
Set Covering Problems in

Role-Based Access Control

Liang Chen and Jason Crampton

Information Security Group and Department of Mathematics
Royal Holloway, University of London

{l.chen-2,jason.crampton}@rhul.ac.uk

Abstract. Interest in role-based access control has generated consider-
able research activity in recent years. A number of interesting problems
related to the well known set cover problem have come to light as a re-
sult of this activity. However, the computational complexity of some of
these problems is still not known. In this paper, we explore some varia-
tions on the set cover problem and use these variations to establish the
computational complexity of these problems. Most significantly, we in-
troduce the minimal cover problem – a generalization of the set cover
problem – which we use to determine the complexity of the inter-domain
role mapping problem.

1 Introduction

Role-based access control (RBAC) has been the subject of considerable research
in recent years [1,2] and is widely accepted as an alternative to traditional dis-
cretionary and mandatory access controls. A number of commercial products,
such as Windows Authorization Manager and Oracle 9, implement some form of
RBAC.

A number of interesting computational problems arise in the context of RBAC:

– the inter-domain role mapping (IDRM) problem [3,4],
– the user authorization query (UAQ) problem [5,6],
– the enforceability of static separation of duty constraints [7], and
– the generation of role-based static separation of duty (RSSoD) con-

straints [7].

However, existing work does not always pose the most appropriate problem (as
in the IDRM problem of Du and Joshi [3]) or does not determine the computa-
tional complexity of the problem (instead presenting either approximate [4] or
exhaustive algorithms to compute a solution [7]). All the above problems appear
to be related to the set cover problem [8]: the decision version of this problem is
NP-complete, while the optimization problem is NP-hard.

In this paper, we examine the connections between problems in RBAC and
the set cover problem. Our most important contribution is to define the min-
imal cover problem – a generalization of the set cover problem – and use this

M. Backes and P. Ning (Eds.): ESORICS 2009, LNCS 5789, pp. 689–704, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

690 L. Chen and J. Crampton

problem to determine the computational complexity of the IDRM-availability
problem [4]. In doing so, we identify some interesting auxiliary problems and
establish their computational complexity. We also establish a vocabulary and a
suite of techniques for handling similar problems that may arise in the context
of RBAC.

In the next section we introduce relevant background material, including a
formal model for RBAC and definitions of the set cover problem. Section 3
introduces the minimal cover problem and establishes its relationship to the basic
set cover problem, thereby enabling us to derive its computational complexity. In
Sect. 4, we discuss applications of our results to RBAC, establishing complexity
results for a number of different problems. We also discuss related work in Sect. 4.
We conclude the paper with a summary of our results and a discussion of future
work.

2 Background

2.1 RBAC

The RBAC96 family of models is undoubtedly the most well known formulation
of RBAC [1], and provides the basis for the ANSI RBAC standard [2]. RBAC0,
the simplest RBAC96 model, defines a set of users U , a set of sessions S, a set of
roles R, a set of permissions P , a user-role assignment relation UA ⊆ U ×R and
a permission-role assignment relation PA ⊆ P × R. A user u is authorized for
role r if (u, r) ∈ UA; a role r is authorized for permission p if (p, r) ∈ PA; and u
is authorized for p if there exists a role r such that (u, r) ∈ UA and (p, r) ∈ PA.
We represent RBAC0 state as a pair (UA,PA).

RBAC1 introduces the concept of a role hierarchy, which is modeled as a
partial order on the set of roles (R, �). In other words, the role hierarchy is a
binary relation RH ⊆ R × R that is reflexive, anti-symmetric and transitive.
The role hierarchy semantics provide an economical way of representing RBAC
state. In particular: if (u, r) ∈ UA and r � r′, then u is (implicitly) authorized
for r′; and if (p, r) ∈ PA and r � r′ then r′ is (implicitly) authorized for p.

In this paper we will assume that the role hierarchy has been “flattened” by
encoding all authorized relationships in the user-role and permission-role rela-
tions, so that RBAC state is simply represented by the RBAC0 state (UA,PA).
Any RBAC1 state can be transformed into an equivalent RBAC0 state (in
the sense that precisely the same set of requests are authorized) in poly-
nomial time, using an algorithm based on some appropriate graph traversal
algorithm.

We write Prms(r, PA) to denote the set of permissions for which role r ∈
R is authorized, and, for S ⊆ R, we write Prms(S, PA) to denote the set of
permissions for which the roles in S are collectively authorized. That is,

Prms(r,PA) = {p ∈ P : (p, r) ∈ PA} and Prms(S,PA) =
⋃

s∈S

Prms(s,PA).

Set Covering Problems in Role-Based Access Control 691

2.2 The Set Cover Problem

Let X be a finite set and let C be a collection of subsets of X such that X =⋃
C∈C C, and let D ⊆ C. Then we write UD to denote

⋃
D∈D D. (By definition,

UD ⊆ X ; in particular, UC = X).

Definition 1. Let X be a finite set and let C be a collection of subsets of X
such that UC = X. Let V ⊆ X. We say D ⊆ C is a cover of V if UD ⊇ V ; D is
a perfect cover of V if UD = V .

