
Exploiting User Feedback to Improve

Semantic Web Service Discovery

Anna Averbakh, Daniel Krause, and Dimitrios Skoutas

L3S Research Center
Hannover, Germany

{averbakh,krause,skoutas}@l3s.de

Abstract. State-of-the-art discovery of Semantic Web services is based
on hybrid algorithms that combine semantic and syntactic matchmak-
ing. These approaches are purely based on similarity measures between
parameters of a service request and available service descriptions, which,
however, fail to completely capture the actual functionality of the ser-
vice or the quality of the results returned by it. On the other hand, with
the advent of Web 2.0, active user participation and collaboration has
become an increasingly popular trend. Users often rate or group relevant
items, thus providing valuable information that can be taken into account
to further improve the accuracy of search results. In this paper, we tackle
this issue, by proposing a method that combines multiple matching crite-
ria with user feedback to further improve the results of the matchmaker.
We extend a previously proposed dominance-based approach for service
discovery, and describe how user feedback is incorporated in the match-
making process. We evaluate the performance of our approach using a
publicly available collection of OWL-S services.

1 Introduction

Web services have emerged as a key technology for implementing Service Ori-
ented Architectures, aiming at providing interoperability among heterogeneous
systems and integrating inter-organization applications. At the same time, users
increasingly use the Web to search not only for pages or other multimedia re-
sources, but also to find services for fulfilling a given task. For example, a service
typically either returns some information to the user, such as a weather forecast
for a given location and time period, or it performs some task, such as flight book-
ing for a given date, departure and destination. Hence, as both the user needs
and the number of available services and service providers increases, improving
the effectiveness and accuracy of Web service discovery mechanisms becomes a
crucial issue.

A Web service description is a document written in a formal, standardized
language, providing information about what the service does and how it can
be used. Given a service request, expressed as the description of a desired ser-
vice, the task of matchmaking refers to identifying and selecting from a service
repository those services whose description closely matches the request, under

A. Bernstein et al. (Eds.): ISWC 2009, LNCS 5823, pp. 33–48, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

34 A. Averbakh, D. Krause, and D. Skoutas

one or more matching criteria. Typically, the matchmaking process is based
on computing a degree of match between the parameters of the requested and
advertised service, which may include both functional parameters (i.e., inputs,
outputs, pre-conditions, and effects), as well as non-functional parameters (i.e.,
QoS attributes, such as price, execution time, availability).

Several approaches, reviewed in Section 2, exist for this task, ranging from
methods relying on techniques commonly used in Information Retrieval [1], to
methods employing logic-based matching [2]. Also, hybrid methods have been
proposed [3], and, more recently, methods that combine multiple matching crite-
ria simultaneously [4]. Nevertheless, all these works rely solely on the parameters
involved in the service descriptions, thus facing an important drawback. A service
description may not always capture completely and accurately all the aspects re-
lated to the functionality and usage of the service. Additional information which
may be useful for determining how appropriate a service is for a given request,
often remains implicit, not being encoded in the formal description. Moreover,
different services may be more relevant to a specific request for different users
and in different contexts.

On the other hand, with the advent of Web 2.0, active user participation and
collaboration has become an increasingly popular trend. Users provide valuable
information by tagging, rating, or grouping similar resources, such as bookmarks
(e.g., Del.icio.us), music (e.g., Last.fm) or videos (e.g., YouTube). Essentially,
these activities allow collecting user feedback, which can then be exploited to
enhance the accuracy and effectiveness of the search [5].

In this paper, we propose a method for leveraging user feedback to improve the
results of the service discovery process. Given a service request, the matchmaker
searches the repository for available services and returns a ranked list of candi-
date matches. Then, the system allows the user posing the query to rate any of
these matches, indicating how relevant or appropriate they are for this request.
The provided ratings are stored in the system for future use, when the same
or a similar request is issued. Designing intuitive, easy-to-use user interfaces,
can help the process of collecting user feedback. In this work, we do not deal
with this issue; instead, our focus is on how the collected feedback is processed
and integrated in the matchmaking process to improve the results of subsequent
searches. Notice, that it is also possible to collect user feedback automatically,
assuming that the system can track which service(s) the user actually used;
however, this information would typically be incomplete, since not all relevant
services are used.

Our main contributions are summarized below.
– We consider the problem of employing user feedback to improve the quality

of search for Semantic Web services.

– We propose a method for processing user feedback and incorporating it in
the matchmaking process.

– We experimentally evaluate our approach on a publicly available collection of
Semantic Web services, applying standard Information Retrieval evaluation
metrics.

Exploiting User Feedback to Improve Semantic Web Service Discovery 35

The rest of the paper is organized as follows. Section 2 reviews related work.
Section 3 presents our architecture for incorporating user feedback in the service
discovery process. Section 4 describes the basic matchmaking approach, employ-
ing multiple matching criteria. Applying user feedback to improve the search
results is presented in Section 5. Finally, Section 6 presents our experimental
results, while Section 7 concludes the paper.

