Chapter 7

PROVIDING SITUATIONAL AWARENESS
FOR PIPELINE CONTROL OPERATIONS

Jonathan Butts, Hugo Kleinhans, Rodrigo Chandia, Mauricio Papa and
Sujeet Shenoi

Abstract A SCADA system for a single 3,000-mile-long strand of oil or gas pipeline
may employ several thousand field devices to measure process param-
eters and operate equipment. Because of the vital tasks performed by
these sensors and actuators, pipeline operators need accurate and timely
information about their status and integrity. This paper describes a real-
time scanner that provides situational awareness about SCADA devices
and control operations. The scanner, with the assistance of lightweight,
distributed sensors, analyzes SCADA network traffic, verifies the op-
erational status and integrity of field devices, and identifies anomalous
activity. Experimental results obtained using real pipeline control traffic
demonstrate the utility of the scanner in industrial settings.

Keywords: Pipeline control systems, situational awareness, ROC protocol

1. Introduction

Imagine flying a modern aircraft with 10% of the instrument panel indicators
providing erroneous data. Now imagine controlling a pipeline running from the
Texas Gulf Coast to New York City with approximately 100 million pounds of
liquids or gas, but with 10% of the field devices either non-operational or of
dubious integrity.

Based on our experience, this is sometimes the situation with sensors and
actuators in oil and gas pipelines. The sensors measure key process parameters
such as pressure, temperature, flow and compositions. The actuators perform
vital tasks such as opening and closing valves, operating pumping stations and
tripping circuits. Pipeline operators must be able to trust their SCADA devices
[14]. Unfortunately, few, if any, tools are available for verifying the status and
integrity of SCADA systems.

C. Palmer and S. Shenoi (Eds.): Critical Infrastructure Protection III, IFIP AICT 311, pp. 97-111, 2009.
© IFIP International Federation for Information Processing 2009

98 CRITICAL INFRASTRUCTURE PROTECTION I

This paper describes a SCADA network scanner intended to provide oil
and gas pipeline operators with a comprehensive view of network topology
along with detailed information about the configuration, status and integrity
of SCADA devices and communication links. The scanner architecture incorpo-
rates a command module and database located in the control center and sensors
positioned within SCADA subnets. The sensors passively monitor traffic and
send information to the command module. The command module configures
sensors, interacts with the database and provides event updates to operators.
The database organizes, correlates and archives data collected by the sensors.

Tests using real pipeline control traffic demonstrate that the scanner can re-
motely verify the status and integrity of SCADA devices, profile normal SCADA
operations and identify anomalous activity. The current implementation is tar-
geted for ROC [3], a popular pipeline control protocol; however, the modular
design readily accommodates other SCADA protocols.

2. ROC Protocol

The Remote Operation Controller (ROC) Protocol is used extensively in
the oil and gas sector for pipeline operations. ROC is a proprietary protocol
maintained by Emerson Process Management [3]. It is used primarily in Emer-
son products; however, other vendors often implement the ROC protocol to
facilitate interoperation with Emerson equipment [11, 12, 16].

The ROC protocol uses a request-response paradigm for message transmis-
sion between a master terminal unit (MTU) and remote terminal units (RTUs)
[2]. The MTU sends request messages to outlying RTUs to gather monitoring
data or to specify control actions. The RTUs collect discrete and analog sensor
data and maintain actuator settings specified by the MTU. Response messages
are generated by RTUs after direct requests from the MTU. The MTU resends
a request when it does not receive a timely response from an RTU. This com-
munication model addresses congestion control and transmission error recovery.

ROC devices maintain control specifications and flow measurements within a
database. The data elements, called “points,” represent single input or output
values [1]. Each database parameter is uniquely identified by a parameter
number and point type. A request message from an MTU specifies a function
to perform and the associated parameter number and point type. The receiving
RTU performs the operation for the specified parameter and sends the desired
measurement or a confirmation that the control action was performed. The
ROC protocol specifies access mechanisms for the database configuration, real-
time clock, event and alarm logs, and historical (archived) data.

