
R. Poler, M. van Sinderen, and R. Sanchis (Eds.): IWEI 2009, LNBIP 38, pp. 25–37, 2009.
© IFIP International Federation for Information Processing 2009

A SOA-Based Platform-Specific Framework for
Context-Aware Mobile Applications*

Laura M. Daniele, Eduardo Silva, Luís Ferreira Pires, and Marten van Sinderen

Centre for Telematics and Information Technology,
University of Twente, Enschede, The Netherlands

{l.m.daniele,e.m.g.silva,l.ferreirapires,
m.j.vansinderen}@ewi.utwente.nl

Abstract. Context-aware mobile applications are intelligent applications that
can monitor the user’s context and, in case of changes in this context, conse-
quently adapt their behaviour in order to satisfy the user’s current needs or an-
ticipate the user’s intentions. The design of such applications relies on dynamic
middleware platforms that consist of a variety of components. These compo-
nents are distributed in the environment and interoperate by making use of each
other’s services. In the A-MUSE project, we defined a design methodology
based on MDA principles that relies on a SOA reference architecture for con-
text-aware mobile applications. This paper shows how abstract concepts in the
design of such applications can be applied to realize concrete components that
guarantee architectural interoperability. We also present a platform-specific
framework that uses BPEL, UDDI registry and web services as target technolo-
gies to implement our reference architecture.

Keywords: Service-Oriented Architecture, Model-Driven Architecture, con-
text-awareness, BPEL, web services, UDDI.

1 Introduction

Context-aware mobile applications are intelligent applications that can monitor the
user’s context and, in case of changes in this context, consequently adapt their behav-
iour in order to satisfy the user’s current needs or anticipate the user’s intentions. For
example, a context-aware mobile phone could be able to know when its user is sitting
in a movie theatre and consequently mutes itself without explicit user’s intervention.
When the user is travelling and dinner time is approaching, the same context-aware
mobile phone could suggest a suitable restaurant based on the user’s location and
his/her previous dining history. Anywhere and anytime, context-aware mobile appli-
cations should be able to provide relevant services to their users. The design of such
applications relies on dynamic middleware platforms that consist of a variety of com-
ponents [1,8,11,12]. These components are distributed in the environment and inter-
operate by making use of each other’s services.

* This work is part of the Freeband A-MUSE Project (http://a-muse.freeband.nl). Freeband is

sponsored by the Dutch government under contract BSIK 03025.

26 L.M. Daniele et al.

In the A-MUSE project, we have defined a middleware platform based on a refer-
ence architecture tailored to context-aware mobile applications. This reference archi-
tecture includes all the components typically used by such applications. In [4] we
have also defined an (automated) design approach based on this reference architec-
ture. This approach refines the monolithic abstract specification of a context-aware
mobile application into the distributed behaviour of concrete components that inter-
operate with each other in order to achieve the goals of the application. This paper
aims at showing how the abstract concepts in the design can be mapped to concrete
components that guarantee interoperability in our reference architecture, and how
these components can be built with specific target technologies. Towards this aim, we
have defined and implemented a framework based on specific target technologies that
is correct and consistent with the original monolithic abstract specification of our
applications. We have made a specific choice on these target technologies, namely,
we have used BPEL, UDDI registry and web services. However, our design is plat-
form-independent and can be realized with other specific target implementations.

The structure of the paper is the following: Section 2 introduces the design meth-
odology and reference architecture we have defined in the A-MUSE project for
the development of context-aware mobile applications, Section 3 investigates which
concrete architectural components are necessary to provide interoperability in the
reference architecture and how these components can be built and integrated in a
platform-specific framework, Section 4 presents a case study that illustrates how the
abstract concepts of our reference architecture can be realized with the concrete com-
ponents of the platform-specific framework, Section 5 discusses some related work,
and Section 6 presents our conclusions and identifies topics for future work.

