Dynamic Querying of Mass-Storage RDF Data with
Rule-Based Entailment Regimes*

Giovambattista lanni', Thomas Krennwallner?, Alessandra Martello!,
and Axel Polleres®

! Dipartimento di Matematica, Universita della Calabria, I-87036 Rende (CS), Italy
{ianni,a.martello}@mat.unical.it
2 Institut fiir Informations systeme 184/3, Technische Universitdt Wien, Austria
tkren@kr.tuwien.ac.at
3 Digital Enterprise Research Institute, National University of Ireland, Galway
axel .polleres@deri.org

Abstract. RDF Schema (RDFS) as a lightweight ontology language is gaining
popularity and, consequently, tools for scalable RDFS inference and querying
are needed. SPARQL has become recently a W3C standard for querying RDF
data, but it mostly provides means for querying simple RDF graphs only, whereas
querying with respect to RDFS or other entailment regimes is left outside the cur-
rent specification. In this paper, we show that SPARQL faces certain unwanted
ramifications when querying ontologies in conjunction with RDF datasets that
comprise multiple named graphs, and we provide an extension for SPARQL that
remedies these effects. Moreover, since RDFS inference has a close relationship
with logic rules, we generalize our approach to select a custom ruleset for spec-
ifying inferences to be taken into account in a SPARQL query. We show that
our extensions are technically feasible by providing benchmark results for RDFS
querying in our prototype system GiaBATA, which uses Datalog coupled with a
persistent Relational Database as a back-end for implementing SPARQL with dy-
namic rule-based inference. By employing different optimization techniques like
magic set rewriting our system remains competitive with state-of-the-art RDFS
querying systems.

1 Introduction

Thanks to initiatives such as DBPedia or the Linked Open Data project a huge amount
of machine-readable RDF [[1]] data is available, accompanying pervasive ontologies de-
scribing this data such as FOAF [2f], SIOC [3], or YAGO [4].

A vast amount of Semantic Web data uses rather small and lightweight ontologies
that can be dealt with rule-based RDFS and OWL reasoning [I5l6J7], in contrast to the
full power of expressive description logic reasoning. However, even if many practi-
cal use cases do not require complete reasoning on the terminological level provided

* This work has been partially supported by the Italian Research Ministry (MIUR) project Inter-
link IT04CG8AGG, the Austrian Science Fund (FWF) project P20841, by Science Foundation
Ireland under Grant No. SFI/08/CE/I1380 (Lion-2).

"http://dbpedia.org/ and http://linkeddata.org/

A. Bernstein et al. (Eds.): ISWC 2009, LNCS 5823, pp. 310 2009.
(© Springer-Verlag Berlin Heidelberg 2009

http://dbpedia.org/
http://linkeddata.org/

Dynamic Querying of Mass-Storage RDF Data with Rule-Based Entailment Regimes 311

by DL-reasoners, the following tasks become of utter importance. First, a Semantic
Web system should be able to handle and evaluate (possibly complex) queries on large
amounts of RDF instance data. Second, it should be able to take into account implicit
knowledge found by ontological inferences as well as by additional custom rules in-
volving built-ins or even nonmonotonicity. The latter features are necessary, e.g., for
modeling complex mappings [8] between different RDF vocabularies. As a third point,
joining the first and the second task, if we want the Semantic Web to be a solution to —
as Ora Lassila formulated it — those problems and situations that we are yet to deﬁneE
we need triple stores that allow dynamic querying of different data graphs, ontologies,
and (mapping) rules harvested from the Web. The notion of dynamic querying is in
opposition to sfatic querying, meaning that the same dataset, depending on context,
reference ontology and entailment regime, might give different answers to the same
query. Indeed, there are many situations in which the dataset at hand and its supporting
class hierarchy cannot be assumed to be known upfront: think of distributed querying
of remotely exported RDF data.

Concerning the first point, traditional RDF processors like Jena (using the default
configuration) are designed for handling large RDF graphs in memory, thus reaching
their limits very early when dealing with large graphs retrieved from the Web. Cur-
rent RDF Stores, such as YARS [9], Sesame, Jena TDB, ThreeStore, AllegroGraph, or
OpenLink Virtuosd] provide roughly the same functionality as traditional relational
database systems do for relational data. They offer query facilities and allow to im-
port large amounts of RDF data into their persistent storage, and typically support
SPARQL [10], the W3C standard RDF query language. SPARQL has the same expres-
sive power as non-recursive Datalog [11J12] and includes a set of built-in predicates in
so called £ilter expressions.

However, as for the second and third point, current RDF stores only offer lim-
ited support. OWL or RDF(S) inference, let alone custom rules, are typically fixed
in combination with SPARQL querying (cf. Section[2)). Usually, dynamically assigning
different ontologies or rulesets to data for querying is neither supported by the SPARQL
specification nor by existing systems. Use cases for such dynamic querying involve,
e.g., querying data with different versions of ontologies or queries over data expressed
in related ontologies adding custom mappings (using rules or “bridging” ontologies).

To this end, we propose an extension to SPARQL which caters for knowledge-
intensive applications on top of Semantic Web data, combining SPARQL querying
with dynamic, rule-based inference. In this framework, we overcome some of the above
mentioned limitations of SPARQL and existing RDF stores. Moreover, our approach is
easily extensible by allowing features such as aggregates and arbitrary built-in predi-
cates to SPARQL (see [8l14]) as well as the addition of custom inference and mapping
rules. The contributions of our paper are summarized as follows:

e We introduce two additional language constructs to the normative SPARQL lan-
guage. First, the directive using ontology for dynamically coupling a dataset with

2 http://www.lassila.org/publications/2006/SCAI-2006-keynote.pdf

3 See http://openrdf.org/,http://jena.hpl.hp.com/wiki/TDB/, http://
threestore.sf.net/,http://agraph.franz.com/allegrograph/,
http://openlinksw.com/virtuoso/, respectively.

http://www.lassila.org/publications/2006/SCAI-2006-keynote.pdf
http://openrdf.org/
http://jena.hpl.hp.com/wiki/TDB/
http://
threestore.sf.net/
http://agraph.franz.com/allegrograph/
http://openlinksw.com/virtuoso/

312 G. Ianni et al.

an arbitrary RDFS ontology, and second extended dataset clauses, which allow to spec-
ify datasets with named graphs in a flexible way. The using ruleset directive can
be exploited for adding to the query at hand proper rulesets which might used for a va-
riety of applications such as encoding mappings between entities, or encoding custom
entailment rules, such as RDFS or different rule-based OWL fragments.

e We present the GiaBATA system [15]], which demonstrates how the above extensions
can be implemented on a middle-ware layer translating SPARQL to Datalog and SQL.
Namely, the system is based on known translations of SPARQL to Datalog rules. Ar-
bitrary, possibly recursive rules can be added flexibly to model arbitrary ontological
inference regimes, vocabulary mappings, or alike. The resulting program is compiled to
SQL where possible, such that only the recursive parts are evaluated by a native Datalog
implementation. This hybrid approach allows to benefit from efficient algorithms of de-
ductive database systems for custom rule evaluation, and native features such as query
plan optimization techniques or rich built-in functions (which are for instance needed
to implement complex £ilter expressions in SPARQL) of common database systems.
e We compare our GiaBATA prototype to well-known RDF(S) systems and provide
experimental results for the LUBM [16] benchmark. Our approach proves to be com-
petitive on both RDF and dynamic RDFS querying without the need to pre-materialize
inferences.