The definition above is more general than the usual definition associated with
the set cover problem. In particular, our notion of a “perfect cover” is what
usually corresponds to a “cover” in the literature. However, in Sect. 3 we will
need to be able to distinguish between covers and perfect covers, hence the more
general definition.

Clearly, there exists at least one perfect cover of X (namely C). Note that any
cover of X is necessarily perfect, since UC = X . There are two natural questions
we might ask given X and C:

Problem 1 (The set cover decision problem). For a given integer k, does there
exist a perfect cover D of X such that |D| � k?

Problem 2 (The set cover optimization problem). What is the smallest integer
m for which there exists a perfect cover of X of cardinality m?

The set cover decision problem is NP-complete [8] with respect to the parame-
ter |C|. The set cover optimization problem is NP-hard, because there exists a
(trivial) polynomial time Turing reduction from the set cover decision problem
to the set cover optimization problem.1

3 Variations on the Set Cover Problem

Throughout this section, we assume we are given a universe X and C, a collection
of subsets of X . We define an equivalence relation on the powerset of C: D ∼ D′

if and only if UD = UD′ . The equivalence classes defined by ∼ give rise to a
partition of the powerset of C: the elements of an equivalence class are all subsets
of C, and all elements in an equivalence class are perfect covers of the same subset
of X . If there exists a perfect cover of V ⊆ X – that is, there exists D ⊆ C such
that UD = V – then we write [V] ⊆ C to denote the equivalence class in which
each element of [V] is a perfect cover of V . That is, [V] = {D ⊆ C : UD = V }.

We write PCov(X, C) to denote the set of subsets of X for which perfect covers
exist in C. Clearly, (PCov(X, C),⊆) is a partially ordered set. When X and C are
obvious from context, we will simply write PCov for PCov(X, C).

1 If we have an oracle that can solve the optimization problem, we can solve the
decision problem by checking whether the solution of the associated optimization
problem has cardinality less than or equal to k.

692 L. Chen and J. Crampton

Example 1. Let X = {1, 2, 3, 4} and let C = {C1, C2, C3, C4}, where C1 = {1},
C2 = {2, 4}, C3 = {3, 4} and C4 = {1, 2, 4}. Then

PCov = {{1}, {2, 4}, {3, 4}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}, {1, 2, 3, 4}}

and, for example,

[{1, 2, 4}] = {{C4}, {C1, C4}, {C2, C4}, {C1, C2}, {C1, C2, C4}}
[{1, 3, 4}] = {{C1, C3}}

3.1 The Kernel and Shell

We now introduce the notion of the kernel and shell of V (given X and C).
Informally, the kernel of V represents the largest perfect cover contained in V .
We shall see that the kernel of V can be computed in polynomial time, a result
that has a number of useful applications. The shell identifies those sets that
could contribute to a cover of V .

Definition 2. Let V ⊆ X. Define K(V) = {C ∈ C : C ⊆ V }. Then we call
UK(V) ⊆ X the kernel of V (with respect to C).

For brevity, we write ker(V), rather than UK(V), to denote the kernel of V . Note
that ker(V) ∈ PCov and ker(V) ⊆ V , by definition. We now state and prove two
elementary results.

Proposition 1. Let Z ∈ PCov such that Z ⊆ V . Then Z ⊆ ker(V).

Proof. Since Z ∈ PCov, there exists D ⊆ C such that Z = UD. For any C ∈ D,
we have C ⊆ V (otherwise, Z �⊆ V). Hence, C ∈ K(V) by definition and hence
D ⊆ K(V). Therefore Z = UD ⊆ UK(V) = ker(V). ��

Proposition 2. V ∈ PCov if and only if V = ker(V).

Proof. The result follows immediately if V = ker(V) since ker(V) ∈ PCov. Assume
now that V ∈ PCov. Since V ⊆ V , we may apply Proposition 1 to deduce that
V ⊆ ker(V). Hence, we have V = ker(V), since ker(V) ⊆ V , by definition. ��

Corollary 1. Let V ⊆ X. Determining whether V ∈ PCov is in P.

Proof. By Proposition 2, V ∈ PCov if and only if V = ker(V). Clearly, we can
check in polynomial time whether V = ker(V). ��

Definition 3. Let V ⊆ X. Define S(V) = {C ∈ C : C ∩ V �= ∅}. Then we call
US(V) ⊆ X the shell of V (with respect to C).

Similarly, we write shell(V) to denote the shell of V . Note that shell(V) ∈ PCov
and shell(V) ⊇ V , by definition.

Set Covering Problems in Role-Based Access Control 693

3.2 Minimality, Optimality and Irreducibility

Let us assume that V �∈ PCov and consider the problem of finding an
“approximation” of V among the members of PCov. (We will formalize the
notion of approximation shortly.) The results above suggest that the best
“under-approximation” of V is ker(V). It seems natural to consider “over-
approximation” in terms of those elements of PCov that contain V and have
minimal cardinality. More formally, we have the following definitions.

