Requirements and Protocols for Inference-Proof
Interactions in Information Systems

Joachim Biskup, Christian Gogolin, Jens Seiler, and Torben Weibert

Fakultit fiir Informatik, Technische Universitidt Dortmund, D-44221 Dortmund, Germany
biskup@ls6.informatik.uni-dortmund.de

Abstract. Inference control aims at disabling a participant to gain a piece of
information to be kept confidential. Considering a provider-client architecture for
information systems, we present transaction-based protocols for provider-client
interactions and prove that the incorporated inference control performed by the
provider is effective indeed. The interactions include the provider answering a
client’s query and processing update requests of two forms. Such a request is
either initiated by the provider and thus possibly to be forwarded to clients in
order to refresh their views, or initiated by a client according to his view and thus
to be translated to the repository maintained by the provider.

1 Introduction and Survey

A service provider maintaining an application of an information system supports his
clients to share and communicate information. Basically, sharing information is accom-
plished by keeping available (semi-)structured data in a repository in a persistent and
integrity enforcing way, and communicating information is the result of various interac-
tions between the provider and his clients, including the provider answering a client’s
query, the provider processing a client’s update request, and the provider informing
a client about an update performed. Accordingly, the service provider acts as a me-
diator between the clients, and there are no direct interactions between the clients. In
this work, we study a particular version of this general scenario including a particular
security aspect, as outlined in the following.

Regarding availability, different clients might have different information needs and,
complementarily, regarding confidentiality, the provider might not want to allow each
individual client to share all the information. According to the mediation architecture,
any restriction of the information flow between two clients has to be enforced by con-
trolling the provider-client interactions.

In order to restrict information flows, at the site of the mediating provider some con-
trol component has to decide about whether and to which extent — or with which modi-
fications — a requested interaction should be actually executed. Any such decision must
be based on two complementary policies that are suitably declared in advance: For each
client, a confidentiality policy states which information that client should never be able
to gain, and an availability policy states which information should be supplied to that
client on demand. Clearly, the two policies must be conflict-free, i.e., no piece of infor-
mation is both prohibited and permitted, and the two policies should be complete, i.e.,

M. Backes and P. Ning (Eds.): ESORICS 2009, LNCS 5789, pp. 285 2009.
(© Springer-Verlag Berlin Heidelberg 2009

286 J. Biskup et al.

for each called interaction and the pieces of information involved, a definitive decision
can be obtained.

Unfortunately, regulating plain access to data is not sufficient to control the gain
of information. Additionally, the control component has to take into consideration the
potential inferences a client can derive from observing any aspect of the system’s be-
havior over the time [[1912310]. This behavior includes query responses, notifications
of enforcing integrity constraints and control decisions. Moreover, the client’s infer-
ences could additionally exploit a priori knowledge, which might range from public
knowledge, like the schema with the integrity constraints declared for the information
system, to the client’s specific experience. Accordingly, the control component must be
based on an appropriate assumption about a client’s a priori knowledge.

Within the context sketched above, we deal with the problem of policy-based infer-
ence control of interactions in an information system in three ways:

— We specify the requirements in detail, including a formal specification of the goal
of inference-proofness in terms of indistinguishability.

— Exemplarily considering a specific instantiation of the given context, we propose
control protocols for the basic interactions of querying and updating.

— We formally outline a verification of these control protocols w.r.t. the requirements.

We substantially extend previous work on controlled query evaluation [39/14/3[4l5l6/8]],
which assumes a static information system, never updated after its initialization. More-
over, our results identify inference control as an important feature of view updating and
view refreshing [2118/30J27/13]], and they complement the rich literature on mandatory
control of information systems with polyinstantiation [20/31128/37U16/17/41]] by inves-
tigating a discretionary, policy-based control mode. The main general insight supplied
and the most important results presented can be summarized as follows:

— A provider can effectively control the basic interactions of querying and updating
including enforcing integrity constraints in an inference-proof way, i.e., such that
any forbidden information gain by his clients is provably impossible.

— Applying an inference-proof protocol for view refreshing, a provider can support a
client who maintains a local view by recalling all query answers and needs to get
informed about updates.

— Applying an inference-proof protocol for view updating, a provider can support a
client who both issues queries and modifies data held by the provider.

— Both protocols are designed to handle transactions, i.e., atomically treated se-
quences of update requests, and thus inference-proof interactions are compatible
with advanced enforcement of integrity constraints.

The remainder of this paper is structured as follows. In Section 2] we further describe
the context already sketched and explain the inference problems involved in some more
detail. In Section 3] we introduce a formal model for our investigations, present the
requirements and recall a known result on controlled query evaluation. In Section[d] we
propose a protocol for processing provider updates requests and view refreshing, and
in Section[3]a protocol for processing view update requests. In the respective sections,
both protocols are proved to satisfy the requirements. Finally, in Section[6] we discuss
related work, comment on the achievements and suggest some lines of further research.