In the remainder of this paper we first introduce SPARQL along with RDF(S) and
partial OWL inference by means of some motivating example queries which existing
systems partially cannot deal in a reasonably manner in Section [2l Section [3| sketches
how the SPARQL language can be enhanced with custom ruleset specifications and
arbitrary graph merging specifications. We then briefly introduce our approach to trans-
late SPARQL rules to Datalog in Section[d] and how this is applied to a persistent stor-
age system. We evaluate our approach with respect to existing RDF stores in Section [3]
and then conclusions are drawn in Section[6l

2 SPARQL and Some Motivating Examples

Similar in spirit to structured query languages like SQL, which allow to extract, com-
bine and filter data from relational database tables, SPARQL allows to extract, combine
and filter data from RDF graphs. The semantics and implementation of SPARQL in-
volves, compared to SQL, several peculiarities, which we do not focus on in this paper,
cf. [1O/8U11L19] for details. Instead, let us just start right away with some illustrating
example motivating our proposed extensions of SPARQL; we assume two data graphs
describing data about our well-known friends Bob and Alice shown in Fig.
Both graphs refer to terms in a combined ontology defining the FOAF and Relation-
shi;ﬂ vocabularies, see Fig. for an excerpt.

On this data the SPARQL query (I) intends to extract names of persons mentioned in
those graphs that belong to friends of Bob. We assume that, by means of rdfs: seeAlso
statements, Bob provides links to the graphs associated to the persons he is friend with.

*http://vocab.org/relationship/

http://vocab.org/relationship/

Dynamic Querying of Mass-Storage RDF Data with Rule-Based Entailment Regimes 313

@prefix foaf: <http://xmlns.com/foaf/0.1/>.
@prefix rel: <http://purl.org/vocab/relationship/>.

rel:friendOf rdfs:subPropertyOf foaf:knows.
foaf:knows rdfs:domain foaf:Person.

foaf:knows rdfs:range foaf:Person.

foaf:homepage rdf:type owl:inverseFunctionalProperty.

(a) Graph Gy (<http://example.org/myOnt.rdfs>), a combination of the
FOAF&Relationship ontologies.

<http://alice.orgme> foaf:name "Alice"; a foaf:Person;
rel:friendOf [foaf:name "Charles"],
[foaf:name "Bob";
foaf :homepage <http://bob.org/home.html>

<http://bob.org#me> foaf:name "Bob"; a foaf:Person;
foaf:homepage <http://bob.org/home.html>;
rel:friendof [foaf:name "Alice";

rdfs:seeAlso <http://alice.org>].]

(b) Graph G (<http://bob.org>) (¢) Graph G4 (<http://alice.org>)

Fig. 1. An ontology and two data graphs

select ?N from <http://example.org/myoOnt.rdfs>
from <http://bob.org>
from named <http://alice.org> (1)
where { <http://bob.org#me> foaf:knows ?X . ?X rdfs:seeAlso ?G .
graph °G { ?P rdf:type foaf:Person; foaf:name ?N } }

Here, the from and from named clauses specify an RDF dataset. In general, the dataset
DS = (G, N) of a SPARQL query is defined by (i) a default graph G obtained by the
RDF merge [20] of all graphs mentioned in £rom clauses, and (i) a set N = {(u1, G1),
..., (uk, Gi)} of named graphs, where each pair (u;, G;) consists of an IRI u;, given in
a from named clause, paired with its corresponding graph G;. For instance, the dataset
of query (1) would be DS; = (Gas W G, {(<http://alice.org>, Ga)}), where
& denotes merging of graphs according to the normative specifications.

Now, let us have a look at the answers to query (). Answers to SPARQL select
queries are defined in terms of multisets of partial variable substitutions. In fact the
answer to query (1) is empty when — as typical for current SPARQL engines — only
simple RDF entailment is taken into account, and query answering then boils down to
simple graph matching. Since neither of the graphs in the default graph contain any
triple matching the pattern <http://bob.org#me> foaf:knows ?X in the where
clause, the result of () is empty. When taking subproperty inference by the statements
of the ontology in G s into account, however, one would expect to obtain three substitu-
tions for the variable ?N: {?N/"Alice", ?N/"Bob", ?N/"Charles"}. We will explain
in the following why this is not the case in standard SPARQL.

In order to obtain the expected answer, firstly SPARQL’s basic graph pattern match-
ing needs to be extended, see [10, Section 12.6]. In theory, this means that the graph
patterns in the where clause needs to be matched against an enlarged version of the
original graphs in the dataset (which we will call the deductive closure Cl(-)) of a given
entailment regime. Generic extensions for SPARQL to entailment regimes other than
simple RDF entailment are still an open research problemE due to various problems:
(i) for (non-simple) RDF entailment regimes, such as full RDFS entailment, C1(G) is
infinite, and thus SPARQL queries over an empty graph G might already have infinite
answers, and (ii) it is not yet clear which should be the intuitive answers to queries over

5 For details, cf. http: //www.polleres.net/spargltutorial/, Unit 5b.

http://www.polleres.net/sparqltutorial/

314 G. Ianni et al.

inconsistent graphs, e.g. in OWL entailment, etc. In fact, SPARQL restricts extensions
of basic graph pattern matching to retain finite answers. Not surprisingly, many ex-
isting implementations implement finite approximations of higher entailment regimes
such as RDFS and OWL [6l5l21]]. E.g., the RDF Semantics document [20] contains
an informative set of entailment rules, a subset of which (such as the one presented
in Section [3.2] below) is implemented by most available RDF stores. These rule-based
approximations, which we focus on in this paper, are typically expressible by means
of Datalog-style rules. These latter model how to infer a finite closure of a given RDF
graph that covers sound but not necessarily complete RDF(S) and OWL inferences. It
is worth noting that Rule-based entailment can be implemented in different ways: rules
could be either dynamically evaluated upon query time, or the closure wrt. ruleset R,
Clgr (G), could be materialized when graph G is loaded into a store. Materialization of
inferred triples at loading time allows faster query responses, yet it has drawbacks: it is
time and space expensive and it has to be performed once and statically. In this setting,
it must be decided upfront.

(a) which ontology should be taken into account for which data graph, and
(b) to which graph(s) the inferred triples “belong”, which particularly complicates the
querying of named graphs.

As for exemplifying @), assume that a user agent wants to issue another query on
graph G'p with only the FOAF ontology in mind, since she does not trust the Rela-
tionship ontology. In the realm of FOAF alone, rel: friendOf has nothing to deal
with foaf :knows. However, when materializing all inferences upon loading G'»; and
G p into the store, bob:me foaf:knows :a would be inferred from G s W G and
would contribute to such a different query. Current RDF stores prevent to dynamically
parameterize inference with an ontology of choice at query time, since indeed typically
all inferences are computed upon loading time once and for all.

