

min(stime) as stime,
max(etime) as etime,
count

}

group-filter gf_scan {
count > 20

}

filter f_victim {
srcport = 135 OR dstport = 135
proto = TCP

}

grouper g_group_tcp {
module g1 {

srcip = dstip
dstip = srcip
srcport = dstport
dstport = srcport
stime = stime relative-delta 5ms

}
module g2 {

srcip = srcip
dstip = dstip
srcport = srcport
dstport = dstport
stime = stime relative-delta 5ms

}
aggregate g1.srcip as srcip,

g1.dstip as dstip,
min(stime) as stime,
max(etime) as etime

}

filter f_control {
srcport = 4444 OR dstport = 4444
proto = tcp

}

filter f_tftp {
srcport = 69 OR dstport = 69
proto = udp

}

grouper g_tftp {
module g1 {

srcip = dstip
dstip = srcip
srcport = dstport
dstport = srcport
stime = stime relative-delta 5ms

}
module g2 {

srcip = srcip
dstip = dstip
srcport = srcport
dstport = dstport
stime = stime relative-delta 5ms

}
aggregate g1.srcip as srcip,

g1.dstip as dstip,
min(stime) as stime,
max(etime) as etime,
g2.sum(bytes) as bytes

}

group-filter gf_tftp {
bytes > 6K

}

merger M {
module m1 {

branches A,B,C,D
A.srcip = B.srcip
A.srcip = C.srcip
A.srcip = D.dstip
B.dstip = C.dstip
B.dstip = D.srcip
B.dstip in union(A.dstip)
A < B OR A m B OR A o B
B o C
D d C

}
export m1

}

ungrouper U{}

input -> S
S branch A -> f_scan -> g_scan -> gf_scan -> M
S branch B -> f_victim -> g_group_tcp -> M
S branch C -> f_control -> g_group_tcp -> M
S branch D -> f_tftp -> g_tftp -> gf_tftp -> M
M -> U -> output

Additional constraints ensure that a scanning attack lasts at most 5s and each
scanning attack should not be interrupted for more than 5ms (since attackers
usually generate the small SYN packets at a very high rate). Finally, for each

Design of a Stream-Based IP Flow Record Query Language 25

Fig. 3. Capturing Blaster worm infections with the IP flow filtering framework

group the grouper operator retains the source IP address, the set of destination
IP addresses, the start and end time of the attack as well as the number of flows
in the group. Each such flow group now contains information about the scan
attack performed by a single host. The newly created group records are passed
to the group-filter operator, which filters only these group records that refer to
flow groups containing more than 20 flows. That is, we consider the traffic from
a flow group a scanning attack only if the attacker has scanned more than 20
hosts. If the attacker has scanned less than 20 hosts we consider the flow group
normal traffic activity and drop it.

The second branch, which consists of the filter f victim and the grouper
g group tcp aims at capturing the TCP connection that the attacker established
with the victim i.e., a TCP connection between the attacker and port 135 of the
victim. The filter picks out flows with a source or destination port 135. The
grouper g group tcp then aggregates all flow records that correspond to the
same TCP connection in one group. The group module g2 adds to the flow group
all flow records that have the same source and destination transport endpoints
as the flow record that generated the flow group. The group module g1 adds the
flow records that correspond to the opposite direction of the TCP connection
i.e., it adds those flow records for which the destination transport endpoint is
the same as the source transport endpoint of the flow record that generated
the group and vice versa (the source transport endpoint is the same as the
destination transport endpoint of the flow record that generated the group). For
each TCP connection then g group tcp retains the source and destination IP
addresses as well as the start and end times for each group.

The third branch aims at identifying the control connection between the at-
tacker and port 4444/TCP of the victim. The filter f control picks out the flow
records with a source or destination port number 4444/TCP and the grouper
g group tcp partitions them into groups as already explained.