Definition 4. Given X, C and V ⊆ X such that V �∈ PCov, we say

– T ∈ PCov is a container of V if T ⊃ V .
– T ∈ PCov is a minimal container of V if T is a container of V and for any

other container T ′ of V , |T | � |T ′|.2

In other words, T is a minimal container of V if it is perfectly covered by some
subset of C, contains V , but contains as few elements outside V as possible for
a set that is perfectly covered.3

Definition 5. Given X, C and V ⊆ X such that V �∈ PCov, we say

– D ⊆ C is irreducible if for all D′ ⊂ D, UD′ ⊂ UD.
– D ⊆ C is a minimal cover of V if D ∈ [T] for some minimal container T of

V .
– D ∈ [T] is an optimal cover of V if T is a minimal container of V and D is

irreducible.

Informally, D is irreducible if there is no redundancy in D: we cannot remove
any element of D without changing UD. Each T ∈ PCov is associated with the
equivalence class [T], which is a collection of subsets of C. Every member of [T]
is a perfect cover of T . If T is a minimal container of V , then every element of
[T] is a minimal cover of V . Each such equivalence class contains at least one
irreducible element.

Example 2. Using our running example, let V = {1, 2, 3}. Then a minimal con-
tainer of {1, 2, 3} is {1, 2, 3, 4}. The irreducible covers in [{1, 2, 3, 4}] (and hence
optimal covers of {1, 2, 3}) are {C3, C4} and {C1, C2, C3}.
Proposition 3. Given D ⊆ C, we can compute E ⊆ D such that E is irreducible
and UE = UD in polynomial time.

Proof. Figure 1 illustrates an algorithm called IRR-Gen: on input D ⊆ C, IRR-
Gen returns an irreducible set E ⊆ D such that UE = UD. At the ith iteration,

2 Equivalently, there does not exist T ′ ∈ PCov such that T ′ ⊇ V and |T ′| < |T |.
3 This is important in the context of RBAC because we want to minimize the number

of additional permissions for which a set of roles is authorized for outside some
specified set of permissions.

694 L. Chen and J. Crampton

Input: D ⊆ C; Output: E
let E = ∅
while D �= ∅ {
choose C ∈ D
D = D \ {C}
if C �⊆ UD∪E then E = E ∪ {C} }

return E
Fig. 1. The IRR-Gen algorithm

the algorithm arbitrarily chooses an element C from D, and checks whether the
removal of C from D would affect the set of elements originally covered by D. If
it does, C must be included in E , otherwise C can be ignored. The overall time
complexity of the IRR-Gen algorithm is polynomial in |D| and |X |. ��
Note that IRR-Gen is non-deterministic (“choose C ∈ D”) and [T] may contain
more than one irreducible set, so different runs of the algorithm on input D might
return different irreducible sets E depending on the order in which the elements of
D are processed. Consider D = {C1, C2, C3, C4} ∈ [{1, 2, 3, 4}], then processing D
in the order C1, C2, C3, C4, for example, yields E = {C3, C4}, whereas processing
D in the order C4, C3, C2, C1 yields E = {C1, C2, C3}.
Corollary 2. Given X, C and T ∈ PCov, we can compute an irreducible element
of [T] in polynomial time.

Proof. Since T ∈ PCov, T = ker(T) by Proposition 2. Hence, we can compute
K(T) in polynomial time and K(T) ∈ [T]. Hence, we need to find an irreducible
set D ⊆ K(T) such that UD = T . This can be done in polynomial time using the
IRR-Gen algorithm with input K(T). ��

3.3 The Minimal Cover Problem

The minimal cover problem is fundamental to solving the IDRM problem. We
first state an elementary result that enables us to make a useful simplifying
assumption.

Proposition 4. Given X, V and C, define: X ′ = X \ ker(V); V ′ = V \ ker(V);
and C′ = {C \ ker(V) : C ∈ C, C �⊆ V }. Then:

1. UC′ = X ′;
2. for all C′ ∈ C′, C′ �⊆ V ′;
3. if D is a minimal cover of V ′, then D ∪ K(V) is a minimal cover of V .

Proof.

1. Since C′ = {C ∩ X ′ : C ∈ C, C �⊆ V } and X ′ = X \ ker(V), UC′ = UC ∩ X ′ =
X ∩ X ′ = X ′.

2. If C′ ∈ C′, then C′ = C \ker(V) for some C ∈ C such that C �⊆ V . Therefore,
C′ = C \ ker(V) �⊆ V \ ker(V) = V ′.

Set Covering Problems in Role-Based Access Control 695

3. Suppose, in order to obtain a contradiction, that D∪K(V) is not a minimal
cover of V . Then, since K(V) only adds elements from V , D cannot be a
minimal cover of V ′, which is the desired contradiction. ��

Let V �∈ PCov and suppose we are interested in finding a minimal cover of V .
Then we may construct (in polynomial time) a new instance of the problem, by
replacing X and C with X ′ and C′, where |X | � |X ′| and |C| � |C′|. In particular,
we omit any C ∈ C such that

– C ∩ V = ∅ (since any such C cannot contribute to a cover of V);
– C ⊆ V (since, by Proposition 4, we can compute a minimal cover D of

V \ ker(V) to obtain a minimal cover D ∪ K(V) of V).