As for (B), queries upon datasets including named graphs are even more problematic.
Query (@) uses G p in order to find the IRI identifiers for persons that Bob knows by
following rdfs:seeAlso links and looks for persons and their names in the named
RDF graphs found at these links. Even if rule-based inference was supported, the an-
swer to query (I) over dataset DS is just {7N/"Alice"}, as “Alice” is the only
(explicitly) asserted foaf:Person in GG 4. Subproperty, domain and range inferences
over the Gy ontology do not propagate to G 4, since Gy is normatively prescribed
to be merged into the default graph, but not into the named graph. Thus, there is no
way to infer that "Bob" and "Charles" are actually names of foaf : Persons within
the named graph G 4. Indeed, SPARQL does not allow to merge, on demand, graphs
into the named graphs, thus there is no way of combining GGj; with the named graph
Ga.

To remedy these deficiencies, we suggest an extension of the SPARQL syntax, in
order to allow the specification of datasets more flexibly: it is possible to group graphs
to be merged in parentheses in from and from named clauses. The modified query,
obtaining a dataset DS2 = (Gpr W G, {(http://alice.org, Gas W G4)}) looks as
follows:

Dynamic Querying of Mass-Storage RDF Data with Rule-Based Entailment Regimes 315

select 7N
from (<http://example.org/myOnt.rdfs> <http://bob.org/>)
from named <http://alice.org> 2)
(<http://example.org/myOnt.rdfs> <http://alice.org/>)
where { bob:me foaf:knows ?X . ?X rdfs:seeAlso 2G .
graph °G { ?X foaf:name ?N . ?X a foaf:Person . } }

For ontologies which should apply to the whole query, i.e., graphs to be merged into
the default graph as well as any specified named graph, we suggest a more convenient
shortcut notation by adding the keyword using ontology in the SPARQL syntax:

select °xN
using Ontology <http://example.org/myOnt.rdfs>
from <http://bob.org/> (3)
from named <nhttp://alice.org/>
where { bob:me foaf:knows ?X . ?X foaf:seeAlso 2G .
graph »G { ?X foaf:name ?N . ?X a foaf:Person. } }

Hence, the using ontology construct allows for coupling the entire given dataset
with the terminological knowledge in the myOnt data schema. As our investigation
of currently available RDF stores (see Section [3) shows, none of these systems easily
allow to merge ontologies into named graphs or to dynamically specify the dataset of
choice.

In addition to parameterizing queries with ontologies in the dataset clauses, we also
allow to parameterize the ruleset which models the entailment regime at hand. Per de-
fault, our framework supports a standard ruleset that “emulates” (a finite subset of) the
RDFS semantics. This standard ruleset is outlined in Section[3]below. Alternatively, dif-
ferent rule-based entailment regimes, e.g., rulesets covering parts of the OWL semantics
4 la ter Horst [5]], de Bruijn [22, Section 9.3], OWL2 RL [17] or other custom rulesets
can be referenced with the using ruleset keyword. For instance, the following query
returns the solution {?X/<http://alice.org#me>, 7Y/<http://bob.org#me>},
by doing equality reasoning over inverse functional properties such as foaf : homepage
when the FOAF ontology is being considered:

select 2x v

using ontolog’y <http://example.org/myOnt.rdfs>

using ruleset rdfs

using ruleset <http://www.example.com/owl-horst> “4)
from <http://bob.org/>

from <http://alice.org/>

where { ?x foaf:knows ?Y }

Query (@) uses the built-in RDFS rules for the usual subproperty inference, plus a ruleset
implementing ter Horst’s inference rules, which might be available at URL http://
www . example.com/owl-horst. This ruleset contains the following additional rules,
that will “equate” the blank node used in GG 4 for “Bob” with <http://bob. org#me>ﬁ

?P rdf:type owl:iFP . ?S1 ?P 2?0 . ?S2 ?P ?0 . — ?S1 owl:sameAs ?S2.

?X owl:sameAs ?Y — ?Y owl:sameAs °?X.

?X ?P 20 . ?X owl:sameAs ?Y — ?Y ?P 20. (5)
?S ?X ?0 . ?X owl:sameAs ?Y — ?S ?Y ?20.

?S ?P ?X . ?X owl:sameAs ?Y — 2?8 ?P ?Y.

® We use owl : 1FP as shortcut for owl : inverseFunctionalProperty.

http://www.example.com/owl-horst
http://www.example.com/owl-horst

316 G. Ianni et al.

3 A Framework for Using Ontologies and Rules in SPARQL

In the following, we will provide a formal framework for the SPARQL extensions out-
lined above. In a sense, the notion of dynamic querying is formalized in terms of the
dependence of BGP pattern answers [P]©" from a variable ontology O and ruleset R.
For our exposition, we rely on well-known definitions of RDF datasets and SPARQL.
Due to space limitations, we restrict ourselves to the bare minimum and just highlight
some standard notation used in this paper.

Preliminaries. Let I, B, and L denote pairwise disjoint infinite sets of IRIs, blank
nodes, and RDF literals, respectively. A term is an element from I U B U L. An RDF
graph G (or simply graph) is defined as a set of triples from IUB x IUB x IUBUL
(cf. [1812]]); by blank(G) we denote the set of blank nodes of ell

A blank node renaming 6 is a mapping [U BU L — I U B U L. We denote by 6
the application of f to aterm t. If t € I U L then t§ = ¢, and if t € B then tf € B. If
(s,p,0) is a triple then (s, p, 0)d is the triple (s6, pd, 0f). Given a graph G, we denote
by GO the set of all triples {tf | t € G}. Let G and H be graphs. Let % be an arbitrary
blank node renaming such that blank(G) N blank(HO0%) = 0. The merge of G by H,
denoted G W H, is defined as G U HOS,.

An RDF dataset D = (Go, N) is a pair consisting of exactly one unnamed graph,
the so-called default graph Gy, and a set N = {(u1,G1),..., (upn,Gy)} of named
graphs, coupled with their identifying URIs. The following conditions hold: (i) each G,
(0 < i < n)is a graph, (ii) each u; (1 < j < n) is from I, and (iii) for all 7 # j,
(ui, G;), (uj, G;) € N implies u; # u; and blank(G;) N blank(G;) = 0.

The syntax and semantics of SPARQL can now be defined as usual, cf. [10J18l12]
for details. For the sake of this paper, we restrict ourselves to select queries as shown
in the example queries (I)—() and just provide an overview of the necessary concepts.
A query in SPARQL can be viewed as a tuple Q = (V, D, P), where V is the set of
variables mentioned in the select clause, D is an RDF dataset, defined by means of
from and £rom named clauses, and P is a graph pattern, defined in the where clause.

Graph patterns are in the simplest case sets of RDF triples (s, p, 0), where terms
and variables from an infinite set of variables Var are allowed, also called basic graph
patterns (BGP). More complex graph patterns can be defined recursively, i.e., if P, and
P, are graph patterns, g € I U Var and R is a filter expression, then P; optional P,
P) union P», P filter R, and graph g P, are graph patterns.

