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MODELING AND MANAGING RISK
IN BILLING INFRASTRUCTURES
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Abstract This paper discusses risk modeling and risk management in informa-
tion and communications technology (ICT) systems for which the at-
tack impact distribution is heavy tailed (e.g., power law distribution)
and the average risk is unbounded. Systems with these properties in-
clude billing infrastructures used to charge customers for services they
access. Attacks against billing infrastructures can be classified as pe-
ripheral attacks and backbone attacks. The goal of a peripheral attack
is to tamper with user bills; a backbone attack seeks to seize control
of the billing infrastructure. The probability distribution of the overall
impact of an attack on a billing infrastructure also has a heavy-tailed
curve. This implies that the probability of a massive impact cannot be
ignored and that the average impact may be unbounded – thus, even the
most expensive countermeasures would be cost effective. Consequently,
the only strategy for managing risk is to increase the resilience of the
infrastructure by employing redundant components.
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1. Introduction
This paper describes the modeling and management of risk in an informa-

tion and communications technology (ICT) infrastructure where the average
impact of an attack is unbounded. A mathematical model is developed to ex-
press the impact of attacks and is then applied to a billing infrastructure. A
billing infrastructure is an ICT infrastructure that is designed, constructed and
managed to bill a large set of customers for services they access or consume.
Such an infrastructure comprises a set of peripheral nodes and an intelligent
backbone [2]. An example is a metering infrastructure in which the peripheral
nodes measure the amount of a good (e.g., water or electricity) distributed to
customers, and the backbone records, delivers and updates customer bills [9].
In general, the inner structure of a peripheral node depends on the service
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that is offered and billed. The intelligent backbone connects the peripheral
nodes and includes additional computing nodes that manage and update the
information shared by the peripheral and backbone nodes.

The impact of an attack against a peripheral node in a billing infrastructure
is bounded. However, the impact of an attack against the intelligent backbone
cannot be bounded because it depends on the infrastructure cost and/or the
value of the business processes that use the infrastructure. Mathematical mod-
els for estimating the overall impact of attacks on peripheral nodes and on the
backbone may be defined as the sum of two random processes described by a
normal distribution and a power law distribution, respectively [5, 12–14, 17].
This paper discusses the models and their implications on risk management for
the overall infrastructure. In particular, it considers the problem that arises
when the average impact of an attack is unbounded, and demonstrates that, in
such a case, it is difficult to predict the impact of attacks even when historical
attack data is available. The paper also discusses how this result influences the
selection of countermeasures [22, 23].

2. Billing Infrastructures
This section briefly describes a billing infrastructure, which corresponds to

an abstract model of an ICT infrastructure [1, 2, 15]. A billing infrastructure
is characterized by the types of attacks and their impact on the infrastructure
rather than the specific ICT components used in the infrastructure. The section
also presents some real-world infrastructures that match the abstract billing
infrastructure [9].

2.1 Infrastructure Overview
A billing infrastructure charges customers for a service that they receive. The

service is supplied by the same infrastructure or by a different infrastructure;
the service provider is also the infrastructure owner. The infrastructure consists
of a set of peripheral nodes, one for each customer (in general), along with
an intelligent backbone. Peripheral nodes may be distributed across a large
region (e.g., a country); each node stores, manages and updates information
about the quantity of service received by a user. The backbone interconnects
the peripheral nodes and other computing nodes. The computing nodes store
information about the peripheral nodes in order to manage the overall service
distribution and to bill users.

As example is a content distribution service, where the billing infrastructure
charges each user for the content that has been accessed; the content may be
distributed by another infrastructure as in the case of pay-per-view movies.
Another example is a metering infrastructure, where each peripheral node is
connected to a meter that measures the quantity of some good (e.g., water, gas
or electricity) that is distributed to a customer. In this type of infrastructure,
each peripheral node computes and transmits to the backbone the amount of
good consumed by each user and the corresponding bill.
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An infrastructure can terminate the distribution of a good when a condition
related to the quantity of the good consumed and/or consumer status is met.
For example, the infrastructure may prevent a customer who has not paid his
bill from further resource usage. In an advanced metering infrastructure, a
peripheral node can also program the behavior of other devices to optimize the
overall amount of the resource that is consumed or to optimize a combination
of parameters such as the overall amount of the consumed resource and the
customer bill. This can happen, for example, if a peripheral node schedules
multiple devices in a home to minimize the overall amount of electricity that
is consumed.