Henceforth, we assume that our problem instance is in this “canonical form”:
that is, C∩V �= ∅ and C �⊆ V for all C ∈ C. We now define a number of problems
associated with container, minimal cover and optimal cover.

Problem 3 (The container decision problem). Given X , C, V ⊆ X and an integer
k, does there exist a container T of V such that |T | � |V | + k?

Problem 4 (The container optimization problem). Given X , C and V ⊆ X , find
a minimal container of V .

Problem 5 (The minimal cover problem). Given X , C and V ⊆ X , find a minimal
cover of V .

Problem 6 (The optimal cover problem). Given X , C and V ⊆ X , find an optimal
cover of V .

Theorem 1. The container decision problem is NP-complete.

Proof. It is easy to see that the container decision problem is in NP, because
a nondeterministic algorithm need only guess a subset T of X and check in
polynomial time whether T ⊃ V , ker(T) = T (that is, T ∈ PCov) and |T | �
|V | + k.

We now show a polynomial time transformation from the set cover decision
problem to a special case of the container decision problem. Let (X ′, C′, k) be
an instance of the set cover decision problem. We transform it into an instance
(X, C, V) of a special case of the container decision problem in the following way:

– Let X = X ′ ∪ C′ and V = X ′;
– Define a collection C = {C′ ∪ {C′} : C′ ∈ C′}.

This transformation is illustrated in Fig. 2. It can be seen that each C contains a
single element (namely C′) that does not belong to V . Moreover, each C contains
at least one element of X ′, since C′ ∈ C′ can be assumed to be non-empty. In
other words, the resulting instance is a special case of the container decision
problem (in which each element of C contains precisely one distinct element that
is not in V).

696 L. Chen and J. Crampton

�

x′
1

�

x′
2

�

x′
3

�

x′
4

�

x′
5

�

x′
6

�

C′
1

�
�

�
�

�
�

�
�

�

C′
2

�
�

�
�

�
�

�
�

�������

�

C′
3

�����������

�
�

�
�

�������

�

C′
4

�
�

�
�

�
�

�
�

(a) A set cover problem

�

x′
1

�

x′
2

�

x′
3

�

x′
4

�

x′
5

�

x′
6

�

C′
1

�

C′
2

�

C′
3

�

C′
4

�

C1

�����������

�������

�
�

�
�

�����������

�

C2

�����������

�
�

�
�

�����������

�

C3
������������������

�����������

�����������

�

C4

�����������

�������

�
�

�
�

�����������

(b) A special case of the container problem

Fig. 2. Correspondence between the set cover and container problems

We now show that there exists a set cover D′ of size k if and only if there
exists a container T of V such that |T | = |V | + k. First, suppose there exists a
set cover D′ with size k, then UD′ = X ′ = V . By construction, there exists D
with |D| = k, and UD = V ∪D′ = T . Hence T ⊃ V , T ∈ PCov and |T | = |V |+k.

Conversely, suppose there exists a container T of V with size |T | = |V | + k.
Since T ∈ PCov, there exists D such that UD = T ⊃ V . Note that |D| = k,
since (by construction) each element of C contains precisely one element not in
V . Moreover UD ⊃ V . Hence the corresponding set D′ ⊆ C′ is a cover of X ′ and
has cardinality k. ��
Corollary 3. The container optimization problem is NP-hard.

Proof. The result follows from the fact that the associated decision problem is
NP-complete (or we can use the construction illustrated in Fig. 2 to solve the
set cover optimization problem using the container optimization problem). ��
Corollary 4. The minimal cover problem is NP-hard.

Proof. We exhibit a polynomial time Turing reduction from the container opti-
mization problem to the minimal cover problem. Suppose there exists an oracle
for the minimal cover problem. Then given an instance (X, C, V) of the con-
tainer optimization problem, we query the oracle for the minimal cover problem
on instance (X, C, V), to obtain a minimal cover D ⊆ C of V . Then we simply
compute UD ⊆ X , which is, by definition, a minimal container of V . ��
Corollary 5. The optimal cover problem is NP-hard.

Proof. We show that the minimal cover problem is polynomial time Turing
equivalent to the optimal cover problem. Clearly, any solution for the optimal
cover problem is a solution for the minimal cover problem. We now show a poly-
nomial time Turing reduction from the optimal cover problem to the minimal
cover problem. Given any instance (X, C, V) of the optimal cover problem, we

Set Covering Problems in Role-Based Access Control 697

query an oracle to obtain a solution D for the minimal cover problem. We can
then compute D′ = IRR-Gen(D) in polynomial time, which is a solution to the
optimal cover problem. ��

3.4 The Irreducible Cover Problem

In this section, we will not be concerned with containers of V . Instead we will be
concerned with all covers of X that are irreducible. We say D is an irreducible
cover of X if D is irreducible and UD = X .

Problem 7 (The irreducible cover decision problem). Given X , C and a positive
integer k, does there exist D ⊆ C such that D is an irreducible cover of X and
|D| � k?