Graph Pattern Matching. Queries are evaluated by matching graph patterns against
graphs in the dataset. In order to determine a query’s solution, in the simplest case BGPs
are matched against the active graph of the query, which is one particular graph in the
dataset, identified as shown next.

Solutions of BGP matching consist of multisets of bindings for the variables men-
tioned in the pattern to terms in the active graph. Partial solutions of each subpattern
are joined according to an algebra defining the optional, union and £ilter opera-
tors, cf. [[10018/12]. For what we are concerned with here, the most interesting operator
though is the graph operator, since it changes the active graph. That is, the active graph

7 Note that we allow generalized RDF graphs that may have blank nodes in property position.

Dynamic Querying of Mass-Storage RDF Data with Rule-Based Entailment Regimes 317

is the default graph G for any basic graph pattern not occurring within a graph sub
pattern. However, in a subpattern graph g Pj, the pattern P; is matched against the
named graph identified by g, if g € I, and against any named graph u;, if g € Var,
where the binding w; is returned for variable g. According to [[12], for a RDF dataset D
and active graph G, we define [P]Z as the multiset of tuples constituting the answer to
the graph pattern P. The solutions of a query @ = (V, D, P) is the projection of [P]Z
to the variables in V" only.

3.1 SPARQL with Extended Datasets

What is important to note now is that, by the way how datasets are syntactically defined
in SPARQL, the default graph G can be obtained from merging a group of differ-
ent source graphs, specified via several £rom clauses — as shown, e.g., in query () —
whereas in each from named clause a single, separated, named graph is added to the
dataset. That is, graph patterns will always be matched against a separate graph only.
To generalize this towards dynamic construction of groups of merged named graphs,
we introduce the notion of an extended dataset, which can be specified by enlarging the
syntax of SPARQL with two additional dataset clauses:

ER)

— For 4,41, ..., 4, distinct IRIs (m > 1), the statement “from named (i1 ... %)
is called extended dataset clause. Intuitively, ¢; . . . i,, constitute a group of graphs
to be merged: the merged graph is given ¢ as identifying IRI.

— For o € I we call the statement “using ontology 0~ an onfological dataset
clause. Intuitively, o stands for a graph that will merged with all graphs in a given

query.

Extended RDF datasets are thus defined as follows. A graph collection G is a set of RDF
graphs. An extended RDF dataset D is a pair (Go, {(u1,G1), ..., (un,Gn)}) satisfying
the following conditions: (i) each G, is a nonempty graph collection (note that {(}}
is a valid nonempty graph collection), (ii) each u; is from I, and (iii) for all i # j,
(ui, Gi), (uj,G;) € D implies u; # u; and for G € G, and H € G;, blank(G) N
blank(H) = (. We denote Gy as dg(D), the default graph collection of D.

Let D and O be an extended dataset and a graph collection, resp. The ordinary RDF
dataset obtained from D and O, denoted D(D, O), is defined as

(V) 9@@07{<u,wgw@o>|<u,g>ep}>.

g€dg(D) ocO <Y ocO

We can now define the semantics of extended and ontological dataset clauses as follows.
Let F be a set of ordinary and extended dataset clauses, and O be a set of ontological
dataset clauses. Let graph(g) be the graph associated to the IRI g: the extended RDF
dataset obtained from F', denoted edataset(F'), is composed of:

(1) Go = {graph(g) | “€rom g” € F'}. If there is no £rom clause, then Gy = 0.

(2) A named graph collection (u, {graph(u)}) for each “from named u” in F.

(3) A named graph collection (i, { graph(i1), ..., graph(iy,)})for each “from named
i(i1 .. i) in F.

318 G. Ianni et al.

The graph collection obtained from O, denoted ocollection(O), is the set {graph(o) |
“using ontologyo” € O}. The ordinary dataset of O and F, denoted dataset(F, O),
is the set D(edataset(F'), ocollection(O)).

Let D and O be as above. The evaluation of a graph pattern P over D and O having

active graph collection G, denoted [[P}]g’o, is the evaluation of P over D(D, O) having

active graph G = |4 ¢ g, that is, [[P]]g’o = [[P]]g(p’o).

Note that the semantics of extended datasets is defined in terms of ordinary RDF
datasets. This allows to define the semantics of SPARQL with extended and ontological
dataset clauses by means of the standard SPARQL semantics. Also note that our exten-
sion is conservative, i.e., the semantics coincides with the standard SPARQL semantics
whenever no ontological clauses and extended dataset clauses are specified.

3.2 SPARQL with Arbitrary Rulesets

Extended dataset clauses give the possibility of merging arbitrary ontologies into any
graph in the dataset. The second extension herein presented enables the possibility of
dynamically deploying and specifying rule-based entailments regimes on a per query
basis. To this end, we define a generic R-entailment, that is RDF entailment associated
to a parametric ruleset R which is taken into account when evaluating queries. For each
such R-entailment regime we straightforwardly extend BGP matching, in accordance
with the conditions for such extensions as defined in [[10, Section 12.6].

We define an RDF inference rule r as the pair (Ante,Con), where the antecedent
Ante and the consequent Con are basic graph patterns such that V(Con) and V(Ante)
are non-empty, V(Con) C V(Ante) and Con does not contain blank nodesf As in
Example (@) above, we typically write RDF inference rules as

Ante — Con . (6)
We call sets of inference rules RDF inference rulesets, or rulesets for short.

Rule Application and Closure. We define RDF rule application in terms of the imme-
diate consequences of a rule r or a ruleset R on a graph G. Given a BGP P, we denote
as 11(P) a pattern obtained by substituting variables in P with elements of I U B U L.
Let r be a rule of the form (6) and G be a set of RDF triples, then:

T, (G) = {p(Con) | 3 such that p(Ante) C G}.

Accordingly, let T (G) = U, cr T+(G). Also, let Go = G and G411 = G; U Tr(G;)
for i > 0. It can be easily shown that there exists the smallest n such that G, 11 = Gp;
we call then Clg (G) = G,, the closure of G with respect to ruleset R.

We can now further define R-entailment between two graphs G; and Gg, written
G1 Er Go, as Clr(G1) E G,. Obviously for any finite graph G, Clg (G) is finite.
In order to define the semantics of a SPARQL query wrt. R-entailment we now extend
graph pattern matching in [P]Z towards respecting R.

8 Unlike some other rule languages for RDF, the most prominent of which being CONSTRUCT
statements in SPARQL itself, we forbid blank nodes; i.e., existential variables in rule conse-
quents which require the “invention” of new blank nodes, typically causing termination issues.

Dynamic Querying of Mass-Storage RDF Data with Rule-Based Entailment Regimes 319

Definition 1 (Extended Basic Graph Pattern Matching for R-Entailment). Ler D
be a dataset and G be an active graph. The solution of a BGP P wrt. R-entailment,
denoted [[P]]g’R, is [[P]]glR(G).