From our point of view, the internal behavior of peripheral nodes and the
backbone are not fundamental because the important properties of the two
subsystems are related to the attack impact. In particular, we are interested in
billing infrastructures where the impact of an attack against a peripheral node
is bounded whereas the impact of an attack on the backbone is unbounded
(e.g., if the attacker seeks to control the overall infrastructure). In practice,
the impact may be bounded by the cost of the overall business process that uses
the infrastructure. However, because this cost depends on the infrastructure
that is considered, no bound may exist in the general case. Furthermore, the
overall impact may also depend on other infrastructures that are connected to
the infrastructure under consideration. This problem is discussed below in the
context of developing a mathematical model for attack impacts.

Note that the two types of attacks considered in this paper are distinguished
by the goal of the attacker instead of the subsystems that are involved. Thus,
an attack that targets a peripheral node as the first step of an attack against
the backbone is considered to be an attack against the backbone.

2.2 Threat Model
The threat model considers two types of attacks against the infrastructure:

(i) peripheral attacks that attempt to reduce user bills by attacking peripheral
nodes; and (ii) backbone attacks that seek to control the infrastructure.

A peripheral attack that attempts to reduce a customer’s bill is typically
executed by an unethical costumer. We assume that general statistics about
the customer population are available, which implies that the percentage of
customers who may behave in an unethical manner is also known.

A backbone attack may seek to reduce the bills of a large number of cus-
tomers, access confidential information about a set of customers, or control the
use of a resource or service. Such an attack may be executed by a competitor,
organized crime group or terrorist entity.

For both types of attacks, we distinguish between an attack that requires
skill and knowledge that cannot be encapsulated in a tool that automates the
attack, and an attack that can be fully automated so that its execution does
not require any knowledge about the implementation of the infrastructure and
nodes, only the availability of an attack tool. The two cases correspond to
distinct pools of attackers because if an attack cannot be automated, then only
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a customer/attacker with the requisite skill and knowledge who is willing to act
in an unethical manner can execute the attack. If a tool that implements the
attack is available (e.g., downloadable from the Internet), then any unethical
customer can launch the attack. For both types of attacks, the impact of a
peripheral attack is bounded by the customer bill plus the cost to replace the
peripheral node.

In the case of backbone attacks, we also distinguish between automated
attacks and non-automated attacks. However, the impact is not related to
customer bills because the goal of the attack may be to control the entire in-
frastructure or distinct systems connected to the infrastructure and managed
by the owner. As described below, the notion of an average impact is question-
able when modeling backbone attacks because the average impact of distinct
sets of backbone attacks may converge to distinct values. Another difference
between the two classes of attacks is related to the discovery of a vulnerability
after the infrastructure has been deployed. If a newly-discovered vulnerability
only enables peripheral attacks, then it increases the probability of one of these
attacks but not the largest impact, which is always bounded by the customer
bill. On the other hand, a vulnerability that enables a backbone attack may
increase the probability of a successful attack and, thus, increase the overall
impact or the overall value at risk.

3. Modeling Attacks and Attack Impact
This section discusses the modeling of peripheral attacks and backbone at-

tacks, and the impact of these attacks on the billing infrastructure. The attack
impact is modeled by considering a time interval and attempting to predict all
the impacts of interest in this interval and the information needed for predic-
tion.

3.1 Peripheral Attacks
If an attack can only be executed manually (i.e., it cannot be automated),

then the average number of attacks is proportional to the number of unethical
customers who have the knowledge and the skills required to execute the at-
tack. On the other hand, the number of automated attacks is proportional to
the number of unethical customers. This also covers the case where unethical
customers contract external agents to execute attacks on their behalf.

In the following, Npa denotes the expected number of potential attackers
(this is always very large, but is much larger in the case of automated attacks).
The impact Di due to customer Ci is described by a random process with a
probability distribution Impi(D) specifying the probability that Ci executes an
attack that yields an impact of D. Impi(D) is larger than zero if D ∈ 0..Mi,
where Mi is Ci’s largest bill. The shape of Impi cannot be easily deduced as
it depends on the amount of resources and skill Ci can summon to execute the
attack. Hence, the variance of Impi is unknown and its rigorous approximation
depends on several factors, including: (i) the ability of Ci to implement the
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attack that, in turn, influences the probability of a successful attack; and (ii)
the gap between the time distribution of the attacks of Ci and the resource
usage of Ci.

However, the variance of Impi can be approximated if a representative sam-
ple of peripheral attacks is available. In this case, we can compute the largest
customer bill M , which represents the upper bound of the impact. Obviously,
M is finite and any error in the approximation of Impi is bounded because the
distance between impacts is always bounded by M .