Problem 8 (The irreducible cover optimization problem). Given X and C, find
D ⊆ C such that D is an irreducible cover of X and |D| is minimized.

Problem 9 (The irreducible cover enumeration problem). Given X and C, find
all D ⊆ C such that D is an irreducible cover of X .

Theorem 2. The irreducible cover decision problem is NP-complete. The irre-
ducible cover optimization and enumeration problems are NP-hard.

Proof. It is easy to see that the irreducible cover decision problem is in NP,
because a nondeterministic algorithm need only guess a subset D of C and check
whether D is an irreducible cover of X and |D| � k. Checking whether D is
an irreducible cover of X can be done in polynomial time by checking whether
UD = X and checking whether D is irreducible can be done in polynomial time
by confirming whether D = IRR-Gen(D).

Clearly, we can use an algorithm that solves the irreducible cover problem to
solve the set cover problem. It is obvious that there is an irreducible cover of
cardinality less than or equal to k if and only if there is some cover of cardinality
less than or equal to k.

There are trivial polynomial time Turing reductions from the irreducible cover
decision problem to both the irreducible cover optimization and irreducible cover
enumeration problems. In the first case, we query an oracle and return “yes” for
the decision problem if the cardinality of the cover returned by the oracle is less
than or equal to k. In the second case, let us assume that the oracle returns
a list of irreducible covers in order of increasing cardinality. Then to solve the
decision problem, we simply need to determine whether the cardinality of the
first element in the list is less than or equal to k. ��

4 Covering Problems in RBAC

The results of the previous section, particularly those on problems associated
with minimal containers, may be of independent mathematical interest, but

698 L. Chen and J. Crampton

in this section we apply these results to a number of problems in the RBAC
literature.

Given an instance (R, P,PA) of the RBAC0 model and an instance (X, C)
of the set cover problem, P is synonymous with X and {Prms(r,PA) : r ∈ R}
is synonymous with C. (This assumes that each role is assigned to at least one
permission in P , and each permission is assigned to at least one role in R.)
Henceforth, when PA is obvious from context, we will simply write Prms(r) and
Prms(S) rather than Prms(r,PA) and Prms(S,PA), respectively.

Given Q ⊆ P , K(Q) comprises those sets of permissions that are contained
within Q. In other words, K(Q) is synonymous with those roles that are only
authorized for permissions in Q. Similarly, S(Q) is synonymous with those roles
that are authorized for at least one permission in Q.

4.1 The Inter-domain Role Mapping Problem

Du and Joshi studied the inter-domain role mapping (IDRM) problem, defined
below [3].

Problem 10 (The IDRM problem). Given R, P , PA ⊆ P × R and Q ⊆ P , find
S ⊆ R such that Prms(S) = Q and |S| is minimized.

It is worth noting that many instances of the IDRM problem, as defined above,
may not have a solution, since there may not exist S ⊆ R such that Prms(S) = Q.
Hence, we define a preliminary question.

Problem 11 (The preliminary IDRM problem). Given R, P , PA and Q ⊆ P ,
does there exist RQ ⊆ R such that Prms(RQ) = Q?

We first note that Problem 11 can be decided in polynomial time, since it can
be answered by determining whether Q = ker(Q). If so, then RQ = K(Q).
Having answered the preliminary IDRM problem, we may then pose the following
problems.

Problem 12 (The exact IDRM decision problem). Given R, P , PA, Q ⊆ P , RQ ⊆
R such that Prms(RQ) = Q, and an integer k, does there exist S ⊆ RQ such
that Prms(S) = Q and |S| � k.

Problem 13 (The exact IDRM optimization problem). Given R, P , PA, Q ⊆ P ,
and RQ ⊆ R such that Prms(RQ) = Q, find S ⊆ RQ such that Prms(S) = Q
and |S| is minimized.

Clearly, the set cover decision problem is identical to the exact IDRM decision
problem. Given any instance (X, C, k) of the set cover decision problem, we
simply set X = Q and C = {Prms(r) : r ∈ RQ}. Then k members of RQ cover Q
if and only if k members of C cover X . In other words, the exact IDRM decision
problem is NP-complete, and the exact IDRM optimization problem is NP-hard.

It is also worth observing that there appears to be no good reason to minimize
|S|: it is not clear why S is preferable to S′ if Prms(S) = Prms(S′) and |S| < |S′|.

Set Covering Problems in Role-Based Access Control 699

Moreover, if there is no solution to the IDRM problem (that is, there does not
exist S ⊆ R such that Prms(S) = Q) then it is the permissions for which an
approximate solution S is authorized that should be of interest, rather than |S|.
In order to address concerns about the appropriateness of the IDRM problem,
we previously proposed two problems derived from the IDRM problem [4].

Problem 14 (The IDRM-safety problem). Given P , R, PA and Q ⊆ P , find
S ⊆ R such that Prms(S) ⊆ Q and |Prms(S)| is maximized.

Problem 15 (The IDRM-availability problem). Given P , R, PA and Q ⊆ P , find
S ⊆ R such that Prms(S) ⊇ Q and |Prms(S)| is minimized.