Figure 1 shows the structure of a ROC message. A message contains a
Destination Address followed by the Source Address. The addresses are split
into two components: Unit ID and Group ID. The Unit ID is a unique one-
byte address for each host in the system. This address is user configurable, with
Unit ID 0 reserved for “broadcast within group” and Unit ID 240 used as the
“direct connect address.” The Group ID specifies the group to which a device
is assigned. This address has a default value of 2, but is user configurable and

Bultts, et al. 99

l1 B—ol1B—>| |1B—>l1B—] l<1 B—>l«1B—]
Unit | Group Unit | Group Isb msb
Destinati S Opcode Data Data Bytes
estination ource P Length y CRC
I 2B | 2B }«1 B—>l«1 B—>}«——nBytess—>«—2B—>]

Figure 1. ROC message structure.

can be used to segregate broadcast groups. When a ROC device receives a
message, it examines the destination Unit ID and Group ID. The message is
accepted and processed if the two destination IDs match the configured device
IDs or if the message is a broadcast message with a matching Group ID.

The Opcode field in a ROC message indicates the operation to be performed
by the receiving RTU. The operations include configuration modification, re-
trieval of stored readings and alarms, direct sensor input reading, writing to
outputs, acknowledgement of a report by exception, and store-and-forward mes-
saging. An RTU responds to an MTU request with a message containing the
original opcode and the results of the operation. When an RTU encounters an
error condition (e.g., a request for unavailable data), it responds with Opcode
255 to indicate that the message contained a valid cyclic redundancy check
(CRC) but requested invalid parameters.

The Data Length indicates the number of bytes in the Data Bytes field.
The Data Bytes field is variable in length and contains the parameters for
the operation requested by an MTU or information returned by an RTU. For
example, an MTU may use Opcode 167 to request an RTU to measure the
Analog Input#6. The RTU responds with Opcode 167 and places the data
for the requested point type and parameter number in the Data Bytes field.
The ROC protocol specifies the data format and available point types and
parameters for each opcode.

The CRC field contains an error detection code to verify message integrity.
The standard GPLib CRC routine [4] with the polynomial 16 + 25 + 22 4+ 1
is used to compute the 16-bit value. When a device receives a message, it
calculates the CRC value and verifies that it matches the value in the CRC
field. The message is discarded if the two do not match.

The ROC protocol permits an RTU to generate a “report by exception”
message (identified by Opcode 224) when certain conditions occur (e.g., when
a sensor value exceeds a predetermined threshold). Upon receiving such a
message, the MTU queries the stored alarms and sends a message with Opcode
225 that acknowledges the report by exception message.

3. Scanner Architecture

The SCADA scanner is designed to provide situational awareness for large
pipeline systems. Real-time traffic analysis can be very difficult for traditional

100 CRITICAL INFRASTRUCTURE PROTECTION II1

SCADA Control Center

Operator
Console

Scanner
Database

Scanner
Command
Module
1
[
1
|
|
1
SCADA | > SCADA
MTU =___ | E MTU
|
|
|
|
|
Scanner : Scanner
Sensor 1 Sensor

w"--—l——--——@—

GO e S

RTU RTU RTU RTU RTU
SCADA Subnet 1 SCADA Subnet 2

Figure 2. Scanner architecture.

IP networks, mainly because of high traffic volumes, changing network topolo-
gies, the range of protocols and applications that are supported, and the relative
unpredictability of network traffic patterns and content [10]. On the other hand,
even SCADA systems with thousands of devices have low traffic volumes, static
topologies, limited protocols and applications, and highly predictable traffic [8].
These attributes make it feasible to implement a real-time scanner that ana-
lyzes SCADA network traffic, verifies the operational status of field devices and
identifies anomalous activity.

A SCADA system for pipeline operations is typically organized as multiple
subnets, each with a master (MTU) and multiple slaves (RTUs). Operators
monitor and control pipeline operations from a control center (Figure 2).

The scanner architecture incorporates a command module and database lo-
cated in the control center and sensors positioned in the various SCADA sub-

Butts, et al. 101

nets (Figure 2). The sensors passively monitor traffic and send information to
the command module. The command module configures the sensors, interacts
with the database and provides event updates to operators. The database orga-
nizes and correlates data collected by the scanner sensors. Ideally, the scanner
components are dual-homed and use a dedicated communications network so
as not to interfere with SCADA operations. However, if bandwidth is not an
issue, the scanner sensors may be configured to use the SCADA network for
communications.

Modern SCADA systems often employ TCP/IP for device communications,
mainly to leverage the flexibility and cost of commodity LAN and WAN tech-
nologies. Consequently, the scanner is designed to operate in an IP-based
environment. Because the majority of the scanner functionality resides at the
application layer, the scanner can be readily modified for use in different com-
munication environments.