Requirements and Protocols for Inference-Proof Interactions in Information Systems 287

2 Scenario and Problem Statement

We distinguish between (syntactically given) data and the (semantically interpreted)
information denoted by such data. Given a meaning of information, we can also speak
about logical implications between pieces of information. To keep a piece of informa-
tion confidential to a client, it is necessary that this piece is not logically implied by
the information available to that client. Accordingly, given a confidentiality policy as
a set of sentences, a provider has to enforce an invariant expressing that the current
information of a client does not logically imply that any of those sentences holds. How-
ever, we consider it harmless that a client obtains the information that such a sentence
does not hold. Seeing the primary goal of an information system to support the sharing
of information, we treat confidentiality requirements as an exception from the rule of
guaranteeing availability as far as possible. Accordingly, whereas we specify the con-
fidentiality policy extensionally by explicitly enumerating the respective sentences (as
the “exceptions”), we express the complementary availability policy intensionally just
by requiring that the holding of any other information should be correctly communi-
cated unless a distortion is actually needed for preventing a violation of confidentiality.

At the beginning, the provider has to postulate the pertinent invariant as a precondi-
tion about the information available to that client. In general, the a priori knowledge of
a client includes the integrity constraints of the schema. Before returning an answer to
any query issued by that client, the provider has to censor the correct answer whether it
would violate the invariant given the current information available to the client. Thus,
maintaining a log file for each of the clients, the provider has to consider both the
client’s (postulated) a priori knowledge and all the information the client obtained from
previous interactions since the beginning. If the provider detects that a violation of the
invariant would arise, basically, he has two options to react: Either he notifies the client
that he refuses to deal with the query or, without notification of course, he returns an
answer where the correct truth value is switched, a lie for short. In this paper, we ex-
emplarily deal with lies; thus, in order to avoid running into a “hopeless situation” in
the future, the invariant must be strengthened such that the client’s current informa-
tion of a client does not logically imply that the disjunction of of all sentences to be
kept confidential holds. The overall approach leads to a behavior of “last minute distor-
tions” and, consequently, the dependence of the returned answers from the submission
sequence.

The basic arguments regarding answers to queries also apply to any reaction that a
provider shows to a client in whatever kind of interaction. In this paper, we will study
two kinds of update processing, aiming to identify sufficient conditions to block any
forbidden gain of information. The central issue of any update processing is maintain-
ing the integrity constraints declared: Inductively assuming that the integrity constraints
are valid for the current instance, after completely processing an update request, the in-
tegrity constraints should be valid again for the new instance. If the update request is
compatible with the integrity constraints, we actually get a modified instance; other-
wise, in case of incompatibility, the current instance is left unchanged. In both cases,
the requester is notified accordingly. Similar to answers to queries, such a notification
conveys information, and thus it has to be controlled regarding options for forbidden
inferences.

288 J. Biskup et al.

Notifying an accepted update request needs care. For example, we let the client re-
quest to set the truth value of the sentence “Mr X suffers from aids” to true, while
we consider the sentence “Mr X suffers from aids or Mr X suffers from cancer” as
an integrity constraint. If the provider notifies the client that the truth value has been
changed indeed, then the client receives the information that previously the truth value
of the sentence “Mr X suffers from aids” was false and thus, according to the constraint,
“Mr X suffers from cancer” must have been and still is true. Hence, this update request
partially includes the query whether “Mr X suffers from cancer” as a side effect. An-
other example indicates that notifying a rejected update might be crucial, too. Again,
we let the client request to set the truth value of the sentence “Mr X suffers from aids”
to true, but we now consider the sentence “Mr X does not suffer from aids or Mr X does
not suffer from cancer” as integrity constraint. If the provider notifies the client that the
request failed due to a violation of the integrity constraint, then the client receives the
information that “Mr X suffers from cancer” must have been and still is zrue. Hence, this
update request again partially includes a query, and thus must be treated accordingly.

In a first kind of processing updates, the requesting agent is the provider himself. If
the update succeeds and the new instance differs from the previous one, then, in princi-
ple, the provider should inform all his clients accordingly. For, in our context, the clients
are supposed to recall all previously received information and to consistently combine
the accumulated knowledge into a local view for their respective tasks. However, an un-
observed update could make a local view useless and thus threatens availability. Hence,
once the instance has actually been modified, the provider has to refresh all local views,
which in our context means to reevaluate the sequence of queries previously submitted
by a client and to forward the new answers to that client. Since each single answer de-
pends on the set of answers previously returned, a reevaluation after a succeeded update
might cause subtle inference problems. In particular, a client could try to gain hidden
information from comparing the original answers with the refreshed ones.

In the second kind of processing updates we study in this paper, the requesting agent
is a client. For this kind, the client is supposed to possess a local view on the actual
(but hidden) instance (which is stored at the site of the provider), and his update request
is seen as referring to his local view (which might contain lies returned in previous
interactions). Accordingly, the provider handles the request similarly to a classical view
update, namely by translating the requested update of the view into an actual update
of the full instance, as far as possible. Moreover, the provider has to send notifications
about the success or failure of enforcing integrity constraints to the requesting client.
As far as this client is confined by inference control, again the provider has to ensure
that the notifications are inference-proof.