The IDRM-safety problem is concerned with ensuring that no permission outside
Q is authorized for any role in S, while authorizing S for as many permissions as
possible in Q. The availability approach to IDRM ensures that all permissions
in Q are authorized for at least one role in S, but seeks to minimize the number
of additional permissions for which S is authorized. We noted that exhaustive
search could be used to compute an exact solution to these problems and pre-
sented algorithms to produce approximate solutions to those problems, but did
not establish the computational complexity of these problems.

Although there is an obvious correspondence between the exact IDRM prob-
lem and the set cover problem (as we illustrated above), there is no obvious
way of transforming the IDRM-availability problem to the set cover problem,
since we are simultaneously concerned with covering Q while minimizing what
is covered outside Q. Clearly, however, the IDRM-availability problem does map
very easily to, and is no harder than, the minimal cover problem discussed in
Sect. 3.

Theorem 3. The IDRM-safety problem is in P; the IDRM-availability problem
is NP-hard.

Proof. The largest subset of Q for which a perfect cover exists is, by Proposi-
tion 1, ker(Q) which can be computed in polynomial time. Hence, the IDRM-
safety problem is in P.

Clearly the IDRM-availability problem is in NP. We now exhibit a polynomial
time Turing reduction from the minimal cover problem to the IDRM-availability
problem. Given any instance (X, C, V) of the minimal cover problem, we can
transform it into an instance (P, Q, R,PA) of the IDRM-availability problem in
polynomial time. In particular, we let X = P , V = Q, and for each C ∈ C, define
rC ∈ R and Prms(rC) = C ⊆ X = P . Clearly, a solution S ⊆ R to this instance
of the IDRM-availability problem provides a solution to the given instance of
the minimal cover problem. ��

4.2 The User Authorization Query Problem

Zhang and Joshi recently defined the user authorization query (UAQ) problem
in a hybrid role hierarchy [5]. Wickramaarachchi et al [6] provided the following,
more general, definition of UAQ.

700 L. Chen and J. Crampton

Problem 16 (The UAQ problem). Given P , R, PA and (Pl, Pu, obj), where
Pl, Pu ⊆ P and obj ∈ {max, min}, find S ⊆ R such that the following con-
ditions hold:

– Pl ⊆ Prms(S) ⊆ Pu and |Prms(S)| is maximized if obj = max;
– Pl ⊆ Prms(S) ⊆ Pu and |Prms(S)| is minimized if obj = min.4

Let us rephrase the question so that we are concerned with finding Q ⊆ P such
that Q is perfectly covered and Pl ⊆ Q ⊆ Pu. Then we can find S ⊆ R that
solves the UAQ problem in polynomial time by computing S = K(Q).

Now we can compute ker(Pu) in polynomial time. Note also that for any
solution Q, we must have Q ⊆ ker(Pu), by Proposition 1, since Q is perfectly
covered and Q ⊆ Pu. Then three cases must be considered:

1. Pl ⊆ ker(Pu) and obj = max;
2. Pl ⊆ ker(Pu) and obj = min;
3. Pl �⊆ ker(Pu).

Case (3) means that no such Q can be found, since Q ⊆ ker(Pu). For case (1),
we can simply take Q = ker(Pu), by Proposition 1. In other words, the UAQ
problem posed by Wickramaarachchi et al only has a solution if Pl ⊆ ker(Pu).
Moreover, the only form of the problem that cannot be answered in polynomial
time is (Pl, Pu, min). Henceforth, we restrict our attention to UAQ problem of
this form.

Theorem 4. The UAQ problem and the container optimization problem are
polynomial time Turing equivalent.

Proof. We first show that there is a polynomial time Turing reduction from UAQ
to container optimzation. We have to find the smallest Q such that Q is perfectly
covered and Pl ⊆ Q ⊆ ker(Pu). We define Rnew = {r ∈ R : Prms(r) ⊆ Pu} and
Pnew = ker(Pu). Then to answer the UAQ instance, we need only answer the
container optimization instance for X = Pnew, V = Pl and C = {Prms(r) : r ∈
Rnew}.

To complete the proof, we show that there is a polynomial time Turing re-
duction from container optimization to UAQ. The obvious transformation, pre-
viously used in the proof of Theorem 3, suffices. ��

4.3 Separation of Duty

Li et al recently studied a number of interesting questions regarding the enforce-
ment of static separation of duty (SSoD) constraints in the context of RBAC [7,9].
4 In the original paper [6], given a set of constraints C and a user u, they require that

u can activate the set of roles S without violating any constraint in C. There is also
an additional condition on the cardinality of the solution set S (which essentially
requires the computation of either a maximal or minimal element in the appropriate
equivalence class). We omit these considerations, which do not affect the complexity
of the problem, for clarity and simplicity.