2 Related Work

WSDL and UDDI are existing industry standards for describing and discover-
ing Web services. However, their focus lies on specifying the structure of the
service interfaces and of the exchanged messages. Thus, they address the discov-
ery problem relying on structural, keyword-based matching, which limits their
search capabilities. Other earlier works have also focused on applying Informa-
tion Retrieval techniques to the service discovery problem. For example, the work
presented in [1] deals with similarity search for Web services, using a clustering
algorithm to group names of parameters into semantically meaningful concepts,
which are then used to determine the similarity between input/output param-
eters. An online search engine for Web services is seekda1, which crawls and
indexes WSDL files from the Web. It allows users to search for services by en-
tering keywords, by using tag clouds, or by browsing using different facets, such
as the country of the service provider, the most often used services or the most
recently found ones.

To deal with the shortcomings of keyword search, several approaches have
been proposed for exploiting ontologies to semantically enhance the service de-
scriptions (WSDL-S [6], OWL-S [7], WSMO [8]). These so-called Semantic Web
services can better capture and disambiguate the service functionality, allowing
for formal, logic-based matchmaking. Essentially, a logic reasoner is employed
to infer subsumption relationships between requested and provided service pa-
rameters [2,9]. Along this line, several matching algorithms assess the similarity
between requested and offered inputs and outputs by comparing the positions
of the corresponding classes in the associated domain ontology [10,11,12]. Sim-
ilarly, the work in [13] semantically matches requested and offered parameters,
modeling the matchmaking problem as one of matching bipartite graphs. In [14],
OWL-S services are matched using a similarity measure for OWL objects, which
is based on the ratio of common RDF triples in their descriptions. An approach
for incorporating OWL-S service descriptions into UDDI is presented in [15],
focusing also on the efficiency of the discovery process. Efficient matchmaking
and ranked retrieval of services is also studied in [16].

Given that logic-based matching can often be too rigid, hybrid approaches
have also been proposed. In an earlier work [17], the need for employing many
types of matching has been discussed, proposing the integration of multiple
external matching services to a UDDI registry. The selection of the external
matching service to be used is based on specified policies, e.g., selecting the
1 http://seekda.com/

36 A. Averbakh, D. Krause, and D. Skoutas

first available, or the most successful. If more than one matching services are
invoked, again the system policies specify whether the union or the intersection
of the results should be returned. OWLS-MX [3] and WSMO-MX [18] are hy-
brid matchmakers for OWL-S and WSMO services, respectively. More recently,
an approach for simultaneously combining multiple matching criteria has been
proposed [4].

On the other hand, some approaches already exist about involving the user in
the process of service discovery. Ontologies and user profiles are employed in [19],
which then uses techniques like query expansion or relaxation to better satisfy
user requests. The work presented in [20] focuses on QoS-based Web service dis-
covery, proposing a reputation-enhanced model. A reputation manager assigns
reputation scores to the services based on user feedback regarding their perfor-
mance. Then, a discovery agent uses the reputation scores for service matching,
ranking and selection. The application of user preferences, expressed in the form
of soft constraints, to Web service selection is considered in [21], focusing on the
optimization of preference queries. The approach in [22] uses utility functions to
model service configurations and associated user preferences for optimal service
selection. In [1], different types of similarity for service parameters are combined
using a linear function, with manually assigned weights. Learning the weights
from user feedback is proposed, but it is left as an open issue for future work.

Collecting and exploiting user feedback as a form of interaction between a user
and an application is a key concept of Web 2.0 [23]. Users are more than ever
before willing to actively contribute by tagging, rating or commenting any kind of
content or offered service – even better, their feedback is very valuable to improve
search and retrieval algorithms [24,25]. In this work we employ a simple user
feedback model, focusing on how this feedback can be exploited in Semantic Web
service discovery, to improve the quality and accuracy of the search results. More
fine-grained forms of user feedback, as well as exploiting additional information
from social networks of users [26] are considered as possible extensions of our
approach.

In a different line of research, relevance feedback has been extensively con-
sidered in Information Retrieval [27]. The main idea is that the user issues a
query, the system returns an initial set of results, and the user marks some of
the returned documents as relevant or non-relevant; then, based on this user
feedback, the system revises the set of retrieved results to better capture the
user’s information need. However, approaches in this area typically rely on the
vector space model and term re-weighting, and, hence, they are not suitable for
service matchmaking.

3 Architecture

Typical service matchmaking systems are based on a unidirectional information
flow. First, an application that needs a specific Web Service to perform a task
creates a service request, containing the requirements that a service should fulfil.
This service request is then delivered to a matchmaking component that utilizes

Exploiting User Feedback to Improve Semantic Web Service Discovery 37

Fig. 1. Matchmaking service with feedback component

one or more match filters to retrieve the best-matching services from a repository
of Semantic Web service descriptions. These services are finally returned to the
application which invoked the matchmaker. The drawback in this scenario is
that if a service is not appropriate or sufficient for any reason to perform the
original task, the application has no option to inform the matchmaker about the
inappropriateness of this match result.