This paper focuses on pipeline operations and the ROC protocol. However,
the scanner sensors are designed to be modular and to support “plug and
play” operations for other protocols. For example, to support Modbus network
scanning, it is only necessary to incorporate a Modbus protocol module in
the scanner framework. The following sections describe the scanner sensors,
command module and database.

3.1 Sensors

Scanner sensors deployed at field sites operate in the promiscuous mode, en-
abling them to capture and examine traffic in their subnets. The sensors gather
information about device functionality, state and network topology; and iden-
tify anomalous traffic (e.g., erroneous and malicious messages and unexpected
traffic volumes). The sensors are designed to be implemented using inexpensive
embedded devices (e.g., Gumstix [5]).

Each sensor maintains a local table with the attributes of devices in its sub-
net (address information, device functionality and communication patterns).
Sensors “learn” about devices and attributes by examining captured traffic.
Initially, the local sensor tables are empty; as the sensors parse traffic, new
information is gleaned and stored in their tables. Alternatively, a configuration
file with device attributes may be uploaded to each sensor by the command
module.

Whenever a new entry is added to a sensor table (e.g., a new device address),
an alert is sent to the database, which records information pertaining to the
alert. The sensors also send periodic status updates to the database to provide
situational awareness.

3.2 Command Module

The command module is accessed by plant personnel via an operator console.
It provides facilities for managing alerts, reviewing scanner status, configuring

102 CRITICAL INFRASTRUCTURE PROTECTION III

sensors and storing historical information related to pipeline control operations
in the scanner database.

The command module also serves as the front-end to the database, which
it queries constantly for new alerts and changes to SCADA device state and
configuration. The query results are passed to the operator console. A human
operator processes alerts and examines SCADA device data. Additionally, the
operator can view the status of sensors, e.g., subnet data, alerts generated, time
of last update and status (active/disabled).

Each sensor has a unique configuration file for scanning its subnet. A sensor
may be configured to examine specific device functions and roles, time-out
periods and traffic rates. For example, one of the RTUs in SCADA Subnet 1
(Figure 2) produces minimal traffic and an alert should be generated by the
sensor when the traffic rate exceeds 20 messages/second. On the other hand,
an alert should be generated for the MTU in SCADA Subnet 1 when the traffic
rate exceeds 400 messages/second. Note that the command module can upload
a new configuration file to a sensor or disable a sensor in real time.

3.3 Database

A relational database maintains historical information about SCADA de-
vices, scanner sensors, network traffic and alerts. Figure 3 shows the eight
database tables. The Scanner Traffic table contains the traffic attributes that
generate alerts and/or database updates. The Sensors table holds information
about the scanner sensors. Four device tables (Devices, Device Types, Device
Opcodes and Device Alerts) maintain information about SCADA devices. The
remaining two tables (Alerts and Alert Codes) contain information about the
alerts generated by the scanner.

4. Scanner Functionality

The ROC scanner provides information about device functionality, device
roles, communication patterns, and anomalous process behavior and SCADA
network activity. This information about the operational status of the SCADA
network and devices provides pipeline operators with vital situational aware-
ness. The ROC scanner generates alerts about anomalous activity by compar-
ing network traffic against normal (profiled) traffic.

4.1 Creating System Profiles

Local tables are maintained by sensors to profile traffic and device opera-
tions. Table 1 shows a sample sensor table. When a ROC message is received
by a sensor, it examines the source IP address and source device address to see
if they exist in its table; if not, an entry is added to indicate that a new device
is communicating in the subnet. The sensor also examines the destination IP
address and destination device address in a similar manner.

Butts, et al. 103

JDevice Alerts v
Device Alert ID

Device ID JAlert Codes~
Sensor ID Alert Code ID

Alert Timestamp "=~~~ T TTTTTTTTTTTTTTOOC ™ Alert Text

Alert Code ID o Device Opcodesy
Data Opcode ID

———— Type ID I

A
“T ODevice Types v
i Device Type ID
|
|
|
|

H——-

dDevices M
Device ID |
Device IP Addr |
Device Addr |
First Comm Timestamp }
Last Comm Timestamp _d

Validated JSensors M

Sensor ID

Status

Sensor Name

IP Addr

First Comm Timestamp

Last Comm Timestamp

PR # Device Type Code

Device ID

Type ID P
Sensor ID

=
i Status
|
dScanner Traffic v
Traffic ID JAlerts v
Rate) Alert ID
Src IP Addr _| Alert Code ID
Src Device Addr Alert Timestamp
Dst IP Addr L, Alert Timestamp
Sensors ID T Sensors ID
DevicestD | 7T ™ Scanner Traffic ID
Data

Figure 3. Database relations.