Set Covering Problems in Role-Based Access Control 701

Informally, an SSoD constraint (Q, k) is satisfied if no set of k − 1 users is
collectively authorized for Q. Note that an SSoD constraint cannot be satisfied
if k − 1 roles are collectively authorized for Q (assuming every role is assigned
to at least one user). Li et al were concerned with re-writing an SSoD constraint
in terms of static mutually exclusive role (SMER) constraints, in such a way
that the satisfaction of the SMER constraints implied the satisfaction of the
SSoD constraint. Hence, it is of interest to know whether the SSoD constraint is
enforceable. We now describe three problems associated with separation of duty.

Problem 17 (The SSoD enforceability decision problem). Given P , R, PA, Q ⊆ P
and an integer k, does there exist S ⊆ R such that Prms(S) ⊇ Q and |S| � k?

Problem 18 (The SSoD enforceability optimization problem). Given P , R, PA
and Q ⊆ P , find S ⊆ R such that Prms(S) ⊇ Q and |S| is minimized.

Problem 19 (The RSSoD generation problem). Given P , R, PA and Q ⊆ P , find
all S ⊆ R such that Prms(S) ⊇ Q and for any S′ ⊂ S, Prms(S′) �⊇ Q.

Note that these questions are only concerned with the existence of covers of Q
(and not with any additional permissions that might be authorized for any given
cover). Hence, we may simply set X = Q and C = {Prms(r) ∩ Q : r ∈ S(Q)}.
The SSoD enforceability decision problem is, therefore, identical to the set cover
decision problem (and hence is NP-complete).5

The SSoD enforceability optimization problem is of interest for two reasons.
First, given Q, we may wish to know the smallest number of users that are col-
lectively authorized for Q in order to assess whether this presents some potential
violation of enterprise security policies or statutory requirements. Second, this
problem has been studied by Zhang and Joshi, although they study the problem
in a rather different context and give it a different name [5]. Zhang and Joshi
provided algorithms to compute an approximate solution for the problem but
did not study its computational complexity. Clearly, the SSoD enforceability op-
timization problem is identical to the set cover optimization problem, which is
NP-hard.

When seeking to enforce an SSoD constraint using SMER constraints, it is
necessary to compute the set of RSSoD constraints [7]. Li et al define an RSSoD
constraint (essentially as described in Problem 19 above), but provide no analysis
of the complexity of computing the set of all such constraints. Note that an
RSSoD constraint is a set of roles that cover Q and contains no redundancy. In
other words, the RSSoD generation problem is identical to the irreducible cover
enumeration problem and is, therefore, NP-hard (Theorem 2). The above results
are summarized in the following theorem.

Theorem 5. The SSoD enforceability decision problem is NP-complete; the
SSoD enforceability optimization problem and the RSSoD generation problem
are NP-hard.
5 Li et al showed that the SSoD enforceability decision problem is NP-complete by

showing that a particular subcase is NP-complete [7].

702 L. Chen and J. Crampton

Table 1. A summary of problems in RBAC and their computational complexities

Problem Name Equivalent Set Cover Problem Complexity
Class

Preliminary IDRM V ∈ PCov? (that is, V = ker(V)?) P

Exact IDRM decision Set cover decision NP-complete

Exact IDRM optimization Set cover optimization NP-hard

IDRM-safety Compute ker(V) P

IDRM-availability Minimal cover NP-hard

SSoD enforceability decision Set cover decision NP-complete

SSoD enforceability optimization Set cover optimization NP-hard

UAQ Container optimization NP-hard

RSSoD generation Irreducible cover enumeration NP-hard

5 Concluding Remarks

In this paper, we study some variations on the set cover problem. We define
the notions of container, minimal container, minimal cover, irreducible cover
and optimal cover, and establish complexity results for a number of problems
associated with these notions.

Our results establish the computational complexity of a number of fundamen-
tal problems in RBAC: in particular, the IDRM-safety and availability problems,
the UAQ problem and the RSSoD generation problem. We summarize our results
in Table 1.

The minimal cover problem is NP-hard. In other words, it is unlikely that
there exists an algorithm that computes an exact solution to the problem in
polynomial time. Clearly, we can devise a näıve algorithm that considers every
possible subset of C to compute an exact solution to the minimal cover problem.

There is a well known “greedy” algorithm for computing a good approximate
solution to the set cover optimization problem in polynomial time [10]. This
iterative algorithm sequentially selects elements from C. At the ith iteration it
selects Ci ∈ C such that |Ci ∩ Vi−1| is maximized, where Vi−1 is the members
of V that remain uncovered after the (i − 1)th iteration. Here |Ci ∩ Vi−1| is a
measure of the “benefit” of selecting Ci. An extension of this approach can be
used to compute an approximate solution to the weighted set cover problem [11].
These algorithms are designed to minimize the number of sets used (as required
by the set cover problem). When computing a minimal cover, however, we are not
concerned with the number of elements in the cover. Instead, we are concerned
with satisfying two different objectives simultaneously: to compute a cover of V
and to minimize the number of elements outside V that are covered.

We previously proposed an approximate algorithm for computing solutions to
the IDRM-availability problem based on the greedy algorithm for the weighted
set cover problem [4]. Given X , C and V ⊆ X , we defined a “cost” function
γ : C → R

+ and a “benefit” function β : C → R
+, where

γ(C) = |C| · |C \ V | + 1
|V | and β(C) = |Vi−1 ∩ C| .