Hence, our matchmaking architecture is extended by a feedback loop, as il-
lustrated in Figure 1, enabling the matchmaking mechanism to use previously
provided user feedback in order to improve the quality of the retrieved results.

Enabling this feedback loop, relies on the assumption that the application
users can assess the quality of retrieved Web services. This is a common principle
in Web 2.0 applications, where users can rate available resources. One possibility
is that users can rate services explicitly. If it is not possible or easy for the users to
rate services directly, the application can still infer implicit ratings for a service
through user behavior. For example, if an applications uses services to generate
music recommendations, then users can be asked whether they consider the given
recommendations appropriate. Based on the assumption that services delivering
high quality recommendations are better matches for this task, the application
can infer the relevance of a service, and pass this information as a user rating to
the matchmaking service.

The user ratings are stored in an RDF triple store (e.g., SESAME [28]). As
user ratings refer to a given service request, each Rating instance contains the
user who performed the rating, the service request, the rated service, and finally
a rating score that ranges from 0 to 1 (with higher scores denoting higher rating).
For example, a rating from Bob about a request X and a service Y would be
stored as:

38 A. Averbakh, D. Krause, and D. Skoutas

<r:Rating>
<foaf:Person rdf:about="#bob"/>
<r:Request rdf:about="#requestX"/>
<r:Service rdf:about="#serviceY"/>
<r:Score rdf:datatype="&xsd;double">0.90</r:score>

</r:Rating>

This RDF database, which contains the user feedback in form of ratings, is
exploited by the user feedback component. This component aggregates previous
ratings provided by different users, to determine the relevance between a service
request and an actual service.

Then, given a service request, the matchmaker component combines the rel-
evance score from the feedback component with the similarity scores calculated
by the match filter(s) to assess the degree of match for each available service,
and returns a ranked list of match results to the application.

4 Service Matchmaking

In this section we describe the basic service matchmaking and ranking process,
without taking into account user feedback. For this task, we adopt the approach
from [4], because, as shown in Section 5, it allows us to integrate user feedback
in a more flexible and seamless way. In the following, we give a brief overview of
how the matchmaking and ranking of services is performed.

For simplicity, we focus on input and output parameters, annotated by onto-
logical concepts, but other types of parameters can be handled similarly. Let R
be a service request with a set of input and output parameters, denoted by RIN

and ROUT , respectively. We use R.pj to refer to the j-th input parameter, where
pj ∈ RIN (similarly for outputs). Also, assume an advertised service S with in-
puts and outputs SIN and SOUT , respectively. Note that S can be a match to
R, even when the cardinalities of their parameter sets differ, i.e., when a service
advertisement requires less inputs or produces more outputs than requested.

The matchmaking process applies one or more matching functions to assess
the degree of match between requested and offered parameters. Each match-
ing function produces a score in the range [0, 1], where 1 indicates a perfect
match, while 0 indicates no match. Typical examples are the matching functions
provided by the OWLS-MX service matchmaker [3]. These comprise a purely
logic-based match (M0), as well as hybrid matches based on string similarity
measures, namely loss-of-information (M1), extended Jaccard similarity coeffi-
cient (M2), cosine similarity (M3), and Jensen-Shannon information divergence
based similarity (M4). Given a request R, a service S, and a matching function
mi, the match instance of S with respect to R is defined as a vector si such that

si[j] =

⎧
⎨

⎩

max
pk∈SIN

{mi(S.pk, R.pj)}, ∀j : pj ∈ RIN

max
pk∈SOUT

{mi(S.pk, R.pj)}, ∀j : pj ∈ ROUT

(1)

Exploiting User Feedback to Improve Semantic Web Service Discovery 39

Table 1. Example of the match object for the request book price service.owls and
the service novel price service.owls

Match Filter Book Price

M0 0.88 1.00
M1 0.93 1.00
M2 0.69 1.00
M3 0.72 1.00
M4 0.93 1.00

The match instance si has a total of d = |RIN |+ |ROUT | entries that correspond
to the input and output parameters of the request. Intuitively, each si entry
quantifies how well the corresponding parameter of the request R is matched by
the advertisement S, under the matching criterion mi. Clearly, an input (output)
parameter of R can only match with an input (output) parameter of S.

Let M be a set of matching functions. Given a request R and an advertise-
ment S, each mi ∈ M results in a distinct match instance. We refer to the
set of instances as the match object of the service S. In the following, and in
the context of a specific request R, we use the terms service and match object
interchangeably, denoted by the same uppercase letter (e.g., S). On the other
hand we reserve lowercase letters for match instances of the corresponding ser-
vice (e.g., s1, s2, etc.). The notation si ∈ S implies that the match instance si

corresponds to the service S. Hence, a match object represents the result of the
match between a service S and a request R, with each contained match instance
corresponding to the result of a different match function.

As a concrete example, consider a request book price service.owls, with
input Book and output Price, and a service novel price service.owls, with
input Novel and output Price, matched applying the five aforementioned func-
tions M0–M4 of the OWLS-MX matchmaker. The resulting match object is
shown in Table 1, comprising an exact match for the outputs, while the degree
of match between Book and Novel varies based on the similarity measure used.