The solution [P] g,n naturally extends to more complex patterns according to the
SPARQL algebra. In the following we will assume that [P]]g’R is used for graph pat-
tern matching. Our extension of basic graph pattern matching is in accordance with the
conditions for extending BGP matching in [10, Section 12.6]. Basically, these condi-
tions say that any extension needs to guarantee finiteness of the answers, and defines
some conditions about a “scoping graph.” Intuitively, for our extension, the scoping
graph is just equivalent to Clr (G). We refer to [10] Section 12.6] for the details.

To account for this generic SPARQL BGP matching extension parameterized by an
RDF inference ruleset Rg per SPARQL query (), we introduce another novel language
construct for SPARQL.:

— Forr € I we call “using ruleset r” a ruleset clause.

Analogously to IRIs denoting graphs, we now assume that an IRI » € I may not only
refer to graphs but also to rulesets, and denote the corresponding ruleset by ruleset(r).
Each query () may contain zero or more ruleset clauses, and we define the query ruleset
Rq = U, cpruleset(r), where R is the set of all ruleset clauses in Q.

The definitions of solutions of a query and the evaluation of a pattern in this query
on active graph G is now defined just as above, with the only difference that answer to
a pattern P are given by [[P]]g’RQ.

We observe that whenever R = (), then R-entailment boils down to simple RDF
entailment. Thus, a query without ruleset clauses will just be evaluated using standard
BGP matching. In general, our extension preserve full backward compatibility.

Proposition 1. For R = () and RDF graph G, [P]2 = [P]2.

Analogously, one might use R-entailment as the basis for RDFS entailment as follows.
We consider here the pDF' fragment of RDFS entailment [[6]. Let R zprs denote the
ruleset corresponding to the minimal set of entailment rules (2)—(4) from [6]:

?P rdfs:subPropertyOf ?Q . ?Q rdfs:subPropertyOf ?R . — ?P rdfs:subPropertyOf ?R.

?P rdfs:subPropertyOf ?Q . ?S ?P ?0 . — ?S ?Q ?0.

?C rdfs:subClassOf ?D . ?D rdfs:subClassOf ?E . — ?C rdfs:subClassOf ?E.
?C rdfs:subClassOf ?D . ?S rdf:type ?C . — ?S rdf:type ?D.

?P rdfs:domain ?C . ?S ?P 2?0 . — ?S rdf:type ?C.

?P rdfs:range ?C . ?S ?P 2?0 . — 20 rdf:type ?2C.

Since obviously G |=rprs Clr e (G) and hence Clg,,,,.,(G) may be viewed as
a finite approximation of RDFS-entailment, we can obtain a reasonable definition for

defining a BGP matching extension for RDFS by simply defining [[P]]g’RDFS =

[P]5-R"Prs We allow the special ruleset clause using ruleset rdfs to conve-
niently refer to this particular ruleset. Other rulesets may be published under a Web
dereferenceable URI, e.g., using an appropriate RIF [23] syntax.

Note, eventually, that our rulesets consist of positive rules, and as such enjoy a natural

monotonicity property.

320 G. Ianni et al.

Proposition 2. For rulesets R and R/, such that R C R/, and graph Gy and G, if
Gy)272 Go then G4 ':R, Go.

Entailment regimes modeled using rulesets can thus be enlarged without retracting for-
mer inferences. This for instance would allow to introduce tighter RDFS-entailment ap-
proximations by extending R rprg with further axioms, yet preserving inferred triples.

4 Translating SPARQL into Datalog and SQL

Our extensions have been implemented by reducing both queries, datasets and rulesets
to a common ground which allows arbitrary interoperability between the three realms.
This common ground is Datalog, wherein rulesets naturally fit and SPARQL queries can
be reduced to. Subsequently, the resulting combined Datalog programs can be evaluated
over an efficient SQL interface to an underlying relational DBMS that works as triple
store.

From SPARQL to Datalog. A SPARQL query () is transformed into a correspond-
ing Datalog program D¢. The principle is to break () down to a series of Datalog
rules, whose body is a conjunction of atoms encoding a graph pattern. D is mostly
a plain Datalog program in dlvhex [24] input format, i.e. Datalog with external pred-
icates in the dlvhex language. These are explained along with a full account of the
translation in [[L1}19]. Main challenges in the transformation from SPARQL to Datalog
are (i) faithful treatment of the semantics of joins over possibly unbound variables [[11],
(ii) the multiset semantics of SPARQL [[19], and also (iii) the necessity of Skolemization
of blank nodes in construct queries [8]. Treatment of optional statements is car-
ried out by means of an appropriate encoding which exploits negation as failure. Special
external predicates of dlvhex are used for supporting some features of the SPARQL lan-
guage: in particular, importing RDF data is achieved using the external &rdf predicate,
which can be seen as a built-in referring to external data. Moreover, SPARQL filter
expressions are implemented using the dlvhex external &eval predicate in Dg.

Let us illustrate this transformation step by an example: the following query A asking
for persons who are not named “Alice” and optionally their email addresses

select » from <http://alice.org/>
where { ?x a foaf:Person. ?X foaf:name ?N. (7)
filter (»N != "Alice") optional { ?xX foaf:mbox ?M } }

is translated to the program D 4 as follows:

(rl) "triple"(S,P,0,default) :— &rdf["alice.org" 1(S,P,0).
(r2) answerl (X_N,X_X,default) :— "triple" (X_X,"rdf:type", "foaf:Person",default),
"triple" (X_X, "foaf:name",X_N,default),
&eval[" ?N != ’‘Alice’ ","N", X_N] (true).
(r3) answer?2 (X_M,X_X,default) :— "triple" (X_X, "foaf:mbox",X_M,default) .
(rd) answer_b_join_1(X_M,X_N,X_X,default) : - answerl (X_N,X_X,default),
answer2 (X_M, X_X,default) .
(r5) answer_b_join_1(null,X N,X_X,default) :- answerl (X_N,X X,default),
not answer2_prime (X_X,default) .
(r6) answer2_prime(X_X,default) :- answerl(X_N,X_X,default),

answer2 (X_M, X_X,default) .
(r7) answer (X_M,X_N,X_X) :— answer_b_joinl (X_M,X_N,X_X,default) .

Dynamic Querying of Mass-Storage RDF Data with Rule-Based Entailment Regimes 321

where the first rule (r1) computes the predicate "triple" taking values from the
built-in predicate &rdf. This latter is generally used to import RDF statements from the
specified URI. The following rules (r2) and (r3) compute the solutions for the filtered
basic graph patterns { ?X a foaf:Person. ?X foaf:name ?N. filter (?N !=
"Alice") } and { ?X foaf:mbox ?M }. In particular, note here that the evaluation of
filter expressions is “outsourced” to the built-in predicate &eval, which takes a filter
expression and an encoding of variable bindings as arguments, and returns the evalua-
tion value (true, false or error, following the SPARQL semantics). In order to em-
ulate SPARQL’s optional patterns a combination of join and set difference operation
is used, which is established by rules (r4)—(r6). Set difference is simulated by using
both null values and negation as failure. According to the semantics of SPARQL, one
has to particularly take care of variables which are joined and possibly unbound (i.e.,
set to the null value) in the course of this translation for the general case. Finally, the
dedicated predicate answer in rule (r7) collects the answer substitutions for Q). Dg
might then be merged with additional rulesets whenever () contains using ruleset
clauses.