Next, the opcode is examined to determine if the sending device has previ-
ously sent a message with the code; the sensor table is updated if the opcode
has never been used by the device. The Communication Relations column in
the table identifies entities with which devices have communicated. The Op-
codes and Communication Relations columns help determine device roles. For
example, Device 1 in Table 1 has sent messages to all the devices in the subnet
and has used opcodes related to every device in the subnet. Therefore, it can
be inferred that Device 1 is an MTU. Devices 2 through 4 use certain opcodes
and only communicate with Device 1; thus, these devices are functioning as
RTUs.

The Rate column lists the number of messages per second that have been
sent or received by a device. This provides an indication of the traffic rate for
each device in the subnet. The Last Communication column displays a time
stamp and an ordinal date (ddd) to identify when the last message originated
from the corresponding device.

104 CRITICAL INFRASTRUCTURE PROTECTION III

Table 1. Sensor table data.

Device IP Addr. Opcodes Comm. Rate Last
Device Addr. Assosc. Comm.
Dev 1 192.168.10.10 0268 Dev 2 118 msg/sec 23:14:53
0xABO00 11 105 Dev 3 244
166 171 Dev 4
Dev 2 192.168.10.20 026 105 Dev 1 33 msg/sec 23:11:14
0x4A05 244
Dev 3 192.168.10.21 02 8 166 Dev 1 64 msg/sec 23:13:29
0xFC04 244
Dev 4 192.168.10.22 0105 171 Dev 1 29 msg/sec 23:14:53
0xD607 244

The table entries provide a profile of the known state of the subnet. This
profile identifies the devices, the functions they implement and their roles, and
the communication patterns.

4.2 Generating Alerts

This section discusses the steps involved in processing messages and gen-
erating alerts (Table 2). The sensor parses a message to analyze the various
fields. If new device and IP addresses are observed, an alert is sent to indicate
that a new device is communicating in the subnet. If a new device address
and an already existing IP address are observed, a possible spoofed IP address
or configuration change alert is generated. Similarly, a possible spoofed device
address or configuration change alert is sent when an existing device address
and a new IP address are encountered.

SCADA devices are configured to use specific TCP communication ports [6].
Therefore, valid traffic should use the designated ROC communication ports
and should conform with the ROC protocol. An alert is sent if a non-standard
protocol message is received on a ROC port or a ROC message is received
on a non-standard port. Note that alerts are not sent for non-ROC messages
received on non-standard ports because these messages are ignored by all ROC
devices.

The opcodes of ROC messages that use ROC communication ports are then
checked to verify control actions and device functionality. An alert is sent
when an opcode is encountered that has not been used previously by a device
or that has not been configured as a valid code. Note that numerous alerts
are generated when the sensors are first turned on. If this is a problem, the
number of alerts generated on start-up can be reduced significantly by using
a configuration file that contains information about the baseline state of the
system.

Bultts, et al. 105

Table 2. Generated alerts.

Conditions Alert Message

device address is new==true New device
ip address is new==true

device address is new==true Possible spoofed 1P address

ip address is new==false or configuration change

device address is new==false Possible spoofed device address

ip address is new==true or configuration change

roc comm port==false ROC message on non-standard port

roc msg format==true

roc comm port==true Non-standard message on ROC port
roc msg format==false

roc comm port==true Unexpected control operation
roc msg format==true
valid control operation==false

exceed rate threshold==true Traffic rate exceeds threshold

exceed device time-out==true Device has stopped communicating

Next, traffic rates are computed for the source and destination devices spec-
ified in the messages. This is accomplished by maintaining message counts for
devices and aggregating the numbers of messages over time. An alert is sent
when the traffic rate exceeds the threshold of any of the communicating devices
as specified in the configuration file. Finally, a time-out period (in the sensor
configuration file) specifies the length of time a SCADA device can go without
communication. Each sensor periodically computes the time difference between
the current time and last communication time for devices in its local table. An
alert is sent when this time difference exceeds the time-out period.