Next, we describe how services are ranked based on their match objects. Let
I be the set of all match instances of all services. Given two instances u, v ∈ I,
we say that u dominates v, denoted by u � v, iff u has a higher or equal degree
of match in all parameters and a strictly higher degree of match in at least one
parameter compared to v. Formally

u � v ⇔ ∀i u[i] ≥ v[i] ∧ ∃j u[j] > v[j] (2)

If u is neither dominated by nor dominates v, then u and v are incomparable.
Given this dominance relationship between match instances, we proceed with

defining dominance scores that are used to rank the available service descriptions
with respect to a given service request. Intuitively, a service should be ranked
highly in the list if

– its instances are dominated by as few other instances as possible, and

– its instances dominate as many other instances as possible.

40 A. Averbakh, D. Krause, and D. Skoutas

To satisfy these requirements, we formally define the following dominance scores,
used to rank the search results for a service request.

Given a match instance u, we define the dominated score of u as

u.dds =
1

|M|
∑

V �=U

∑

v∈V

|v�u| (3)

where |u � v| is 1 if u � v and 0 otherwise. Hence, u.dds accounts for the
instances that dominate u. Then, the dominated score of a service U is defined
as the (possibly weighted) average of the dominated scores of its instances:

U.dds =
1

|M|
∑

u∈U

u.dds (4)

The dominated score of a service indicates the average number of services that
dominate it, i.e., a lower dominated score indicates a better match result.

Next, we look at the instances that a given instance dominates. Formally,
given a match instance u, we define the dominating score of u as

u.dgs =
1

|M|
∑

V �=U

∑

v∈V

|u�v| (5)

Similarly to the case above, the dominating score of a service U is then defined
as the (possibly weighted) average of the dominating scores of its instances:

U.dgs =
1

|M|
∑

u∈U

u.dgs (6)

The dominating score of a service indicates the average number of services that
it dominates, i.e., a higher dominating score indicates a better match result.

Finally, we define the dominance score of match instances and services, to
combine both of the aforementioned criteria. In particular, the dominance score
of a match instance u is defined as

u.ds = u.dgs − λ · u.dds (7)

where the parameter λ is a scaling factor. This promotes u for each instance
it dominates, while penalizing it for each instance that dominates it. Then, the
dominance score of a service U is defined as the (possibly weighted) average of
the dominance scores of its instances:

U.ds =
1
M

∑

u∈U

u.ds (8)

The ranking process comprises computing the aforementioned scores for each
service, and then sorting the services in descending order of their dominance
score. Efficient algorithms for this computation can be found in [4].

Exploiting User Feedback to Improve Semantic Web Service Discovery 41

5 Incorporating User Feedback

In this section, we present our approach for processing user feedback and incor-
porating it in the dominance-based matchmaking and ranking method described
in Section 4.

Our approach is based on the assumption that the system collects feedback
from the users by allowing them to rate how appropriate the retrieved services
are with respect to their request (see feedback component in Section 3). Assume
that the collected user ratings are stored as a set T ⊆ U×R×S×F in the Ratings
Database, where U is the set of all users that have provided a rating, R is the set
of all previous service requests stored in the system, S is the set of all the available
Semantic Web service descriptions in the repository, and F ∈ [0, 1] denotes the
user rating, i.e., how relevant a particular service was considered with respect to
a given request (with higher values representing higher relevance). Thus, a tuple
T = (U, R, S, f) ∈ T denotes that a user U considers the service S ∈ S to be
relevant for the request R ∈ R with a score f .

To aggregate the ratings from different users into a single feedback score, dif-
ferent approaches can be used. For example, [29] employs techniques to identify
and filter out ratings from spam users, while [30] proposes the aging of feedback
ratings, considering the more recent ratings as more relevant. It is also possible
to weight differently the ratings of different users, assigning, for example, higher
weights to ratings provided previously by the same user as the one currently is-
suing the request, or by users that are assumed to be closely related to him/her,
e.g., by explicitly being included in his/her social network or being automati-
cally selected by the system through techniques such as collaborative filtering
or clustering. However, as the discussion about an optimal aggregation strategy
for user ratings is orthogonal to our main focus in this paper, without loss of
generality we consider in the following all the available user ratings as equally
important, and we calculate the feedback value as the average of all user ratings
of the corresponding service. Hence, the feedback score fb between a service
request R ∈ R and a service advertisement S ∈ S is calculated as:

fb(R, S) =

∑

(U,R,S,f)∈T
f

|{(U, R, S, f) ∈ T }| (9)

However, it may occur that for a given pair of a request R and a service S, no
ratings (U, R, S, f) exist in the database. This may be because the request R
is new, or because the service S has been recently added to the database and
therefore has been only rated for a few requests. Moreover, even if some ratings
exist, they may be sparse and hence not provide sufficiently reliable information
for feedback. In these cases, Equation (9) is not appropriate for determining
the feedback information for the pair (R, S). To address this issue, we general-
ize this method to consider not only those ratings that are directly assigned to
the current service requests R, but also user ratings that are assigned to requests