From Datalog to SQL. For this step we rely on the system DLV [23] that imple-
ments Datalog under stable model semantics on top of a DBMS of choice. DLVP? is
able to translate Datalog programs in a corresponding SQL query plan to be issued to
the underlying DBMS. RDF Datasets are simply stored in a database D, but the native
divhex &rdf and &eval predicates in D¢y cannot be processed by DLV PBdirectly over
D. So, Dg needs to be post-processed before it can be converted into suitable SQL
statements.

Rule (r1l) corresponds to loading persistent data into D, instead of loading triples
via the &rdf built-in predicate. In practice, the predicate "triple" occurring in pro-
gram D4 is directly associated to a database table TRIPLE in D. This operation is
done off-line by a loader module which populates the TRIPLE table accordingly, while
(r1) is removed from the program. The &ecval predicate calls are recursively broken
down into WHERE conditions in SQL statements, as sketched below when we discuss
the implementation of £ilter statements.

After post-processing, we obtain a program D/,, which DLV PZallows to be executed
on a DBMS by translating it to corresponding SQL statements. D’Q is coupled with a
mapping file which defines the correspondences between predicate names appearing in
Db and corresponding table and view names stored in the DBMS D.

For instance, the rule (r4) of D 4, results in the following SQL statement issued to
the RDBMS by DLV P5:

INSERT INTO answer_b_join_1

SELECT DISTINCT answer2_p2.al, answerl_pl.al, answerl_pl.a2, ’‘default’
FROM answerl answerl_pl, answer2 answer2_p2

WHERE (answerl_pl.a2=answer2_p2.a2)

AND (answerl_pl.a3='default’)

AND (answer2_p2.a3='default’)

EXCEPT (SELECT % FROM answer_b_join_1)

322 G. Ianni et al.

Whenever possible, the predicates for computing intermediate results such as answer1,
answer?2, answer b join 1, ..., are mapped to SQL views rather than materialized
tables, enabling dynamic evaluation of predicate contents on the DBMS sidef]

Schema Rewriting. Our system allows for customizing schemes which triples are
stored in. It is known and debated [26] that in choosing the data scheme of D several
aspects have to be considered, which affect performance and scalability when handling
large-scale RDF data. A widely adopted solution is to exploit a single table storing
quadruples of form (s, p, 0, c) where s,p, 0 and c are, respectively, the triple subject,
predicate, object and context the triple belongs to. This straightforward representation
is easily improved [27] by avoiding to store explicitly string values referring to URIs
and literals. Instead, such values are replaced with a corresponding hash value.

Other approaches suggest alternative data structures, e.g., property tables [27126].
These aim at denormalizing RDF graphs by storing them in a flattened representation,
trying to encode triples according to the hidden “schema” of RDF data. Similarly to
a traditional relational schema, in this approach D contains a table per each known
property name (and often also per class, splitting up the rdf : type table).

Our system gives sufficient flexibility in order to program different storage schemes:
while on higher levels of abstraction data are accessible via the 4-ary triple predicate,
a schema rewriter module is introduced in order to match Db to the current database
scheme. This module currently adapts D’Q by replacing constant IRIs and literals with
their corresponding hash value, and introducing further rules which translate answers,
converting hash values back to their original string representation.

Magic Sets. Notably, DLV"? can post-process Dy, using the magic sets technique,
an optimization method well-known in the database field [28]]. The optimized program
mD’Q tailors the data to be queried to an extent significantly smaller than the original
Db. The application of magic sets allows, e.g., to apply entailment rules R pprg only
on triples which might affect the answer to (), preventing thus the full computation
and/or materialization of inferred data.

Implementation of £ilter Statements. Evaluation of SPARQL filter statements
is pushed down to the underlying database D by translating filter expressions to appro-
priate SQL views. This allows to dynamically evaluate filter expressions on the DBMS
side. For instance, given a rule 7 € D¢ of the form

h(X,Y) :- b(X,Y), &evall[f_ Y] (bool).

where the &eval atom encodes the £ilter statement (£ Y representing the filter ex-
pression), then r is translated to

h(X,Y) :- b’ (X,Y).

where b’ is a fresh predicate associated via the mapping file to a database view. Such a
view defines the SQL code to be used for the computation of £ v, like

CREATE VIEW B’ AS (SELECT X,Y FROM B WHERE F_Y)

? For instance, recursive predicates require to be associated with permanent tables, while re-
maining predicates are normally associated to views.

Dynamic Querying of Mass-Storage RDF Data with Rule-Based Entailment Regimes 323

where F v is an appropriate translation of the SPARQL filter expression £ Y at
hand to an SQL Boolean conditionE while B is the DBMS counterpart table of the
predicate b.

5 Experiments

In order to illustrate that our approach is practically feasible, we present a quantitative
performance comparison between our prototype system, GiaBATA, which implements
the approach outlined before, and some state-of-the-art triple stores. The test were done
on an Intel P4 3GHz machine with 1.5GB RAM under Linux 2.6.24. Let us briefly
outline the main features and versions of the triple stores we used in our comparison.

AllegroGraph works as a database and application framework for building Semantic
Web applications. The system assures persistent storage and RDFS++ reasoning, a se-
mantic extension including the RDF and RDEFES constructs and some OWL constructs
(owl:sameAs, owl:inverseOf, owl : TransitiveProperty, owl :hasvValue). We
tested the free Java edition of AllegroGraph 3.2 with its native persistence mechanism[1]

ARQ is a query engine implementing SPARQL under the Jena framework [It can
be deployed on several persistent storage layers, like filesystem or RDBMS, and it in-
cludes a rule-based inference engine. Being based on the Jena library, it provides in-
ferencing models and enables (incomplete) OWL reasoning. Also, the system comes
with support for custom rules. We used ARQ 2.6 with RDBMS backend connected to
PostgreSQL 8.3.

GiaBATA [15] is our prototype system implementing the SPARQL extensions de-
scribed above. GiaBATA is based on a combination of the DLV [23]] and dlvhex [24]
systems, and caters for persistent storage of both data and ontology graphs. The former
system is a variant of DLV [13]] with built-in database support. The latter is a solver
for HEX-programs [24]], which features an extensible plugin system which we used
for developing a rewriter-plugin able to translate SPARQL queries to HEX-programs.
The tests were done using development versions of the above systems connected to
PostgreSQL 8.3.

Sesame is an open source RDF database with support for querying and reasoningB In
addition to its in-memory database engine it can be coupled with relational databases or
deployed on top of file systems. Sesame supports RDFS inference and other entailment
regimes such as OWL-Horst [5] by coupling with external reasoners. Sesame provides
an infrastructure for defining custom inference rules. Our tests have been done using
Sesame 2.3 with persistence support given by the native store.

First of all, it is worth noting that all systems allow persistent storage on RDBMS.
All systems, with the exception of ours, implement also direct filesystem storage. All

10°A version of this translation can be found in [29].