This message processing logic detects several scenarios: (i) an unauthorized
system communicating on a subnet; (ii) an attempt to spoof an address or de-
vice; (iii) a denial-of-service attack; (iv) a reconnaissance probe performed by an
attacker (e.g., port scanning, network mapping, device opcode identification);
(v) an attempt to send improper control messages; and (vi) a device performing
an unauthorized operation (e.g., a rogue device operating as a master).

5. Experimental Results

This section describes the experimental results obtained for a simulated
pipeline control system. The simulation models the control operations of a
major gas pipeline company. The experiments, which used real ROC traffic,
were designed to evaluate the ability of the scanner to accurately profile sys-
tem attributes and to identify unauthorized operations (including malicious
activity).

106 CRITICAL INFRASTRUCTURE PROTECTION II1

Physical Host C

Physical Host A Physical Host B
grerseenrereneney P Scanner | Attacker
: Scanner : CSc:::‘nenrd !
: Database ! 1 oo a H
Y i Module
i Scanner Sensor |
i (Subnet1) !
SRR . =1 | |],)
; s‘i‘;ﬁ:ﬂ'::’f}te’ : {RTUs (Subnet 1)}
------------------- ittt
: Scanner Sensor :
i (Subnet2) i
f ikt bt bbb L]
H H Hub -[AN H
;si’ga‘:‘nﬂ"z‘r‘;er : {RTUs (Subnet 2)’
{Scanner Sensor }
H (Subnet 3) '
i SCADA Master ! I o :
- (Subnet 3) : +RTUs (Subnet 3);

LR Iy] g e e e o S et

Wireshark

Physical Host D

Figure 4. Experimental SCADA testbed.

5.1 Experimental Testbed

Figure 4 illustrates the virtual SCADA testbed used in our experiments.
The testbed has three subnets, each with one MTU and ten RTUs; a sensor is
positioned in each subnet. The scanner components (control module, database
and sensors) and the SCADA system use a common network for communica-
tions. SCADA traffic used in the experiments was obtained from an operational
pipeline system utilizing Fisher ROC devices.

The boxes with solid lines in Figure 4 denote physical hosts and the dashed
boxes indicate virtual machines. Physical Hosts A and B are 2.0 GHZ note-
book PCs with 2 GB RAM running Windows XP Service Pack 2. All the
virtual machines are VMWare [15] images of SCADA devices and scanner com-
ponents (three MTUs, three RTUs, three sensors, one command module and
one database). The VMWare images for the MTUs, RTUs and scanner sensors
use Arch Linux 2.6.22 and are each assigned 256 MB RAM. The database runs
MySQL 5.0.51 on Windows XP Service Pack 2 and is assigned 512 MB RAM.
The command module also runs on Windows XP Service Pack 2 with 512 MB
RAM. The MTUs and RTUs are run on different physical hosts to ensure that

Butts, et al. 107

SCADA traffic is visible to the sensors. The IP device addresses are assigned
statically as in real-world pipeline operations.

Two additional hosts (Physical Hosts C and D), both 2.0 GHZ notebooks
with 2 GB RAM running Windows XP Service Pack 2, are used. Physical
Host C sends malicious traffic; it uses the hping?2 utility [13] to craft and inject
attacks. Physical Host D uses Wireshark [9] to capture network traffic for
validation purposes. All the physical hosts are interconnected using Ethernet
network interface cards via a 10/100 Ethernet hub.

The local sensor tables are set to empty at the beginning of each test, re-
quiring the sensors to “learn” the SCADA system attributes. Each sensor is
configured for a device traffic threshold of 400 messages/second and a time-out
period of 1 minute.

5.2 SCADA Network Profiling

Several tests were conducted to evaluate the ability of the scanner to ac-
curately profile SCADA devices and operations. During each test, the sensors
examined twenty minutes of pipeline control traffic between the MTU and RTUs
in their subnets.

The MTUs and RTUs were identified almost instantly by the sensors and
the corresponding new device alerts were generated. After a new device alert
was received and correlated with the correct device, the alert was cleared to
ensure that the device did not generate additional new device alerts.

Alerts were also generated for new opcodes used by SCADA devices. Prac-
tically all the alerts (and sensor table updates) occurred during the first three
minutes of sensor operation. A few alerts related to new opcodes were generated
during the remaining seventeen minutes of traffic analysis.