The overall impact of a collection of peripheral attacks Ima is a stochastic
process that is the union of the processes D1, . . . , Dn corresponding to the im-
pacts of the individual attacks by customers. Since Ima = Σi=1..nDi, whenever
the number of customers is very large, the shape of Ima can be approximated
by assuming that the impacts of distinct customers are independent and ap-
plying the central limit theorem. Under these assumptions, Ima is normally
distributed with a mean and variance equal to the sums of the means and vari-
ances of Di, respectively. Since each sum can be restricted to Npa unethical
customers (the only individuals who can execute attacks), the mean of Ima
is bounded by Npa × M where M is the largest customer bill. By profiling
unethical customers, we can replace M by Mun, the largest bill in the group
of unethical customers. Similar considerations apply to the estimation of the
upper bound for the variance of Ima. Thus, the estimate of the overall impact
of peripheral attacks improves if it is possible to profile unethical customers.

Obviously, Npa strongly increases when attacks can be automated. Never-
theless, Ima can always be approximated by a normal distribution when the
number of attackers or (from another point of view) the number of unethi-
cal customers is so large that the error due to the application of the central
limit theorem is acceptable. Note that the independence property of customer
attacks is fundamental. We assume that this property holds even if some cus-
tomers belong to social networks and exchange information about vulnerabili-
ties and attacks. Thus, the relevance of social networks is ignored when com-
puting the overall impact. However, even if social networks are considered, and
the number of successful attacks increases and the parameters of the normal
distribution change, the overall impact and the approximation error are still
bounded.

3.2 Backbone Attacks
The approach adopted for modeling peripheral attacks cannot be used for

backbone attacks because it is not possible to approximate the largest impact or
the average impact of attacks. In fact, any successful attack against the back-
bone has an unbounded impact if the appropriate backbone components are
controlled as a result of the attack. While some attackers would be interested
in achieving as large an impact as possible, other attackers may be interested
in a bounded impact in order to achieve their goals (i.e., they execute attacks
to control infrastructure components that may cause larger impacts than the
attacks that interest them).
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In order to model the impact probability distribution, we assume that the
backbone is often optimized to minimize its overall cost [6] and that this may
result in the adoption of a preferential attachment strategy to define the in-
terconnections among backbone components at distinct implementation levels
(ranging from the physical interconnections to the services offered by software
components) [1, 16]. In this case, the impact of an attack depends on the com-
ponent that is the target of the attack, and the impact probability distribution
is a power law of the form:

C

x1+a

where C is a normalizing constant.
In general, the probability distribution of an impact x assumes arbitrary

values if x is in the range 0..xmax, and subsequently follows a power law. If
the sum of the values that x assumes before the power law behavior is γ, i.e.,

Σx∈0..xmaxp(x) = γ,

then, for x ≥ xmax + 1, the distribution has the form:

a · (1 − γ)
(xmax + 1)

·
(

xmax + 1
x

)1+a

This also covers the more interesting case where x = 0 is the only impact with
a non-null probability in the range 0..xmax because every successful backbone
attack has an impact larger than xmax. It is important to note that the impact
probability distribution has power law behavior whenever the parameter to
be optimized is the overall cost (or return on investment) even if faults or
external attacks are considered. As an example, the high optimized tolerance
methodology introduces components into a system to minimize the impact of
faults [4, 18]. However, because this methodology optimizes the return on
investment, the impact distribution also has power law behavior. Furthermore,
any error in the approximation of the fault distribution strongly reduces the
effectiveness of the optimization and may give rise to unbounded impacts.

We assume that the overall impact due to a single attacker also has a power
law distribution. This implies that the attacker targeting the backbone is in-
terested in executing just one attack, but the most powerful attack he can
implement. Obviously, the actual impact would depend on the attacker’s mo-
tive and knowledge, but this only influences the parameters in the power law
equation. Therefore, in the worst case, the probability distribution of the im-
pact x, Psai(x), is a heavy-tailed power law [12, 13, 21] given by:

Psai (x) =
C

x1+a

where 0 < a < 1. This is the worst case because the probability of a large
impact decreases very slowly.