42 A. Averbakh, D. Krause, and D. Skoutas

that are similar to R. Let SIM(R) denote the set of requests which are consid-
ered to be similar to R. Then, the feedback can be calculated as:

fb(R, S) =

∑

(U,Q,S,f)∈T :Q∈SIM(R)

f ∗ sim(R, Q)

|{(U, Q, S, f) ∈ T : Q ∈ SIM(R)}| (10)

In Equation (10), sim(R, Q) is the match instance of Q with respect to R,
calculated by a matching function mi, as discussed in Section 4. Notice that
sim(R, Q) is a vector of size equal to the number of parameters of R, hence in
this case fb(R, S) is also such a vector, i.e., similar to a match instance. Also,
Equation (9) can be derived as a special case of Equation (10), by considering
SIM(R) = {R}. By weighting the given feedback by the similarity between the
requests, we ensure that feedback from requests which are more similar to the
considered one, is taken more into account.

A question that arises is how to select the similar requests for a given request
R, i.e., how to determine the set SIM(R). This choice involves a trade-off.
Selecting a larger number of similar queries, allows the use of more sources of
information for feedback; however, if the similarity between the original request
and the selected ones is not high enough, then the information from this feedback
is also not highly appropriate, and may eventually introduce noise in the results.
On the other hand, setting a very strict criterion for selecting similar queries,
reduces the chance of finding enough feedback information. As a solution to this
trade-off, we use a top-k query with constraints: given a request R, we select
the top-k most similar requests from the database, given that the values of their
match instances are above a specified threshold.

The process described above results in a feedback instance fb(R, S) for the
given request R and a service S. The next step is to integrate this instance to
the match object of the service S, comprising the other instances obtained by
the different matching functions mi. We investigate two different strategies for
this purpose:

1. Feedback instance as an additional match instance. In this case we add the
feedback information to the match object of the service as an additional
instance (combined with the average of the previous values). That is, this
method treats the feedback mechanism as an extra matchmaking function.

2. Feedback instance integrated with match instances. In this case we update the
values of the match instances by adding the values of the feedback instance.
That is, this method adjusts the results of the matchmaking functions ap-
plying the feedback information.

As a concrete example, consider the match object presented in Table 1. Assume
that the feedback instance for the pair (book price service.owls,
novel price service.owls) is fb = [0.77 1.00]. Then this match object will
be modified as shown in Table 2.

Exploiting User Feedback to Improve Semantic Web Service Discovery 43

Table 2. Example of the match object for the request book price service.owls and
the service novel price service.owls updated using feedback information

(a) Method 1

Match Filter Book Price

M0 0.88 1.00
M1 0.93 1.00
M2 0.69 1.00
M3 0.72 1.00
M4 0.93 1.00

AVG(Mi)+FB 1.60 2.00

(b) Method 2

Match Filter Book Price

M0+FB 1.65 2.00
M1+FB 1.70 2.00
M2+FB 1.46 2.00
M3+FB 1.49 2.00
M4+FB 1.70 2.00

6 Experimental Evaluation

In this section, we evaluate the quality of our feedback-based matchmaking ap-
proach in comparison to state-of-the-art matchmaking algorithms. In Section 6.1,
we discuss implementation issues and the data collections we have used. The eval-
uation metrics and the experimental results are then reported in Section 6.2.

6.1 Experimental Setup

We have implemented the feedback-based matchmaking and ranking process
described in Sections 4 and 5. The implementation utilizes the OWLS-MX ser-
vice matchmaker [3], to process service requests and advertisements described in
OWL-S, and to compute the pairwise similarities between parameters. In par-
ticular, OWLS-MX provides five different matching filters. The first performs a
purely logic-based match (M0), characterising the result as exact, plug-in, sub-
sumes, or subsumed-by. The other four perform hybrid match, combining the
semantic-based matchmaking with the following measures: loss-of-information
(M1), extended Jaccard similarity coefficient (M2), cosine similarity (M3), and
Jensen-Shannon information divergence based similarity (M4). Notice, that for
each pair (R, S) of a service request and service advertisement, OWLS-MX ap-
plies one of the filters M0–M4, and calculates a single score denoting the degree
of match between R and S. We have modified this functionality to get all the
individual degrees of match between the compared parameters of R and S (i.e.,
a vector); also, we have applied for each pair (R, S) all the similarity measures
M0–M4, to get the individual match instances, as described in Section 4. Fi-
nally, our implementation includes also the process described in Section 5 for
processing and using the available feedback information.