The last branch aims at capturing the TFTP download, which gets initiated
by the victim host. The filter f tftp picks out the flow records, which belong
to UDP traffic to or from port 69 (tftp). Then the grouper g tftp is very much
like g group tcp in terms of the partitioning that it is performing. Both groupers
contain two group modules, which aim at detecting the forward and backward
direction of each TCP connection / UDP transfer. g group tcp partitions the

26 V. Marinov and J. Schönwälder

incoming stream of TCP flow records into groups so that each group corresponds
to a separate TCP connection and g tftp partitions the incoming stream of UDP
flow records into groups so that each group corresponds to a separate TFTP/UDP
transfer (to the extent to which we are able to distinguish different UDP/TFTP
transfers by using the delta and relative-delta parameters). In general the
grouper is not aware of what the incoming stream of flow records contains, thus it is
not aware if it is grouping TCP or UDP flow records. Therefore, g group tcp can
already do the job of splitting the incoming flow records into groups where each
group represents a separate UDP/TFTP transfer. In this case however, we are also
interested to retain the amount of data exchanged in each UDP/TFTP transfer in
order to do some filtering later in the group-filter. Therefore, the specification
and the interpretation of g tftp is the same as the one of g group tcp i.e., the
group module g2 adds to the flow group all flow records that belong to the forward
direction of the UDP/TFTP transfer (as compared to the first flow records that
generated the group) and the group module g1 adds all flow records that corre-
spond to the backward direction of the UDP/TFTP transfer. The only addition
of g tftp as compared to g group tcp is that the former also retains the amount
of data exchanged within each group (that is within each TFTP transfer).The re-
sulting group records are then passed to a group-filter which retains only these
group records, which represent a TFTP exchange of at least 6K since the netflow
fingerprint of this stage specifies that the virus is approx. 6176 bytes.

The next step consists of defining the merger M and the merging conditions.
M contains a single merging rule module m1, which takes the four already de-
fined branches A, B, C and D as an input. The first three rules from the merging
rule module definition specify that the source IP address of the attacker should
be the same during the different stages of the Blaster infection (since we want
to retrieve a single attack from a single attacker host to a single victim host).
The next three rules specify that the IP address of the victim should also stay
the same and that the victim should be one of the scanned hosts from the first
stage of the Blaster infection. The last three rules express the time and concur-
rency constraints among the four branches using Allen’s time interval algebra.
We assume that the scanning phase takes place completely before, meets or
overlaps with the stage of successful TCP connection establishment on port
135 with the victim. Furthermore, the connection on port 135/TCP overlaps
with the control connection on port 4444/TCP. Finally from Figure 2(b) one
notices that the TFTP transfer happens during the control connection (i.e., the
TFTP transfer is entirely contained within the control connection).

The last part of our definition consists of defining the ungrouper and linking
the already defined elements using pipes to build a model for our IP flow filtering
framework.

5 Conclusions

After a careful analysis of the pros and cons of the existing filtering and query
languages [5], we designed a new IP flow filtering framework and an associated

Design of a Stream-Based IP Flow Record Query Language 27

filtering language. The language primitives were chosen in such a way that the
new IP flow record query language has the capability to describe aggregation and
comparison based on flow record attributes. In addition various dependencies
such as flow correlation, timing and concurrency constraints, flow ordering and
causal relationships can be expressed. The IP flow filtering framework has a
limited number of operators, which can be defined and linked in a very flexible
manner. This makes it relatively straightforward to use for the definition and
detection of various traffic patterns.

In order to evaluate our new IP flow record query language, we collected a
set of traffic patterns that belong to some popular network applications and
services [19]. We analyzed HTTP and FTP transfers, the propagation of some
well-known worms as well as Skype traffic. The flow fingerprint of each traffic
pattern was derived and written down using the IP flow record query language.

We are currently implementing a prototype consisting of a parser, which reads
the flow pattern definition, and an execution engine, which implements the oper-
ators or our IP flow filtering framework. For some of the more complex operators
such as the grouper and the merger, there will be a need to do some research
in order to decide which algorithms and heuristics should be used in order to
optimize the performance. In addition, one should consider various possibilities
for flow storage and choose the most efficient one. In the future, we envision
that protocol experts will, assisted by an interactive flow visualization system,
develop queries for specific scenarios. Once our implementation is complete, we
can test these queries and share them with non-experts through a knowledge
base so that they can be easily matched against flow traces.

Acknowledgement

The work reported in this paper is supported by the EC IST-EMANICS Network
of Excellence (#26854).