In the following, we use a power law rather than a heavy-tailed power law.
The corresponding results hold for the larger class of probability distribution
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functions (i.e., subexponential functions [7]), which includes any function that
decreases slower than an exponential function. A process X has a subexponen-
tial distribution if:

limitd→∞
Prob (X1 + ...Xn > d)

Prob (max(X1, ..., Xn) > D)
= 1

where any Xi is distributed as X and all the Xi are independent.
This condition implies that the sum is large because of the large contribution

provided by only one term of the sum. In a billing infrastructure, the condition
implies that an attacker is interested in causing one large impact rather that
several average impacts. This is often the case because low impact attacks
are of limited interest to several classes of attackers. For example, a terrorist
entity or a competitor would be interested in executing one large impact attack
that results in considerable publicity (and loss of credibility for the owner of
the targeted infrastructure) rather than several low impact attacks that also
increase the probability of being detected and apprehended.

The class of subexponential functions strictly includes the class of heavy-
tailed functions. The class of heavy-tailed functions includes any distribution
of a process X where for any h:

limitD→∞
Prob (X > D + h)

Prob (X > D)
= 1.

In other words, as D increases, for any h, the probability that X is larger than
D is that same as the probability that X is larger than D + h. This implies
that an attack that produces an impact D can also produce an impact D + h.
Note that this class faithfully models the case under consideration because, as
D increases, the backbone components that must be attacked to produce an
impact D make it possible to achieve an even larger impact.

Alternatively, a process X is deemed to have a heavy-tailed distribution if a
value V exists such that, if X ≥ V , then the ratio:

Prob (X > nD)
Prob (X > D)

is independent of D for any n > 0. In our case, this again expresses the fact
that if the impact of an attack is larger than D, then it may be unbounded.
Another reason to describe the impacts of backbone attacks using a power law is
that the impacts may be proportional to the overall value of the infrastructure.
Additional reasons for using a power law are discussed in [10, 21].

An important consequence of a power law distribution of impacts is that,
depending on the exponent, it may be impossible to build a representative sam-
ple of backbone attacks. This implies that the central moment estimators (e.g.,
mean and variance) of finite-sized samples drawn from the impact distribution
may not converge to a value when data is accumulated. This is because no mo-
ment is defined for the distribution and a key property of a billing infrastructure
is that the impact of just one attack may be unbounded. The overall impact of
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attacks on the infrastructure is the sum of the impacts of all the attacks; the
corresponding random process is the union of all the processes corresponding
to the individual attacks. Note that the probability distribution of a process
created by the union of several processes, each described by a power law, is also
a power law whose exponent is equal to the minimum of the exponents of the
individual power laws [24]. Informally, the differences between the summands
may be so large that the behavior of the sum largely depends on the maximum
term and the probability distribution of this term is a power law.

Another implication is that the attack impacts are distributed according to
a power law even if only a few attackers are interested in very large impacts
because the overall impact mostly depends on these attackers. In other words, a
general model of backbone attacks against a billing infrastructure assumes that
there are at least two sets of attackers who are interested in finite impacts and
unbounded impacts, respectively. The behavior of attackers in the first class is
described by a normal distribution that can be handled in a manner similar to
that for peripheral attacks. However, a new problem posed by backbone attacks
is that attackers are interested in impacts that are distributed according to a
power law, which determines the overall impact for the infrastructure owner. It
is possible to introduce an upper bound also on the impact of backbone attacks
by summing a negative exponential term to the power law to quickly cut off the
probability of an impact that is larger than a threshold. However, this solution
increases the complexity of the model without increasing its accuracy, especially
for a large threshold. Note that in many instances it is almost impossible to
determine a proper threshold value.

As an example, consider the case where a billing infrastructure is connected
to other infrastructures outside the control of the owner or, even worse, where
the existence of such a connection may not be known but cannot be excluded
a priori. In this case, the impacts on other infrastructures must be considered,
but they cannot be estimated easily. Therefore, in the next section, we assume
that the probability distribution Iia(D) of the random process that describes
the overall impact of backbone attacks follows a power law. Based on historical
data about infrastructure attacks, power law behavior may occur only for values
larger than a positive threshold, while a distinct distribution models lower
impacts. One of the key issues related to adopting a power law is discussed
in the following section – it concerns the interpolation of the characteristic
parameters of the probability distribution of the overall impact Iia(D).

3.3 Overall Attack Impact
As described above, the overall impact of attacks against a billing infras-

tructure is a random process OvImp that is the sum of two processes:

Imppa: Impact of peripheral attacks, which has a normal distribution
Nld.