For our experiments, we have used the publicly available service retrieval test
collection OWLS-TC v22. This collection comes in two versions, an original one
containing 576 services, and an extended one, containing 1007 services. To bet-
ter assess the performance of our method, we have conducted our experiments on
2 This collection is available at http://projects.semwebcentral.org/projects/

owls-tc/. Before running the experiments we have fixed some typos that prevented
some services from being processed and/or retrieved.

http://projects.semwebcentral.org/projects/owls-tc/
http://projects.semwebcentral.org/projects/owls-tc/

44 A. Averbakh, D. Krause, and D. Skoutas

Table 3. Characteristics of the test collections

Collection # of requests # of services # of rel. services per req. (average)

OWL-S TC I 28 576 15.2
OWL-S TC II 28 1007 25.4

both versions, denoted in the following as OWLS-TC I and OWLS-TC II, respec-
tively. The contained service descriptions are based on real-world Web services,
retrieved mainly from public IBM UDDI registries, covering 7 different domains,
such as economy, education, and travel. Also, the collection comprises a set of 28
sample requests. Notice that the extended version of the collection comprises one
extra request, namely EBookOrder1.owls; however, in our experiments, we have
excluded this request, so that in both cases the set of queries used for the eval-
uation is the same. For each request, a relevance set is provided, i.e., the list of
services that are considered relevant to this request, based on human judgement.
The characteristics of the two data sets are summarized in Table 3.

To evaluate our feedback-based mechanism, there needs to be, for each re-
quest, at least one similar request for which some services have been rated as
relevant. As this was not the case with the original data set, due to the small
number of provided requests, we have extended both of the aforementioned col-
lections by creating a similar query for each of the 28 original ones. This was
done by selecting a request, then selecting one or more of its input and/or output
parameters, and replacing its associated class in the ontology with one that is
a superclass, subclass or sibling. Then, for each of these newly created queries,
some of the services in the collection were rated as relevant. To simplify this task,
we have restricted our experimental study in binary ratings, i.e., the value of the
user rating was either 1 or 0, based on whether the user considered the service
to be relevant to the request or not. The new queries and the ratings, provided
in the form of corresponding relevance sets, are made available for further use
at: http://www.l3s.de/~krause/collection.tar.gz

6.2 Experimental Results

In the following, we evaluate the performance of our approach, including both
strategies described in Section 5. For this purpose, we compare the retrieved
results to the ones produced without taking user feedback into consideration. In
particular, we have implemented and compared the following 5 methods:

– NF1 : No feedback is used; one match instance per service is considered. The
values of the match instance are the degrees of match between the request
and service parameters, computed applying the Jensen-Shannon similarity
measure, i.e., the filter M4 from OWLS-MX, which is shown in [3] to slightly
outperform the other measures.

– NF5 : No feedback is used; five match instances per service are considered. The
values of the match instances are the degrees of match between the request
and service parameters computed by the filters M0–M4 of OWLS-MX.

http://www.l3s.de/~krause/collection.tar.gz

Exploiting User Feedback to Improve Semantic Web Service Discovery 45

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
re

ci
si

on

Recall

FB6

FB5

FB1

NF5

NF1

(a) OWLS-TC I

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
re

ci
si

on

Recall

FB6

FB5

FB1

NF5

NF1

(b) OWLS-TC II

Fig. 2. Precision-Recall curve for the OWLS test collections

– FB1 : Feedback is used; one match instance per service is considered. The
values of the match instance are the sum of the degrees of match between
the request and service parameters computed by M4 and the feedback values
calculated by Equation (10).

– FB5 : Feedback is used; five match instances per service are considered. The
value of each match instance is the sum of the degrees of match between the
request and service parameters computed by one of the measures M0–M4
and the feedback values calculated by Equation (10).

– FB6 : Feedback is used; six match instances per service are considered. The
values of the first five match instances are the degrees of match between the
request and service parameters computed by the filters M0–M4. The values
of the sixth match instance are computed as the averages of the previous ones
plus the feedback values calculated by Equation (10). Notice, that the reason
for using also the average values of the initial instances, instead of only the
feedback values, is mainly to avoid penalizing services that constitute good
matches but have not been rated by users.

To measure the effectiveness of the compared approaches, we apply the following
standard IR evaluation measures [27]:

– Interpolated Recall-Precision Averages: measures precision, i.e., percent of
retrieved items that are relevant, at various recall levels, i.e., after a certain
percentage of all the relevant items have been retrieved.

– Mean Average Precision (MAP): average of precision values calculated after
each relevant item is retrieved.

– R-Precision (R-prec): measures precision after all relevant items have been
retrieved.

– bpref : measures the number of times judged non-relevant items are retrieved
before relevant ones.

46 A. Averbakh, D. Krause, and D. Skoutas

Table 4. IR metrics for the OWLS test collections

(a) OWLS-TC I

Method MAP R-prec bpref R-rank P@5 P@10 P@15 P@20

FB6 0.8427 0.7772 0.8206 0.9762 0.9214 0.8357 0.7690 0.6589
FB5 0.8836 0.7884 0.8600 1.0000 0.9714 0.8857 0.7952 0.6696
FB1 0.8764 0.7962 0.8486 1.0000 0.9786 0.8786 0.7929 0.6625
NF5 0.8084 0.7543 0.7874 0.9405 0.9071 0.7964 0.7500 0.6393
NF1 0.8027 0.7503 0.7796 0.9405 0.9214 0.8143 0.7357 0.6357

(b) OWLS-TC II

Method MAP R-prec bpref R-rank P@5 P@10 P@15 P@20

FB6 0.8426 0.7652 0.8176 1.0000 0.9714 0.8964 0.8476 0.7875
FB5 0.9090 0.8242 0.8896 1.0000 0.9857 0.9679 0.9214 0.8536
FB1 0.8960 0.8024 0.8689 1.0000 0.9857 0.9607 0.9167 0.8411
NF5 0.8007 0.7388 0.7792 0.9643 0.9429 0.8607 0.8119 0.7536
NF1 0.7786 0.7045 0.7499 0.9643 0.9357 0.8607 0.7976 0.7268

– Reciprocal Rank (R-rank): measures (the inverse of) the rank of the top
relevant item.