References

1. Claise, B.: Cisco Systems NetFlow Services Export Version 9. RFC 3954, Cisco
Systems (October 2004)

2. Claise, B.: Specification of the IP Flow Information Export (IPFIX) Protocol for
the Exchange of IP Traffic Flow Information. RFC 5101, Cisco Systems (January
2008)

3. Sullivan, M., Heybey, A.: Tribeca: a System for Managing Large Databases of
Network Traffic. In: Proceedings of ATEC 1998, pp. 13–24. USENIX Association,
Berkeley (1998)

4. Babcock, B., Babu, S., Datar, M., Motwani, R., Widom, J.: Models and issues in
Data Stream Systems. In: Proceedings of PODS 2002, pp. 1–16. ACM, New York
(2002)

5. Marinov, V., Schönwälder, J.: Design of an IP Flow Record Query Language. In:
Hausheer, D., Schönwälder, J. (eds.) AIMS 2008. LNCS, vol. 5127, pp. 205–210.
Springer, Heidelberg (2008)

28 V. Marinov and J. Schönwälder

6. Nickless, B.: Combining Cisco NetFlow Exports with Relational Database Tech-
nology for Usage Statistics, Intrusion Detection, and Network Forensics. In: Pro-
ceedings of LISA 2000, pp. 285–290. USENIX Association, Berkeley (2000)

7. Cranor, C., Johnson, T., Spataschek, O., Shkapenyuk, V.: Gigascope: A Stream
Database for Network Applications. In: Proceedings of SIGMOD 2003, pp. 647–
651. ACM, New York (2003)

8. McCanne, S., Jacobson, V.: The BSD Packet Filter: A New Architecture for User-
level Packet Capture. In: Proceedings of USENIX 1993, pp. 259–270. USENIX
Association, Berkeley (1993)

9. Haag, P.: nfdump, http://nfdump.sourceforge.net/
10. Moore, D., Keys, K., Koga, R., Lagache, E., Claffy, K.: The Coral Reef Software

Suite as a Tool for System and Network Administration. In: Proceedings of LISA
2001, pp. 133–144. USENIX Association, Berkeley (2001)

11. Keys, K., Moore, D., Koga, R., Lagache, E., Tesch, M., Claffy, K.: The Architecture
of CoralReef: an Internet Traffic Monitoring Software Suite. In: Proceedings of
PAM 2001, CAIDA, RIPE NCC (2001)

12. Kornexl, S., Paxson, V., Dreger, H., Feldmann, A., Sommer, R.: Building a Time
Machine for Efficient Recording and Retrieval of High-Volume Network Traffic. In:
Proceedings of IMC 2005. USENIX Association, Berkeley (2005)

13. Fullmer, M.: flow-tools, http://www.splintered.net/sw/flow-tools/
14. Plonka, D.: FlowScan: A Network Traffic Flow Reporting and Visualization Tool.

In: Proceedings of LISA 2000, pp. 305–318. USENIX Association, Berkeley (2000)
15. Oetiker, T.: RRDTool, http://oss.oetiker.ch/rrdtool/
16. Estan, C., Savage, S., Varghese, G.: Automatically Inferring Patterns of Resource

Consumption in Network Traffic. In: Proceedings of SIGCOMM 2003, pp. 137–148.
ACM, New York (2003)

17. Collins, M., Kompanek, A., Shimeall, T.: Analysts’ Handbook: Using SiLK for
Network Traffic Analysis. CERT. 0.10.3 edn. (November 2006)

18. Quittek, J., Bryant, S., Claise, B., Aitken, P., Meyer, J.: Information Model for IP
Flow Information Export. RFC 5102, Cisco Systems (January 2008)

19. Marinov, V.: Design of an IP Flow Record Query Language. Master’s thesis, Jacobs
University Bremen (May 2009)

20. Fin, A.: A Genetic Approach to Qualitative Temporal Reasoning with Constraints.
In: Proceedings of ICCIMA 1999, Washington, DC, USA. IEEE Computer Society,
Los Alamitos (1999)

21. Symantec: W32.Welchia.Worm (August 2003)
22. Dübendorfer, T., Wagner, A., Hossmann, T., Plattner, B.: Flow-Level Traffic Anal-

ysis of the Blaster and Sobig Worm Outbreaks in an Internet Backbone. In: Julisch,
K., Krügel, C. (eds.) DIMVA 2005. LNCS, vol. 3548, pp. 103–122. Springer, Hei-
delberg (2005)

http://nfdump.sourceforge.net/
http://www.splintered.net/sw/flow-tools/
http://oss.oetiker.ch/rrdtool/

	Design of a Stream-Based IP Flow Record Query Language
	Introduction
	Related Work
	SQL-Based Query Languages
	Filtering Languages
	Procedural Languages

	Stream-Based Flow Query Language
	Splitter
	Filter
	Grouper
	Group-Filter
	Merger
	Ungrouper

	Application
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