Impba: Impact of backbone attacks, which has a power law distribution
Pld.
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Note that the power law behavior may start at any positive integer value and
that the mean of the normal distribution may be strongly shifted towards large
positive values when the percentage of unethical customers and the maximum
bill of the group of unethical customers are both very large. If we assume that
Ima and Iia are mutually independent, then the probability distribution of
OvImp, Iia(D), is the convolution of Nld and Pld. Unfortunately, the mean
and other moments of Iia(D) cannot be computed because these statistics do
not exist for Pld.

First, we consider the interpolation of the parameters of Iia(D) and the com-
ponent distributions, Nld and Pld, using actual attack data. The complexity of
the interpolation strongly depends on the amount of information that is avail-
able. It has been shown [22] that this problem is extremely complex when only
a sequence of outputs of the overall process (OvImp, in our case) is available
because it is almost impossible to determine which component process (impacts
of peripheral and backbone attacks, in our case) generates each output. This
occurs when the two process domains overlap in a manner that prevents the
pairing of some outputs with the corresponding processes.

Since the outputs are impacts, this means that we can only observe a se-
quence of impacts, i.e., a decrease in revenue for the owner. Also, the overlap
of Pld and Nd may prevent us from recognizing their relative contributions to
each observed impact and, thus, from approximating the parameters of each
distribution. Moreover, the time frame available for impact data collection may
be too short to cover a number of backbone attacks completely, which would
make it impossible to deduce the parameters of the corresponding processes
[22]. This is an important, but pessimistic, result because it means that the
properties of Iia(D) cannot be deduced even when a large sequence of attack
impacts is used. The impossibility of forecasting future attacks and their im-
pacts arises not only because of the lack of data about previous attacks but also
because the distributions of interest cannot be approximated from the available
data.

While the previous considerations hold for the abstract case of stochastic
processes and a sequence of impacts, attacks on a billing infrastructure (as
with most physical systems) often leave evidence in certain infrastructure com-
ponents. Furthermore, some infrastructure components may be designed to
facilitate the discovery of evidence (e.g., log files that record infrastructure ac-
tivities and intrusion/anomaly detection systems that analyze the interactions
between infrastructure components). This evidence may be used to pair an im-
pact with the corresponding attack and to discover the relative contributions of
attacks. From a probability point of view, proper attack classification makes it
possible to analyze (separately) the probability distribution of each process and
attempt to approximate Nld and Pld instead of using the distribution of the
union process Iia(D). In other words, a forensic analysis of attacks can help
pair each impact with a successful attack against the infrastructure in order to
deduce the properties of each distribution. This implies that the infrastructure
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should be designed to facilitate the forensic analysis of successful attacks as
well as attempted attacks.

4. Risk Management Strategies
This section examines the implications of the attack impact probability dis-

tribution on risk management for a billing infrastructure and on the return on
security investments.

The primary problem related to managing risk in a billing infrastructure is
the evaluation of the cost effectiveness of countermeasures implemented against
peripheral and backbone attacks. Since the impact of a single peripheral attack
and that of the entire class of peripheral attacks can be bounded, it is possible
to determine the conditions that guarantee the cost effectiveness of counter-
measures in terms of the impact probability distribution for peripheral attacks,
the bounds on attack impacts and the cost of the countermeasures. The cost
effectiveness of countermeasures for a single peripheral node depends on the
average loss for the node, and the overall impact places a bound on the largest
return on investment in security for all the peripheral nodes. Knowledge of the
normal probability distribution of the overall impact of peripheral attacks can
be used to fine-tune the choice of countermeasures by taking into account the
distribution variance and the exponential decrease of the probability of very
large impacts. The error in approximating the actual probability distribution
as a normal distribution should also be taken into account.

Backbone attacks are more complex because of the power law distribution of
their impact. A heavy-tailed distribution makes it almost impossible to evaluate
the cost effectiveness of a countermeasure because very little information is
available about the expected impacts of the attacks that are foiled by the
countermeasure. In particular, a power law distribution implies that even if the
probability of an impact is very low, its relative weight that cannot be ignored.
Since the relative impact of some attacks cannot be easily bounded, the overall
impact strongly depends on these attacks. This results in an unmanageable
situation from the point of view of cost effectiveness because the impact justifies
extremely expensive countermeasures while the probability of the attacks does
not justify such an expense and no information about the average impact is
available.

From a mathematical point of view, this situation strongly resembles the St.
Petersburg paradox regarding a lottery with an expected unbounded payoff.
In our model, if the impact probability distribution is a power law and if a
proper condition on the 1 + a exponent holds (i.e., a ∈ 0..1), then the average
impact of infrastructure attacks is infinite. This implies that we cannot claim
that a set of countermeasures is optimal because the overall cost of any set of
countermeasures is less than the impact it is intended to prevent.