– Precision at N(P@N): measures the precision afterN items havebeen retrieved.

Figure 2 plots the precision-recall curves for the 5 compared methods, for both
considered test collections. Overall, the main observation is that the feedback-
aware methods clearly outperform the other two ones in both test collections.
The best overall method in both collections is FB5, because it provides two
advantages: a) it utilizes user feedback, and b) it combines all the available
similarity measures for matchmaking service parameters. The method FB1,
which combines feedback information with the Jensen-Shannon hybrid filter,
also demonstrates a very high accuracy. The method FB6, which treats the
feedback information as an additional match instance, achieves lower precision,
but it still outperforms the non-feedback methods. This behavior is due to the
fact that although feedback is utilized, its impact is lower since it is not consid-
ered for the 5 original match instances, but only as an extra instance. Regarding
NF5 and NF1, the former exhibits better performance, which is expected as it
combines multiple similarity measures. Another interesting observation is that
FB5 and FB1 follow the same trend as NF5 and NF1, respectively, which are
their non-feedback counterparts, however having considerably higher precision
values at all recall levels. Finally, for the collection OWLS-TC II, which com-
prises an almost double number of services, the trends are the same as before,
but with the differences between the feedback-aware and the non-feedback meth-
ods being even more noticeable. Another interesting observation in this case is
that after the recall level 0.8 the precision of FB1 drops much faster than that
of FB6; thus, although FB1 has an overall higher performance than FB6, the
latter appears to be more stable, which is due to having more instances per
match object, i.e., taking into account more similarity measures.

Table 4 presents the results for the other IR evaluation metrics discussed
above. These results again confirm the aforementioned observations. For all the
considered metrics, FB5 and FB1 perform better, followed by FB6.

Exploiting User Feedback to Improve Semantic Web Service Discovery 47

7 Conclusions

In this paper we have dealt with the problem of Semantic Web service discovery,
focusing on how to exploit user feedback to improve the quality of the search
results. This relies on the idea that modern Web 2.0 applications allow users to
explicitly express their opinion by giving feedback about available resources, in
the form of rating, tagging, etc. We have presented an architecture that allows
to collect user feedback on retrieved services and incorporate it in the Seman-
tic Web service matchmaking process. We have proposed different methods to
combine this user feedback with the output of matchmaking algorithms in order
to improve the quality of the match results. Further, we have discussed how
to overcome the problems of a limited amount of feedback or of previously un-
known requests (i.e., where no previous feedback is available for the request),
by utilizing information from similar requests. We have conducted an experi-
mental evaluation using a publicly available collection of OWL-S services. We
have compared our feedback-aware matchmaking strategies to state-of-the-art
matchmaking algorithms that do not take feedback into account. Our experi-
mental results show that user feedback is a valuable source of information for
improving the matchmaking quality.

Our current and future work focuses mainly on two directions: a) investigat-
ing in more detail the social aspects involved in the process of collecting and
aggregating user ratings for services, and b) extending our experimental setup
with additional scenarios.

Acknowledgements. This work was partially supported by the European Com-
mission in the context of the FP7 projects SYNC3 and GRAPPLE.

References

1. Dong, X., Halevy, A.Y., Madhavan, J., Nemes, E., Zhang, J.: Similarity Search for
Web Services. In: VLDB, pp. 372–383 (2004)

2. Paolucci, M., Kawamura, T., Payne, T.R., Sycara, K.P.: Semantic Matching of
Web Services Capabilities. In: Horrocks, I., Hendler, J. (eds.) ISWC 2002. LNCS,
vol. 2342, pp. 333–347. Springer, Heidelberg (2002)

3. Klusch, M., Fries, B., Sycara, K.P.: Automated Semantic Web service discovery
with OWLS-MX. In: AAMAS, pp. 915–922 (2006)

4. Skoutas, D., Sacharidis, D., Simitsis, A., Kantere, V., Sellis, T.: Top-k Dominant
Web Services under Multi-criteria Matching. In: EDBT, pp. 898–909 (2009)

5. Bao, S., Xue, G.-R., Wu, X., Yu, Y., Fei, B., Su, Z.: Optimizing Web Search Using
Social Annotations. In: WWW, pp. 501–510 (2007)