1 System available at http://agraph. franz.com/allegrograph/

12 Distributed at https: //jena.svn.sourceforge.net/svnroot/jena/ARQ/
13 System available at http: / /www.openrdf.org/

http://agraph.franz.com/allegrograph/
https://jena.svn.sourceforge.net/svnroot/jena/ARQ/
http://www.openrdf.org/

324 G. Ianni et al.

cover RDFS (actually, disregarding axiomatic triples) and partial or non-standard OWL
fragments. Although all the systems feature some form of persistence, both reasoning
and query evaluation are usually performed in main memory. All the systems, except
AllegroGraph and ours, adopt a persistent materialization approach for inferring data.

All systems — along with basic inference — support named graph querying, but, with
the exception of GiaBATA, combining both features results in incomplete behavior as
described in Section [2l Inference is properly handled as long as the query ranges over
the whole dataset, whereas it fails in case of querying explicit default or named graphs.
That makes querying of named graphs involving inference impossible with standard
systems.

For performance comparison we rely on the LUBM benchmark suite [16]]. Our tests
involve the test datasets LUBMn for n € {1, 5,10, 30} with LUBM30 having roughly
four million triples (exact numbers are reported in [[16]). In order to test the additional
performance cost of our extensions, we opted for showing how the performance figures
change when queries which require RDFS entailment rules (LUBM Q4-Q7) are consid-
ered, w.r.t. queries in which rules do not have an impact (LUBM Q1-Q3, see Appendix
of [16] for the SPARQL encodings of Q1-Q7). Experiments are enough for compar-
ing performance trends, so we didn’t consider at this stage larger instances of LUBM.
Note that evaluation times include the data loading times. Indeed, while former perfor-
mance benchmarks do not take this aspect in account, from the semantic point of view,
pre-materialization-at-loading computes inferences needed for complete query answer-
ing under the entailment of choice. On further reflection, dynamic querying of RDFS
moves inference from this materialization to the query step, which would result in an
apparent advantage for systems that rely on pre-materialization for RDFS data. Also,
the setting of this paper assumes materialization cannot be performed una tantum, since
inferred information depends on the entailment regime of choice, and on the dataset at
hand, on a per query basis. We set a 120min query timeout limit to all test runs.

Our test runs include the following system setup: (i) “Allegro (native)” and “Alle-
gro (ordered)” (ii) “ARQ”; (iii) “GiaBATA (native)” and “GiaBATA (ordered)”’; and
(iv) “Sesame”. For () and (i), which apply dynamic inference mechanisms, we use
“(native)” and “(ordered)” to distinguish between executions of queries in LUBM’s na-
tive ordering and in a optimized reordered version, respectively. The GiaBATA test runs
both use Magic Sets optimization. To appreciate the cost of RDFS reasoning for queries
Q4-Q7, the test runs for @{)—(¥) also include the loading time of the datasets, i.e., the
time needed in order to perform RDFS data materialization or to simply store the raw
RDF data.

The detailed outcome of the test results are summarized in Fig. [2l For the RDF test
queries Q1-Q3, GiaBATA is able to compete for Q1 and (3. The systems ARQ and
Sesame turned out to be competitive for (2 by having the best query response times,
while Allegro (native) scored worst. For queries involving inference (Q4-Q7) Alle-
gro shows better results. Interestingly, systems applying dynamic inference, namely
Allegro and GiaBATA, query pattern reordering plays a crucial role in preserving per-
formance and in assuring scalability; without reordering the queries simply timeout. In
particular, Allegro is well-suited for queries ranging over several properties of a single
class, whereas if the number of classes and properties increases (Q7), GiaBATA exhibits

Dynamic Querying of Mass-Storage RDF Data with Rule-Based Entailment Regimes

cs (logscale)

evaluation time / se

evaluation time / secs (logscale)

evaluation time / secs (logscale)

1000

100

1000

100

LuBM1 LUBMS LUBM1O

LuBM30

LuBm1

LuBMs.

LuBM10

10000

01
LuBM30

LuBM1

LuBMs. LUBM1O LUBM3O

0
Allegro 3.2 (ordered) ——

Allegro 3.2 (native) ExXx=
ARQ 26 =

GiaBATA (ordered)
GiaBATA (native) ==
Sesame 2.3 zzz1

LLLLLLL L L7 7
AANANANNANANNNNANNNNNY

1000

100

Allegro 3.2 (ordered) ——
Allegro 3.2 (native) £xxx1
ARQ 2.6 e

GiaBATA (ordered) s
GiaBATA (native) =<3
Sesame 2.3 zzz2

LA LL L L AL LTI 7 7 T
AAANNNNNANNNNNNNNNNNNNY

Q5

LUBMS

LUBM10

LUBM30

LUBMS

LUBM10 LUBM30

Allegro 3.2 (ordered) ——
Allegro 3.2 (native) Exx=
Q2.6 =

GiaBATA (ordered) mmmm
GiaBATA (native) o<1
Sesame 2.3 ZZzz1

L L 77
\\NANNANANNNNANNNNNNANY

Q6

1000

100

0
Allegro 3.2 (ordered) ——

Allegro 3.2 (native) X1
Q2.6 Ez=m

GiaBATA (ordered) mmmm
GiaBATA (native) =<3
Sesame 2.3 zZ773

Timeout
timeout

N

L AL LL LT L LI 7 7 /A
ANAANNNNNNNNNNNNNNNNNNY

Q7

Timeout
{imeout
fimeout
timeout
timeout

LUBM1

LUBMS

LUBM10

LUBM30

LUBMS5

LUBM10

LUBM30

Fig. 2. Evaluation

better scalability. Finally, a further distinction between systems relying on DBMS sup-
port and systems using native structures is disregarded, and since figures (in logarithmic
scale) depict overall loading and querying time, this penalizes in specific cases those
systems that use a DBMS.

6 Future Work and Conclusion

We presented a framework for dynamic querying of RDFS data, which extends SPARQL
by two language constructs: using ontology and using ruleset. The former is
geared towards dynamically creating the dataset, whereas the latter adapts the entail-
ment regime of the query. We have shown that our extension conservatively extends the

326 G. Ianni et al.

standard SPARQL language and that by selecting appropriate rules inusing ruleset,
we may choose varying rule-based entailment regimes at query-time. We illustrated
how such extended SPARQL queries can be translated to Datalog and SQL, thus pro-
viding entry points for implementation and well-known optimization techniques. Our
initial experiments have shown that although dynamic querying does more computa-
tion at query-time, it is still competitive for use cases that need on-the-fly construction
of datasets and entailment regimes. Especially here, query optimization techniques play
a crucial role, and our results suggest to focus further research in this direction. Further-
more, we aim at conducting a proper computational analysis as it has been done for Hy-
pothetical datalog [30], in which truth of atoms is conditioned by hypothetical additions
to the dataset at hand. Likewise, our framework allows to add ontological knowledge
and rules to datasets before querying: note however that, in the spirit of [31], our frame-
work allows for hypotheses (also called “premises”) on a per query basis rather than a
per atom basis.