2 Design Methodology

This section introduces our reference architecture and the design methodology in
which this architecture is embedded. The reference architecture has been defined and
applied in the A-MUSE project to realize the Live Contacts case study [13,20]. Live
Contacts consists of a context-aware mobile application that runs on Pocket PC
phones, Smartphones and desktop PCs and allows its users to contact the right person,
at the right time, at the right place, via the right communication channel. The refer-
ence architecture is general enough to be reused for other context-aware mobile appli-
cations by simply redefining some application-specific components, such as context
sources and action providers. Moreover, the use of this architecture does not limit our
design methodology to context-aware mobile applications, since the same methodol-
ogy can be applied (with minor adjustments) to other categories of applications based
on different reference architectures.

2.1 Reference Architecture

The control component of our reference architecture is the service coordinator, which
receives events and triggers actions as reactions to these events. Events may be either
user input events, which consist of explicit user requests to the application, or context

 A SOA-Based Platform-Specific Framework for Context-Aware Mobile Applications 27

events, which consist of relevant changes in the user context. For example, a user
input event may be a request for the user’s list of buddies, and a context event may be
the proximity event triggered whenever a buddy is nearby the user. Actions represent
application reactions to user input and context events, and may be an invocation of
any internal or external service, such as the generation of a signal, the delivery of a
notification or a web service request.

Fig. 1. A-MUSE reference architecture for context-aware mobile applications

Fig. 1 shows a single user instance that interacts with the system and a buddy of this
user. The presentation component takes care of the interactions with the end-user and
there is one presentation component for each user. In this paper, we do not provide any
implementation of this component. The user agent (one for each user and located in the
user device) interacts on behalf of the user with the presentation component to obtain
user input and present user output, and provides the service coordinator with user input
events. The service coordinator orchestrates all the other components, searching and
updating a database, which contains information about users (e.g., name, password,
preferred contact means and list of buddies). To simplify the discussion without loss
of generality, we assume a system configuration with one service coordinator and
one database. The service coordinator also interacts with context sources and action
providers.

Context sources sense changes in the user context and provides the service coordina-
tor with context events. Fig. 1 shows a (GPS) location service that provides information
about users’ current location, a (MSN) presence service that provides indications
whether users registered in the application are available online in the network, and a
(Outlook) calendar service that provides information about users’ appointments and
activities. We assume that there is one (GPS) location service, one (MSN) presence
service and one (Outlook) calendar service for each user agent in this particular configu-
ration. These services are registered in the service trader.

28 L.M. Daniele et al.

The action providers are responsible for performing actions that follow user input
and context events. Fig. 1 shows an SMS service, phone service, e-mail service and
chat service, which enable users to communicate with each other through sending
messages, making a phone call, sending e-mails or chatting, respectively. These ser-
vices are also registered in the service trader.

The service trader registers all the available services offered by context sources and
action providers. This allows the coordinator to dynamically discover available services
based on the service descriptions that are published in the service trader. After discover-
ing the proper service, the coordinator can invoke it by using the endpoint location
contained in the service description. Alternatively, the coordinator can forward this
endpoint to the user agent, which can directly invoke the service without intervention of
the coordinator. This use of a service trader is a well established pattern of service dis-
covery in service-oriented architectures. Examples of service traders in middleware
platforms are the OMG CORBA trader [17] and the UDDI registry [15].

The interactions among components of this architecture are based on the service-
oriented architecture (SOA) approach, which considers components only from the
point of view of the service that they provide or use without considering the internal
details of how the service itself is implemented. According to SOA, components
make use of each other’s services to interoperate in order to support the goals of the
application. In this paper, we focus on the right part of Fig. 1, namely on the interac-
tions between the user agent, the coordinator, the database, the service trader and the
action providers. Information on the interactions between the coordinator and context
sources can be found in [3].

2.2 MDA-Based Methodology

The reference architecture of Fig. 1 has been defined as part of a design methodology
based on the Model-Driven Architecture (MDA) approach [16]. Fig. 2 shows this
methodology, which divides the design of context-aware mobile applications in differ-
ent levels of models with different degrees of abstraction and platform-independence.
The service specification is the highest level of abstraction and describes a context-
aware mobile service1 as a monolithic behaviour from an external perspective. At this
level, we specify the functionality that our service offers to its user and we do not con-
sider any structural detail of the service, i.e., we abstract from its internal components.
The platform-independent service design model describes a context-aware mobile
application from an internal perspective revealing our SOA-based reference architec-
ture. The platform-specific service design model describes the realization of a context-
aware mobile application in terms of specific target technologies. Several alternative
Platform-Specific Models (PSMs) may implement a Platform-Independent Model
(PIM) as long as correctness and consistency are guaranteed. Therefore, it is in princi-
ple possible to use different middleware technologies to realize the platform-specific
service design.