The tests were run four times with different traffic. In every case, the scanner
accurately identified the SCADA devices and their functionality. Additionally,
the device communication relations and device roles were identified correctly.

Table 3 presents the communication patterns identified during SCADA net-
work profiling. The IP addresses have been altered for reasons of sensitivity;
however, the addresses presented are representative of the network topology.
The network topology and device roles are easily determined using the address
information and communication relations. For brevity, some of the devices iden-
tified as RTUs are not included in Table 3. Note that Device 1 communicates
with Devices 2-11 on the same subnet while Devices 2—-11 only communicate
with Device 1. Thus, Device 1 (and Devices 12 and 23) appear to be functioning
as MTUs while the other devices are RTUs.

5.3 Malicious Activity Detection

Additional experiments were conducted to evaluate the ability of the scan-
ner to accurately identify malicious activity. Traffic corresponding to four at-
tacks was interspersed with regular network traffic. The attacks involved: (i)

108

CRITICAL INFRASTRUCTURE PROTECTION III

Table 3. System profiling results.

Device IP Address Comm. Role
Relations

Dev 1 192.168.10.10 Dev 2-Dev 11 MTU Subnet 1
Dev 2 192.168.10.20 Dev 1 RTU Subnet 1
Dev 11 192.168.10.29 Dev 1 RTU Subnet 1
Dev 12 192.168.40.10 Dev 13-Dev 22 MTU Subnet 2
Dev 13 192.168.40.20 Dev 12 RTU Subnet 2
Dev 22 192.168.40.29 Dev 12 RTU Subnet 2
Dev 23 192.168.70.10 Dev 24-Dev 33 MTU Subnet 3
Dev 24 192.168.70.20 Dev 23 RTU Subnet 3
Dev 33 192.168.70.29 Dev 23 RTU Subnet 3

a spoofed device; (ii) network reconnaissance; (iii) a rogue master; and (iv)
denial of service.

Two instances of spoofed devices were executed repeatedly with different
device addresses. The first involved MTU messages with existing IP addresses
(of RTUs) but new device addresses. The second involved MTU messages with
new IP addresses but existing RTU device addresses. In every case, the sensors
correctly sent alerts indicating the presence of spoofed devices.

Two reconnaissance probes were conducted on the SCADA network. The
first attempted to identify the ROC communication ports. This probe involved
sending legitimate ROC messages and incrementing the communication port
value until a response was received. In every case, an alert was generated that
a valid ROC message was sent on a non-standard communication port.

The second reconnaissance probe emulated an nmap scan [7]. ICMP and TCP
messages were crafted for host discovery and open port identification. The sen-
sors detected the anomalous messages and raised alerts that non-standard ROC
messages were being sent on ROC communication ports. Also, during both the
network reconnaissance probes, the machines that generated the messages were
correctly identified as new devices.

The rogue master attack involved sending fabricated messages to RT'Us. One
set of messages requested RTUs to clear their event sequences (Opcode 132).
Another requested RTUs to set a new date and time (Opcode 8). The sensors
correctly raised alerts about the new master device and anomalous function
codes for the associated RTUs.

Butts, et al.

109

Table 4. Summary of malicious activity and alerts.

Attack Details Alerts Generated
Spoof 1 Rogue device communicates Possible spoofed IP address
using an existing IP address
Spoof 2 Rogue device communicates Possible spoofed device
using an existing device address address
Recon 1 Port scan uses ROC message to (i) New device
determine ROC communication (i) ROC message on
ports non-standard port
Recon 2 Network scan attempts to (i) New device
discover topology and open ports (ii) Non-standard ROC
message
Rogue Rogue device functions as an (i) New device
MTU 1 MTU to clear data in an RTU (ii) Unexpected control
operation
Rogue Rogue device functions as an (i) New device
MTU 2 MTU to write data to an RTU (ii) Unexpected control
operation
DoS 1 Excessive traffic prevents device (i) New device
from functioning properly (ii) Traffic rate exceeds
threshold
DoS 2 Device is taken off-line Device has stopped

communicating

The final test involved two denial-of-service attacks. One attack sent large
volumes of traffic to an MTU; the other physically took RTUs offline. In the
first instance, alerts were generated when traffic rates exceeded the configured
thresholds; also, the attacking machine was identified as a new device. In the
second instance, an alert that an RTU had stopped communicating was issued
when the communication time exceeded the specified time-out period.