References

1. Klyne, G., Carroll, J.J. (eds.): Resource Description Framework (RDF): Concepts and Ab-
stract Syntax. W3C Rec. (February 2004)

2. Brickley, D., Miller, L.: FOAF Vocabulary Specification 0.91 (2007),
http://xmlns.com/foaf/spec/

3. Bojars, U., Breslin, J.G., Berrueta, D., Brickley, D., Decker, S., Ferndndez, S., Gorn, C.,
Harth, A., Heath, T., Idehen, K., Kjernsmo, K., Miles, A., Passant, A., Polleres, A., Polo, L.,
Sintek, M.: SIOC Core Ontology Specification. W3C member submission (June 2007)

4. Suchanek, F.M., Kasneci, G., Weikum, G.: Yago: A Core of Semantic Knowledge. In: WWW
2007. ACM, New York (2007)

5. ter Horst, H.J.: Completeness, decidability and complexity of entailment for RDF Schema
and a semantic extension involving the OWL vocabulary. J. Web Semant. 3(2-3), 79-115
(2005)

6. Muiioz, S., Pérez, J., Gutierrez, C.: Minimal deductive systems for RDF. In: Franconi, E.,
Kifer, M., May, W. (eds.) ESWC 2007. LNCS, vol. 4519, pp. 53-67. Springer, Heidelberg
(2007)

7. Hogan, A., Harth, A., Polleres, A.: Scalable authoritative owl reasoning for the web. Int. J.
Semant. Web Inf. Syst. 5(2) (2009)

8. Polleres, A., Scharffe, F., Schindlauer, R.: SPARQL++ for mapping between RDF vocabu-
laries. In: ODBASE 2007, pp. 878-896. Springer, Heidelberg (2007)

9. Harth, A., Umbrich, J., Hogan, A., Decker, S.: YARS2: A Federated Repository For Querying
Graph Structured Data from the Web. In: Aberer, K., Choi, K.-S., Noy, N., Allemang, D.,
Lee, K.-I., Nixon, L.J.B., Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber, G.,
Cudré-Mauroux, P. (eds.) ASWC 2007 and ISWC 2007. LNCS, vol. 4825, pp. 211-224.
Springer, Heidelberg (2007)

10. Prud’hommeaux, E., Seaborne, A. (eds.): SPARQL Query Language for RDF. W3C Rec.
(January 2008)

11. Polleres, A.: From SPARQL to rules (and back). In: WWW 2007, pp. 787-796. ACM,
New York (2007)

12. Angles, R., Gutierrez, C.: The expressive power of SPARQL. In: Sheth, A.P., Staab, S.,
Dean, M., Paolucci, M., Maynard, D., Finin, T., Thirunarayan, K. (eds.) ISWC 2008. LNCS,
vol. 5318, pp. 114-129. Springer, Heidelberg (2008)

http://xmlns.com/foaf/spec/

Dynamic Querying of Mass-Storage RDF Data with Rule-Based Entailment Regimes 327

13.

14.

15.

16.

17.

18.

19.

20.
21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.: The DLV
system for knowledge representation and reasoning. ACM Trans. Comput. Log. 7(3),
499-562 (2006)

Euzenat, J., Polleres, A., Scharffe, F.: Processing ontology alignments with SPARQL. In:
OnAV 2008 Workshop, CISIS 2008, pp. 913-917. IEEE Computer Society, Los Alamitos
(2008)

Ianni, G., Krennwallner, T., Martello, A., Polleres, A.: A Rule Systemfor Querying Persistent
RDFS Data. In: Aroyo, L., Traverso, P., Ciravegna, F., Cimiano, P., Heath, T., Hyvonen, E.,
Mizoguchi, R., Oren, E., Sabou, M., Simperl, E. (eds.) ESWC 2009. LNCS, vol. 5554,
pp- 857-862. Springer, Heidelberg (2009)

Guo, Y., Pan, Z., Heflin, J.: LUBM: A Benchmark for OWL Knowledge Base Systems. J.
Web Semant. 3(2-3), 158-182 (2005)

Motik, B., Grau, B.C., Horrocks, 1., Wu, Z., Fokoue, A., Lutz, C. (eds.): OWL 2 Web Ontol-
ogy Language Profiles W3C Cand. Rec. (June 2009)

Pérez, J., Arenas, M., Gutierrez, C.: Semantics and complexity of SPARQL. In: Cruz, L.,
Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P., Uschold, M., Aroyo, L.M. (eds.)
ISWC 2006. LNCS, vol. 4273, pp. 30-43. Springer, Heidelberg (2006)

Polleres, A., Schindlauer, R.: dlvhex-sparql: A SPARQL-compliant query engine based on
dlvhex. In: ALPSWS 2007. CEUR-WS, pp. 3-12 (2007)

Hayes, P.: RDF semantics. W3C Rec. (February 2004)

Ianni, G., Martello, A., Panetta, C., Terracina, G.: Efficiently querying RDF(S) ontologies
with answer set programming. J. Logic Comput. 19(4), 671-695 (2009)

de Bruijn, J.: SemanticWeb Language Layering with Ontologies, Rules, and Meta-Modeling.
PhD thesis, University of Innsbruck (2008)

Boley, H., Kifer, M.: RIF Basic Logic Dialect. W3C Working Draft (July 2009)

Eiter, T., Ianni, G., Schindlauer, R., Tompits, H.: Effective integration of declarative rules
with external evaluations for semantic-web reasoning. In: Sure, Y., Domingue, J. (eds.)
ESWC 2006. LNCS, vol. 4011, pp. 273-287. Springer, Heidelberg (2006)

Terracina, G., Leone, N., Lio, V., Panetta, C.: Experimenting with recursive queries in
database and logic programming systems. Theory Pract. Log. Program. 8(2), 129-165 (2008)
Theoharis, Y., Christophides, V., Karvounarakis, G.: Benchmarking Database Representa-
tions of RDF/S Stores. In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC
2005. LNCS, vol. 3729, pp. 685-701. Springer, Heidelberg (2005)

Abadi, D.J., Marcus, A., Madden, S., Hollenbach, K.J.: Scalable Semantic Web Data Man-
agement Using Vertical Partitioning. In: VLDB, pp. 411-422. ACM, New York (2007)
Beeri, C., Ramakrishnan, R.: On the power of magic. J. Log. Program. 10(3-4), 255-299
(1991)

Lu, J., Cao, F., Ma, L., Yu, Y., Pan, Y.: An Effective SPARQL Support over Relational
Databases. In: SWDB-ODBIS, pp. 57-76 (2007)

Bonner, A.J.: Hypothetical datalog: complexity and expressibility. Theor. Comp. Sci. 76(1),
3-51 (1990)

Gutiérrez, C., Hurtado, C.A., Mendelzon, A.O.: Foundations of semantic web databases. In:
PODS 2004, pp. 95-106. ACM, New York (2004)

	Dynamic Querying of Mass-Storage RDF Data with Rule-Based Entailment Regimes
	Introduction
	SPARQL and Some Motivating Examples
	A Framework for Using Ontologies and Rules in SPARQL
	SPARQL with Extended Datasets
	SPARQL with Arbitrary Rulesets

	Translating SPARQL into Datalog and SQL
	Experiments
	Future Work and Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