1 The term service at this level denotes the observable behaviour of the whole application, as

opposed to the use of the term service in service-oriented architectures to denote the function-
ality supported by a service provider reachable from some middleware.

 A SOA-Based Platform-Specific Framework for Context-Aware Mobile Applications 29

CORBA
(OMG Trader)

service service
specification

Web Services
(WSDL + UDDI)

service refinement

SOA-based reference architecture

platform-
independent
service design

platform-
specific

service design

platform-
specific

service design

context-aware
mobile service

coordinator
component

user
components

service
trader

context
sources

action
providers

PIM

PSM

Fig. 2. MDA-based methodology

Our previous work [4,5] focuses on the PIM level of this methodology, namely on
the service specification and platform-independent service design model, and the
transformations between these models. These transformations consist of gradual
(automated) refinements that preserve correctness and consistency particularly of
behavioural aspects, which are usually overlooked at the PIM level in the MDA
community [14]. This paper focuses on the transformation from the platform-
independent to the platform-specific design models and provides an implementation
framework for a specific part of the reference architecture, i.e., user agent, coordina-
tor, database, service trader, and action providers. This implementation shows that the
PSM level preserves the interoperability that we have designed at the PIM level.

3 Platform-Specific Framework

We consider the following scenario:

“A user wants to contact one of his/her buddies with a specific communication means,
such as SMS, phone, chat or e-mail. Therefore, the user provides the application with
the name of this buddy and the communication means to be used. In order to fulfil the
user request, the coordinator has to retrieve the contact details of the buddy from the
buddy list of the user in the database, and discover a proper service in the service
trader according to the desired communication means. Once the coordinator has
retrieved contact details of the buddy and the endpoint location of the communication
service, it can forward this information to the user agent, which is finally able to
invoke the proper service and put the user in communication with the desired buddy”.

30 L.M. Daniele et al.

Fig. 3 shows our platform-specific framework for this scenario. In this framework,
components of the reference architecture are mapped on target technologies. The
same framework can be used with different scenarios. We realized the coordinator as
BPEL process exposed as a web service to all the other components of the architec-
ture. These components provide and/or use services, which are orchestrated by the
coordinator BPEL process.

RequestInputs

User Agent

Coordinator CLIENT

SMS
service
CLIENT

Phone
service
CLIENT

Email
service
CLIENT

Chat
service
CLIENT

RequestOutputs

Coordinator

BPEL process
Database

web service

Service Trader

jUDDI Registry

Discovery
web service

Service descriptions

Action Providers

SMS web service

Phone web service

Email web service

Chat web service

Publication
web service

services have descriptions

Ontology

semantic concepts
described in

based on semantic
concepts of

service invocation

service invocation

service invocation

service invocation

RequestInputs

User Agent

Coordinator CLIENT

SMS
service
CLIENT

Phone
service
CLIENT

Email
service
CLIENT

Chat
service
CLIENT

RequestOutputs

Coordinator

BPEL process
Database

web service

Service Trader

jUDDI Registry

Discovery
web service
Discovery

web service
Service descriptionsService descriptions

Action Providers

SMS web service

Phone web service

Email web service

Chat web service

Publication
web service
Publication
web service

services have descriptions

Ontology

semantic concepts
described in

based on semantic
concepts of

service invocation

service invocation

service invocation

service invocation

Fig. 3. Platform-specific framework

Fig. 3 shows that the coordinator BPEL process receives some inputs from the coor-
dinator client in the user agent (RequestInputs). These inputs instantiate a new BPEL
process. In the above mentioned scenario, the inputs are the name of the buddy and the
preferred communication means to contact this buddy. In order to put the user in contact
with his/her buddy, the coordinator BPEL process has to retrieve information from the
database component, which is exposed in the framework as a web service (database
web service). The coordinator BPEL process also needs to discover a suitable service in
the Service Trader to provide the communication means selected by the user.