Set Covering Problems in Role-Based Access Control 703

We then defined an iterative algorithm that chooses Ci ∈ C at the ith itera-
tion such that γ(Ci)/β(Ci) is minimized. Informally, the algorithm chooses Ci

because Ci contains relatively few elements outside V and relatively many el-
ements of V that remain uncovered after the (i − 1)th iteration. However, we
did not provide a theoretical justification or conduct any experimental work to
establish how good the approximate solutions generated by this algorithm were.

A natural extension to this algorithm is to re-compute the cost function γi at
each iteration. Specifically, we define γi(C, Ti−1) = |C| · |C \ Ti−1|, and initialize
the “target” T0 to V . At the ith iteration the algorithm

1. selects Ci ∈ C such that γi(Ci, Ti−1)/βi(Ci) is minimized, and
2. target Ti is expanded to include those new elements of Ci; that is, Ti =

Ci ∪ Ti−1.

The advantage of this approach is that in choosing C, we expand V to V ∪ C,
and it may be that we can choose C′ to cover other elements of V without
including any elements outside V ∪ C. Consider, for example, X = {1, 2, 3, 4},
C = {C1, C2, C3, C4}, where C1 = {1, 3}, C2 = {2, 3}, C3 = {1, 4}, C4 = {2, 4},
and V = {1, 2}. If C1 is chosen at the first step of the algorithm, then, at the
second iteration, we choose C2 (since V has been expanded to include 3 from C1)
to obtain the container {1, 2, 3}. In contrast, our earlier algorithm can choose
between C2 and C4 at the second step, the latter choice ultimately resulting in
the container {1, 2, 3, 4}.

We plan to develop different algorithms using different cost functions de-
scribed above, and conduct some experimental work to test the quality of the
approximate solutions generated by these algorithms. We would then like to
establish an approximation ratio for the best algorithm we obtained in the ex-
perimental work. More specifically, let D ⊆ C be a cover of V returned by an
approximate algorithm. Then we define the quality of D to be |UD|. The approx-
imation ratio of the algorithm indicates that the ratio between the quality of
approximate solution returned by the algorithm and the quality of the exact so-
lution is bounded by some function of |C| and |V | (see the work of Johnson [10],
Chvatal [11] and Feige [12] on the set cover problem, for example).

Acknowledgements. We would like to thank the anonymous referees for their
careful reading and cogent analysis of the shortcomings of a preliminary version
of this paper. The final version has been much improved as a result of the referees’
insightful feedback.

References

1. Sandhu, R., Coyne, E.J., Feinstein, H., Youman, C.E.: Role-based access control
models. IEEE Computer 29(2), 38–47 (1996)

2. American National Standards Institute: ANSI INCITS 359-2004 for Role Based
Access Control (2004)

704 L. Chen and J. Crampton

3. Du, S., Joshi, J.B.D.: Supporting authorization query and inter-domain role map-
ping in presence of hybrid role hierarchy. In: Proceedings of the 11th ACM Sym-
posium on Access Control Models and Technologies, pp. 228–236 (2006)

4. Chen, L., Crampton, J.: Inter-domain role mapping and least privilege. In: Pro-
ceedings of the 12th ACM Symposium on Access Control Models and Technologies,
pp. 157–162 (2007)

5. Zhang, Y., Joshi, J.B.D.: UAQ: A framework for user authorization query process-
ing in RBAC extended with hybrid hierarchy and constraints. In: Proceedings of
the 13th ACM Symposium on Access Control Models and Technologies, pp. 83–92
(2008)

6. Wickramaarachchi, G.T., Qardaji, W.H., Li, N.: An efficient framework for user
authorization queries in RBAC systems. In: Proceedings of the 14th ACM Sympo-
sium on Access Control Models and Technologies, pp. 23–32 (2009)

7. Li, N., Tripunitara, M.V., Bizri, Z.: On mutually exclusive roles and separation-of-
duty. ACM Transactions on Information and System Security 10(2) (2007)

8. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman and Company, New York (1979)

9. Chen, H., Li, N.: Constraint generation for separation of duty. In: Proceedings of
the Eleventh ACM Symposium on Access Control Models and Technologies, pp.
130–138 (2006)

10. Johnson, D.S.: Approximation algorithms for combinatorial problems. Journal of
Computer and System Sciences 9(3), 256–278 (1974)

11. Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of op-
erations research 4(3), 233–235 (1979)

12. Feige, U.: A threshold of ln n for approximating set cover. Journal of the
ACM 45(4), 634–652 (1998)

	Set Covering Problems in Role-Based Access Control
	Introduction
	Background
	RBAC
	The Set Cover Problem

	Variations on the Set Cover Problem
	The Kernel and Shell
	Minimality, Optimality and Irreducibility
	The Minimal Cover Problem
	The Irreducible Cover Problem

	Covering Problems in RBAC
	The Inter-domain Role Mapping Problem
	The User Authorization Query Problem
	Separation of Duty

	Concluding Remarks

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