Table 4 summarizes the malicious activity and the corresponding alerts gen-
erated during the experiments. The correct alerts were generated in a timely
manner in all the tests.

6. Conclusions

Oil and gas pipeline operators do not have adequate means to verify the
state and integrity of the thousands of widely dispersed SCADA devices used
for pipeline control. A lack of situational awareness about the behavior of
SCADA systems can complicate — if not degrade — pipeline control operations.
Limited situational awareness also makes it more difficult to detect and respond
to the effects of unexpected incidents and malicious acts.

110 CRITICAL INFRASTRUCTURE PROTECTION III

Our distributed scanner provides vital situational awareness about SCADA
devices and control operations. The scanner can remotely verify the status and
integrity of SCADA devices, profile normal SCADA operations and identify
anomalous activity. The current implementation is targeted for ROC, a popu-
lar pipeline control protocol; however, the design readily accommodates other
SCADA protocols via plug-in modules.

Acknowledgements

This work was partially supported by the Institute for Information Infras-
tructure Protection (I3P) at Dartmouth College, Hanover, New Hampshire,
under Award 2006-CS-001-000001 from the U.S. Department of Homeland Se-
curity.

References

[1] ArWest Communications Corporation, Supervisory Control and Data Ac-
quisition (SCADA), San Jose, California (www.arwestcom.com/?s=reso
urces&p=scada), 2008.

[2] Emerson Process Management, ROC Protocol User Manual, Bulletin
A4199, Houston, Texas, 2007.

[3] Emerson Process Management, St. Louis, Missouri (www.emersonpro
cess.com), 2008.

[4] C. Frayn, Genetic Programming Library (GPLib), University of Birm-
ingham, Birmingham, United Kingdom (www.cs.bham.ac.uk/~cmf/GP
Lib/index.html), 2006.

[5] Gumstix, Portola Valley, California (www.gumstix.com), 2008.

[6] Information Sciences Institute, RFCT793: Transmission Control Pro-
tocol, University of Southern California, Marina del Rey, California
(www.fags.org/rfes/rfc793.html), 1981.

[7] Insecure.org, Nmap Reference Guide, Palo Alto, California (nmap.org/
book/man.html), 2005.

[8] T. Kilpatrick, J. Gonzalez, R. Chandia, M. Papa and S. Shenoi, Forensic
analysis of SCADA systems and networks, International Journal of Secu-
rity and Networks, vol. 3(2), pp. 95-102, 2008.

[9] U. Lamping, R. Sharpe and E. Warnicke, Wireshark User’s Guide:
27121 for Wireshark 1.0.0 (www.wireshark.org/download/docs/user-gui
de-us.pdf), 2008.

[10] S. Northcutt and J. Novak, Network Intrusion Detection, New Riders,
Indianapolis, Indiana, 2003.

[11] OPC Foundation, Matrikon OPC Server for Fisher ROC Plus, Scottsdale,
Arizona (www.opcfoundation.org/Products/ProductDetails.aspx?CM=1
&RI=8538&CU=1), 2008.

Butts, et al. 111

[12] ProSoft Technology, Fisher ROC Communications Module (3150-ROC),
Bakersfield, California (www.prosoft-technology.com/prosoft/products/fo
r rockwell automation/protocol/custom/fisher roc/3150 roc), 2008.

[13] S. Sanfilippo, hping2 (www.hping.org), 2006.

[14] R. Shayto, B. Porter, R. Chandia, M. Papa and S. Shenoi, Assessing the in-
tegrity of field devices in Modbus networks, in Critical Infrastructure Pro-

tection IT, M. Papa and S. Shenoi (Eds.), Springer, Boston, Massachusetts,
pp. 115128, 2008.

[15] VMWare, VMWare Server Virtual User’s Guide (VMware Server 2.0), Palo
Alto, California (www.vmware.com/pdf/vmserver2.pdf), 2008.

[16] Wonderware West, Wonderware Universal Server, League City, Texas
(www.standard automation.com/products/universal-server), 2008.

	II CONTROL SYSTEMS SECURITY
	PROVIDING SITUATIONAL AWARENESS FOR PIPELINE CONTROL OPERATIONS
	Introduction
	ROC Protocol
	Scanner Architecture
	Scanner Functionality
	Experimental Results
	Conclusions
	Acknowledgements
	References