We realized the service trader as a UDDI registry using jUDDI [10], which is a
Java implementation of the UDDI standard. Our jUDDI registry contains the descrip-
tions of the services available in the framework. In our scenario, the available services
are SMS, phone, e-mail and chat services. The service descriptions consist of XML
documents with the name, type and endpoint of the service. The service type
refers to semantic concepts described in an ontology supported by our framework.
The endpoint is the concrete address where the service is deployed. Fig. 4 shows an
example of service description for the SMS service. To support the publication of
service descriptions in this format, we have extended the jUDDI with tModels that
represent each of the service parameters, i.e., name, type and endpoint. To group
the name, type and endpoint tModels under the same service, we have used the
categoryBag UDDI element.

 A SOA-Based Platform-Specific Framework for Context-Aware Mobile Applications 31

Fig. 4. SMS service description

Service descriptions are published in our jUDDI registry through the publication
web service in Fig. 3, which offers a publication interface to the service developers.
This interface accepts a service description, parses this description and publishes the
service name, type and endpoint in the jUDDI registry.

Fig. 5. Framework ontology excerpt

The coordinator BPEL process can discover the services published in the jUDDI
registry through the discovery web service in Fig. 3. The discovery is based on the
service type semantic concept, as the one used in the service descriptions. The dis-
covery mechanism retrieves all the services with type semantically related to the
requested type. For example, assume that we are looking for the service type ‘Fixed-
PhoneService’, which is a semantic concept, as shown in the excerpt of the frame-
work ontology depicted in Fig. 5.

The discovery mechanism retrieves the following matches, which are semantically
related to the requested type:

32 L.M. Daniele et al.

i) FixedPhoneService ⊂ PhoneService (FixedPhoneService is a subsume
match of PhoneService)

ii) FixedPhoneService ⊃ WorkPhone (FixedPhoneService is a plug in match
of WorkPhone)

iii) FixedPhoneService ⊃ HomePhone (FixedPhoneService is a plug in
match of HomePhone)

iv) FixedPhoneService ≡ FixedPhoneService (FixedPhoneService is exact
match of FixedPhoneService)

The discovery mechanism selects the best match among the options above. The best
match is the exact match, followed by the plug in matches and then by the subsume
match. The discovery web service in Fig. 3 returns the endpoint of the best match to
the coordinator BPEL process. We realized the publication and discovery mechanisms
as web services, so that they are eventually accessible from any component of the
framework. The publication and discovery mechanisms are based on the work pre-
sented in [19].

The BPEL process finishes once the service endpoint has been discovered in the
jUDDI registry and the contact details of the buddy have been retrieved from the
database. Endpoint and contact details are given as output to the coordinator client
located in the user agent (RequestOutputs). Fig. 3 shows that the user agent also con-
tains the clients to invoke the SMS, phone, e-mail and chat services (one client for
each service). These are generic clients for the services, i.e., they do not have a spe-
cific service endpoint. Provided with the endpoint, the user agent can finally invoke
the proper communication service (service invocation) and provide this service with
the contact details of the buddy in order to finally put the user in contact with his/her
buddy via the right communication channel.

We have performed an initial implementation of the presented components, to
demonstrate its practical feasibility.

4 Case Study

Fig. 6 shows an example of the platform-independent service design model, which is
the result of the behavioural refinements at the PIM level of our methodology. These
behavioural refinements are out of the scope of this paper and are presented in [4,5].

Fig. 6 shows part of the functionality of the Live Contacts case study, namely con-
tactRequest, which is described in the scenario presented in Section 3. This part of
functionality involves several components, which are the user agent, the coordinator,
the database, the service trader, and two action providers (the SMS and phone ser-
vices). Fig. 6 uses ISDL (Interaction System Design Language) [9], which allows the
specification of behavioural aspects of interacting components. Particularly, ISDL
allows us to specify the control flow of each component in terms of causality rela-
tions, and the interactions between components in terms of two contributions, one for
each component involved in the interaction.