6. Akkiraju, R., et al.: Web Service Semantics - WSDL-S. In: W3C Member Submis-
sion (November 2005)

7. Burstein, M., et al.: OWL-S: Semantic Markup for Web Services. In: W3C Member
Submission (November 2004)

8. Lausen, H., Polleres, A., Roman, D. (eds.): Web Service Modeling Ontology
(WSMO). W3C Member Submission (June 2005)

9. Li, L., Horrocks, I.: A Software Framework for Matchmaking based on Semantic
Web Technology. In: WWW, pp. 331–339 (2003)

48 A. Averbakh, D. Krause, and D. Skoutas

10. Cardoso, J.: Discovering Semantic Web Services with and without a Common On-
tology Commitment. In: IEEE SCW, pp. 183–190 (2006)

11. Skoutas, D., Simitsis, A., Sellis, T.K.: A Ranking Mechanism for Semantic Web
Service Discovery. In: IEEE SCW, pp. 41–48 (2007)

12. Skoutas, D., Sacharidis, D., Kantere, V., Sellis, T.: Efficient Semantic Web Ser-
vice Discovery in Centralized and P2P Environments. In: Sheth, A.P., Staab, S.,
Dean, M., Paolucci, M., Maynard, D., Finin, T., Thirunarayan, K. (eds.) ISWC
2008. LNCS, vol. 5318, pp. 583–598. Springer, Heidelberg (2008)

13. Bellur, U., Kulkarni, R.: Improved Matchmaking Algorithm for Semantic Web
Services Based on Bipartite Graph Matching. In: ICWS, pp. 86–93 (2007)

14. Hau, J., Lee, W., Darlington, J.: A Semantic Similarity Measure for Semantic Web
Services. In: Web Service Semantics Workshop at WWW (2005)

15. Srinivasan, N., Paolucci, M., Sycara, K.P.: An Efficient Algorithm for OWL-S
Based Semantic Search in UDDI. In: Cardoso, J., Sheth, A.P. (eds.) SWSWPC
2004. LNCS, vol. 3387, pp. 96–110. Springer, Heidelberg (2005)

16. Constantinescu, I., Binder, W., Faltings, B.: Flexible and Efficient Matchmaking
and Ranking in Service Directories. In: ICWS, pp. 5–12 (2005)

17. Colgrave, J., Akkiraju, R., Goodwin, R.: External Matching in UDDI. In: ICWS,
p. 226 (2004)

18. Kaufer, F., Klusch, M.: WSMO-MX: A Logic Programming Based Hybrid Service
Matchmaker. In: ECOWS, pp. 161–170 (2006)

19. Balke, W.-T., Wagner, M.: Cooperative Discovery for User-Centered Web Service
Provisioning. In: ICWS, pp. 191–197 (2003)

20. Xu, Z., Martin, P., Powley, W., Zulkernine, F.: Reputation-Enhanced QoS-based
Web Services Discovery. In: ICWS, pp. 249–256 (2007)

21. Kießling, W., Hafenrichter, B.: Optimizing Preference Queries for Personalized Web
Services. In: Communications, Internet, and Information Technology, pp. 461–466
(2002)

22. Lamparter, S., Ankolekar, A., Studer, R., Grimm, S.: Preference-based selection of
highly configurable web services. In: WWW, pp. 1013–1022 (2007)

23. O’Reilly, T.: O’Reilly Network: What is Web 2.0 (September 2005)
24. Abel, F., Henze, N., Krause, D.: Ranking in Folksonomy Systems: Can Context

Help?. In: CIKM, pp. 1429–1430 (2008)
25. Hotho, A., Jäschke, R., Schmitz, C., Stumme, G.: Information Retrieval in Folk-

sonomies: Search and Ranking. In: Sure, Y., Domingue, J. (eds.) ESWC 2006.
LNCS, vol. 4011, pp. 411–426. Springer, Heidelberg (2006)

26. Mislove, A., Gummadi, K.P., Druschel, P.: Exploiting Social Networks for Internet
Search. In: Workshop on Hot Topics in Networks. (2006)

27. Manning, C.D., Raghavan, P., Schütze, H.: An Introduction to Information Re-
trieval. Cambridge University Press, Cambridge (2008)

28. Broekstra, J., Kampman, A., van Harmelen, F.: Sesame: A Generic Architecture
for Storing and Querying RDF and RDF Schema. In: Horrocks, I., Hendler, J.
(eds.) ISWC 2002. LNCS, vol. 2342, pp. 54–68. Springer, Heidelberg (2002)

29. Whitby, A., Josang, A., Indulska, J.: Filtering Out Unfair Ratings in Bayesian
Reputation Systems. In: AAMAS (2004)

30. Yu, B., Singh, M.P., Sycara, K.: Developing trust in large-scale peer-to-peer sys-
tems. In: IEEE Symposium on Multi-Agent Security and Survivability, pp. 1–10
(2004)

	Exploiting User Feedback to Improve Semantic Web Service Discovery
	Introduction
	Related Work
	Architecture
	Service Matchmaking
	Incorporating User Feedback
	Experimental Evaluation
	Experimental Setup
	Experimental Results

	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