A problem also arises when attempting to approximate the probability dis-
tribution parameters based on the available attack data. We have shown that
even if a forensic data collection system has been implemented, a large amount
of evidence about attempted and successful attacks and their impacts may
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be required to approximate the distribution. Moreover, small data errors can
produce large differences in the parameters of the impact distribution. Conse-
quently, a risk management strategy based on cost effectiveness of countermea-
sures cannot be adopted in the majority of scenarios.

The only feasible risk management strategy is to minimize the probability
of successful attacks while recognizing that some attacks will be successful and
minimize their impact. According to this strategy, in the worst case, a success-
ful attack should cause a graceful degradation of infrastructure performance
and functionality, which is measured in terms of the ability of the billing in-
frastructure to meter service usage and charge customers. In other words, risk
management should increase infrastructure resilience in order to minimize the
probability of successful attacks and their impact [1, 11, 15].

A fundamental issue is the absence of singularity points of catastrophic fail-
ure at any level – from hardware components to the personnel responsible for
infrastructure management – because any of these points is an ideal target to
maximize the attack impact. In general, an approach that attempts to increase
infrastructure resilience cannot be cost effective (based on the simple view of
cost effectiveness described above) because it involves the addition of redun-
dant components in the infrastructure. Furthermore, such an approach avoids
large optimizations that result in scale-free networks.

Instead of introducing a few components with a large number of connections,
a redundancy-based approach would distribute the same number of connections
among a larger number of interconnected components, with an increase in the
cost of connections and components. In terms of probability, redundancy im-
plies the independence of the random variables used to model the components
of interest. Therefore, whenever two random variables used to model infras-
tructure components are not independent, some dependencies exist among the
components so that a successful attack against one component may simplify
attacks against another. The adoption of redundancy at the software level may
be even more costly than at the hardware level because (as far as reliability is
concerned) two instances of the same software module will always be affected
by the same faults or vulnerabilities. Hence, the adoption of redundant active
software components implies the presence of distinct providers for each copy
of a component to guarantee independence of both vulnerabilities and faults.
Note also that to prevent the introduction of a single point of catastrophic
failure, the redundant components may have to be executed in parallel by dif-
ferent computing resources and they have to be properly synchronized, which
increases the execution time. This also contributes to increased overall cost
and reduced cost effectiveness.

Consider, for example, a standard implementation of triple-modular redun-
dancy with three components and a voter, where the voter is a point of catas-
trophic failure [8]. If the threat model assumes erroneous but not malicious
behavior of a component and possible voter failure, then a spare replacement
for the voter increases the overall redundancy. On the other hand, if the threat
model covers both erroneous and malicious behavior, then a distributed im-
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plementation of the voter is required where all the consumer components (i.e.,
components that receive the output of the components that act as producers)
need to exchange the received values to compute their correct input [19]. How-
ever, a solution that is correct independently of the behavior of each producer
can be defined only if at least five consumers exist, so that at least five in-
stances of each module are required to discover malicious behavior in just one
producer. This simple example shows that failure independence implies that
redundancy is effective only if the failure of each instance is independent of the
failure of other instances.

Consider also the case where two copies of a database reside on physical
systems maintained at different locations. The databases may be independent
with respect to physical threats such as earthquakes or floods, but they can be
attacked by the same malware or infected by the same virus and are, therefore,
are not independent in general. The incorporation of components to discover
attacks and their impact can further reduce the cost effectiveness because they
are not required for normal infrastructure operations. Note also that a rig-
orous approach to risk assessment, security and integrity of an infrastructure
may distinguish between the strategies to manage the risk due to unethical
customers, a customer that attacks the entire infrastructure, and business con-
tinuity. While there are good management reasons for the approach underlying
these, or similar, classifications, it is important to recognize that a modular ap-
proach to risk management should not ignore the fact that several threats may
result in similar impacts, and that it is complex (if not impossible) to assess
the probability that one of these threats implements a successful attack.

5. Conclusions
Attacks that target billing infrastructures have heavy-tailed impact proba-

bility distributions, typically power law distributions. This implies that the
mean value of the impact of attacks cannot be computed and that the choice of
countermeasures cannot be made on the basis of cost effectiveness. As a conse-
quence, the only risk management strategy appropriate for a billing infrastruc-
ture is one that introduces redundant components to increase the resilience of
the infrastructure and decrease the probability of successful attacks.
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