 A SOA-Based Platform-Specific Framework for Context-Aware Mobile Applications 33

Fig. 6. Platform-independent service design model (exported from Grizzle [7])

Fig. 6 shows that the user request to contact a buddy with a specific communica-
tion means (contactReq) is forwarded by the user agent to the coordinator. This re-
quest contains two parameters, which are the name of the buddy (name) and the
communication means to contact this buddy (means). The coordinator retrieves from
the database the communication means available for the buddy (findContactInfo).
Afterwards, the coordinator evaluates the parameters of the contact request. Depend-
ing on the means selected by the user (SMS or WorkPhone), a proper communication
channel is selected (SMS or phone). In both cases, the coordinator performs two ac-
tivities concurrently, namely, retrieving from the database the number where to con-
tact the buddy (findSmsNr or findPhoneNr), and asking the service trader to discover
the proper service to contact the buddy (discoverSmsService or discoverPhoneSer-
vice). In the discovery, the coordinator indicates the service type to dicover (sms or
phone), and the service trader returns the endpoint of this service (serviceEndpoint).
Once both the service discovery and the database retrieval are concluded, the coordi-
nator sends a response to the user agent (smsContactRsp or phoneContactRsp) with
the information necessary to invoke the service, i.e., the contact details of the buddy
(mobileNr or phoneNr) and the endpoint location of the service (serviceEndpoint). In
this way, the user agent is able to invoke the proper action provider (SmsService or
PhoneService) and provide it with the necessary input, which may be the mobile
number or the work phone number of the buddy. We assume here that all the services
published in the service trader with serviceType = ‘sms’ present the same behaviour
as SmsService in Fig. 6. Analogously, all the services published in the service trader
with serviceType = ‘phone’ present the same behaviour as PhoneService in Fig. 6.

34 L.M. Daniele et al.

We realized a prototype based on the platform-independent service design model
of Fig. 6 by using the platform-specific framework described in Section 3. We ex-
perimented and tested this prototype. Fig. 7 shows the BPEL process that implements
the coordinator, which orchestrates all the components of our platform-specific
framework.

Fig. 7. Platform-specific service design model: the coordinator BPEL process

The BPEL process starts with a receive activity (contactRequest) that accepts as
inputs the name of the buddy and the communication means to contact the buddy. The
assign activity AssignBuddyNameToFindBuddyInfo copies the name of the buddy of
the contactRequest activity to the invoke activity called findBuddyInfoInDB. This
latter activity consists of an invocation of the database web service in order to retrieve
the communication means available for the buddy. The BPEL process in Fig. 7 con-
tinues in two alternative flows, one in case the selected communication means is
‘SMS’, and the other one in case it is ‘WorkPhone’. These flows execute two invoke
activities in parallel: the invocation of the database service to retrieve the contact
details of the buddy, and the invocation of the discovery web service to discover the
endpoint of the service. When both invoke activities in the flow are concluded, their
output is assigned to the reply activity (contactResponse) that ends the BPEL process.

 A SOA-Based Platform-Specific Framework for Context-Aware Mobile Applications 35

The contactResponse activity sends the outputs of the process to the coordinator client
in the user agent.

5 Related Work

Much effort has been done to develop SOA-based middleware solutions for context-
aware services and applications [1,8,11,12]. The benefits of using SOA to support the
development of such applications have been extensively discussed in the literature
[2,21]. In [21], the convergence of context-awareness and service-orientation in ubiq-
uitous computing is discussed by comparing context-awareness principles, such as
adaptation and extension, to SOA principles, such as abstraction and loosely cou-
pling. Particularly, it is shown how abstraction and loosely coupling principles in
SOA support, respectively, adaptation and extension principles in context-awareness.

In [2], service-oriented context-aware application design is discussed and a service-
oriented architecture that separates context parameters from application data is pro-
posed. Although this architecture reflects the need to distinguish components devoted
to context management and application core in the design of context-aware services,
[2] does not describe a design process that supports this architecture. In contrast, we
present a SOA-based reference architecture for context-aware mobile applications that
is embedded in a comprehensive design methodology that supports the architecture.

Our design methodology is based on the MDA principles and addresses behav-
ioural issues of model transformations in the design of the applications. These behav-
ioural issues are usually overlooked in common MDA approaches [14]. In this paper,
we show that behavioural aspects, which we have addressed already at the Platform-
Independent Model (PIM) level, can be consistently realized at the Platform-Specific
Model (PSM) level without any need to incorporate them later in the development
process, by adding hand-written code as annotations to PSMs or to implementation
code skeletons.

6 Conclusions and Future Work

This paper presented a prototype of a platform-specific framework for the realization
of context-aware mobile applications. This prototype is one of the possible realiza-
tions with target technologies of a platform-independent model obtained through
gradual behaviour model transformations of an abstract service specification. This
paper shows the feasibility of this prototype. The prototype actually reflects the inter-
operability among components that we modelled in our design. Therefore, we can
conclude that the transformation from platform-independent level to platform-specific
level preserves correctness and consistency of the original behaviour of the applica-
tion. However, this is only a first step towards the validation of our methodology and
further work needs to be done to validate the complete design and implementation.

In this paper, we do not discuss the transformation from the platform-independent
model in Fig. 6 to the platform-specific model in Fig. 7. We only provide the source
and target models of this transformation. The mapping from ISDL to BPEL is part of
the work presented in [6,18].

36 L.M. Daniele et al.

We realized only a limited part of the functionality of the Live Contacts case study,
in which the coordinator handles one of the possible user request to the application.
However, in the complete case study the coordinator has to handle several user re-
quests and context events at the same time. These requests and events are realized by
interacting components with different but interdependent executions threads. There-
fore, the coordinator has to handle concurrency and synchronization issues of interact-
ing components. This is part of the work presented in [5].

We provided a feasible implementation of part of our reference architecture for
context-aware mobile applications. We did not consider here context source compo-
nents that retrieve context information from the user environment and provide the
coordinator with context events in case of changes in this context. The integration of
these components in our reference architecture using a context expression evaluator is
discussed in [3]. However, we envision an alternative realization of these components
with web services technologies. In this work, by implementing the action providers as
web services, we learned that this is a feasible and interesting solution to guarantee
flexibility, interoperability and portability in our platform-specific framework. Further
study needs to be performed in order to integrate context source components in the
framework and expose them as web services. These components require mechanisms
to allow the coordinator to dynamically subscribe to context events as soon as these
components become available to the application. However, we believe that the ex-
periments we have performed in this paper by building action providers as web ser-
vices, have brought us a step forward towards the realization of context sources with
this technology.

References

1. Bai, Y., Ji, H., Han, Q., Huang, J., Qian, D.: MidCASE: A Service Oriented Middleware
Enabling Context Awareness for Smart Environment. In: International Conference on Mul-
timedia and Ubiquitous Engineering (MUE 2007), pp. 946–995. IEEE Computer Society
Press, Los Alamitos (2007)

2. Chaari, T., Laforest, F., Celentano, A.: Service-Oriented Context-Aware Application De-
sign. In: First International Workshop on Managing Context Information in Mobile and
Pervasive Environments (MCMP 2005), Cyprus (2005)

3. Daniele, L., Ferreira Pires, L., van Sinderen, M.: Context Handling in a SOA Infrastructure
for Context-Aware Applications. In: Proceedings of the 2nd International Workshop on
Architectures, Concepts and Technologies for Service Oriented Computing (ACT4SOC
2008), Porto, Portugal, July 2008, pp. 27–37. INSTICC Press (2008)

4. Daniele, L., Ferreira Pires, L., van Sinderen, M.: An MDA-Based Approach for Behaviour
Modelling of Context-Aware Mobile Applications. In: Paige, R., Hartman, A., Rensink, A.
(eds.) ECMDA-FA 2009, Enschede, The Netherlands, June 2009. LNCS, vol. 5562, pp.
206–220. Springer, Heidelberg (2009)

5. Daniele, L., Ferreira Pires, L., van Sinderen, M.: Ferreira Pires. L., van Sinderen, M.: To-
wards Automatic Behaviour Synthesis of a Coordinator Component for Context-Aware
Mobile Applications. In: Proceedings of the International Workshop on Mobile Technolo-
gies in Enterprise Computing Systems (MTECS 2009), Auckland, New Zealand, Septem-
ber 2009. IEEE Computer Society Press, Los Alamitos (2009)

 A SOA-Based Platform-Specific Framework for Context-Aware Mobile Applications 37

6. Dirgahayu, T., Quartel, D., van Sinderen, M.: Development of Transformations from
Business Process Models to Implementations by Reuse. In: Proceedings of the 3th Interna-
tional Workshop on Model-Driven Enterprise Information Systems (MDEIS 2007), Portu-
gal, June 2007, pp. 41–50. INSTICC Press (2007)

7. Grizzle home, http://isdl.ctit.utwente.nl/tools/grizzle
8. Gu, T., Pung, H.K., Zhang, D.Q.: A Service-Oriented Middleware for Building Context-

Aware Services. Journal of Network and Computer Applications (JNCA) 28(1) (2005)
9. ISDL home, http://isdl.ctit.utwente.nl

10. jUDDI home, http://ws.apache.org/juddi
11. Kiani, S.L., Riaz, M., Sungyoung, L., Young-Koo, L.: Context Awareness in Large Scale

Ubiquitous Environments with a Service-Oriented Distributed Middleware Approach. In:
4th Annual ACIS International Conference on Computer and Information Science (ICIS
2005), pp. 513–518. IEEE Computer Society Press, Los Alamitos (2005)

12. Kim, E., Choi, J.: A Context-Awareness Middleware Based on Service-Oriented Architec-
ture. In: Indulska, J., Ma, J., Yang, L.T., Ungerer, T., Cao, J. (eds.) UIC 2007. LNCS,
vol. 4611, pp. 953–962. Springer, Heidelberg (2007)

13. Live Contacts home, http://livecontacts.telin.nl
14. McNeile, A., Simons, N.: Methods of Behaviour Modelling: A Commentary on Behaviour

Modelling Techniques for MDA. Metamaxim Ltd home,
 http://www.metamaxim.com/download/documents/Methods.pdf

15. OASIS: OASIS-Committes- OASIS UDDI Specifications TC,
http://oasis-open.org/commitees/uddi-spec/doc/tcspecs.htm

16. Object Management Group: MDA-Guide, Version 1.0.1, omg/03-06-01 (2003)
17. Object Management Group: Trading Object Service Specification, Version 1.0, formal/00-

06-27 (2000)
18. Quartel, D., Dirgahayu, T., van Sinderen, M.: Model-Driven Design, Simulation and Im-

plementation of Service Compositions in COSMO. Int. J. of Business Process Integration
and Management (to appear)

19. Silva, E., Martínez López, J., Ferreira Pires, L., van Sinderen, M.: Defining and Prototyp-
ing a Life-cycle for Dynamic Service Composition. In: Proceedings of the 2nd Workshop
on Architectures, Concepts and Technologies for Service Oriented Computing (ACT4SOC
2008), Porto, Portugal, July 2008, pp. 79–90. INSTICC Press (2008)

20. Ter Hofte, G.H., Otte, R.A.A., Kruse, H.C.J., Snijders, M.: Context-Aware Communica-
tion with Live Contacts. In: Conference Supplement of Computer Supported Cooperative
Work (CSCW 2004), Chicago, USA (November 2004)

21. Yoon, H.: A Convergence of Context-Awareness and Service-Orientation in Ubiquitous
Computing. International Journal of Computer Science and Network Security (IJCSNS) 7(3),
253–257 (2007)

	A SOA-Based Platform-Specific Framework for Context-Aware Mobile Applications
	Introduction
	Design Methodology
	Reference Architecture
	MDA-Based Methodology

	Platform-Specific Framework
	Case Study
	Related Work
	Conclusions and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