Given sophisticated integrity constraints, we sometimes cannot modify a current in-
stance stepwise by individually treating the information regarding single sentences;
rather, we have to process a whole sequence of modifications in an atomic way as a
transaction, where the constraints must be valid after considering the full sequence
but may be violated in between. A similar observation applies to notifications and re-
freshments: Sometimes, such messages regarding individual sentences would result in
a forbidden gain of information but the message about the full transaction will turn out
to be harmless.

Requirements and Protocols for Inference-Proof Interactions in Information Systems 289

3 Formal Model and Confidentiality Requirements

We employ a logic-oriented approach to information systems [1]. We only consider
complete, propositional information systems (leaving generalizations to incomplete in-
formation systems [7U8] or first-order logic [649U11]] for a future elaboration). We assume
a vocabulary of propositional atoms, from which we can construct propositional sen-
tences using the connectives of negation and disjunction (and derived connectives). A
literal is either an atom or a negated atom. The schema of an information system is
given by the vocabulary and the integrity constraints, expressed as a finite set con of
sentences. An instance db is a set of literals: For each atom o of the vocabulary, either
the atom « itself or the negated atom —¢ is an element. Given the vocabulary, it suffices
to explicitly specify only the atoms. An instance db defines a truth-value assignment to
propositional atoms by making each atom ot € db true and all the remaining atoms false.
Such an assignment is inductively extended to arbitrary sentences @; eval(®)(db) de-
notes the truth value assigned to @ by db. We require that an instance db satisfies the
integrity constraints con, i.e., eval(con conj)(db) = true for con conj := \yccon 9. The
notion of logical implication between (sets of) sentences is designated by .

A query request que(®), contains any sentence @ of the underlying propositional
logic (leaving a generalization to open queries [6] for future work). The correct an-
swer to the query @ under an instance db is the pertinent truth value eval(®)(db);
we alternatively express the correct answer by eval*(®)(db) that denotes either @ or
—® in a straightforward way. Regarding an update request, we focus on changing the
truth-values of atoms, in order to avoid ambiguity problems [2] (leaving extensions to
more sophisticated cases [218/30J27/13]] for further research). A request contains one
or more literals, assumed to refer to pairwise different atoms, that should be set to true,
i.e., become an element of the updated instance. An update request succeeds for a given
instance db, if adding the specified literal(s) and removing its (their) negation(s) trans-
forms db; into db, that satisfies the constraints again; otherwise the request fails.

Definition 1 (interaction sequences). An interaction sequence Q := (01,0,,...,6;,
..., O) is composed of query requests and update requests submitted by the provider
and the clients as follows:

C; : que(d;) a query, submitted by a client C;, or

P pup(yxi) an elementary provider update with
a single literal, or

P:ptr({Xi1,---,Xi;;)) a provider update transaction with
O, = a set of literals from different atoms, or (D)

G vup(x) an elementary view update with
a single literal, submitted by a client C;, or

Ci:vtr((Xi1,---,Xiy;)) a view update transaction with a set of literals
from different atoms, submitted by a client C;.

Though not reflected by the notations used in the definition, an execution of an update
request might produce messages for all clients for distributing refreshments.

To confine a client C, the provider declares a client confidentiality policy as a finite set
pot sec|C] of propositional sentences, called potential secrets, indicating that they are

290 J. Biskup et al.

not necessarily true in a current instance (leaving alternative, but not always applicable
policies containing complementary sentences (‘“secrecies”) [39/4] for further elabora-
tion). The client involved is supposed to know this declaration (leaving the weaker as-
sumption of non-awareness [39/4], which might cause less distortions, for future work).
SEC denotes the collection of all client policies por sec[C]. In order to prevent the client
C from ever inferring that any sentence ¥ € pot sec|C] actually holds, the approach of
lying [144318] has to protect not only the individual potential secrets but, in fact, the dis-
junction of all potential secrets pot sec disj[C] := \/yepos secjc] ¥ This requirement for
lying reflects the need to avoid “hopeless situations” of the following kind: While al-
ready knowing the disjunction of some potential secrets ‘¥, a client successively queries
those sentences and receives lied answers =¥, which would lead to an inconsistent log
file. (We leave protocols for the approach of refusals and for a combination of lying and
refusals 39,314,568 for future research.)

For each client C, the provider maintains a client log log|[C] for keeping the (postu-
lated) a priori knowledge of that client and the reactions, including answers to queries,
returned to him during previous interactions. Without loss of generality, we always
assume that the provider communicates the initial value log[C]y of the log file to the
client C at the time of registration. Basically, log[C] is just a set of propositional sen-
tences (whereas in future work for incomplete information systems we have to employ
modal logic [7U8]). However, for some purposes, the provider might have to recall some
further information, in particular the order in which the client has issued his queries.
For simplicity, and by abuse of notations, we refrain from explicitly denoting such ad-
ditional information in the generic definition given below. Later on, however, we will
add more details as particularly needed. LOG denotes the collection of all client logs
log|C].

Definition 2 (controlled execution). Let be given a finite set con of sentences as in-
tegrity constraints, a current instance db;_, and for each client C a finite set pot sec|C]
of sentences as a confidentiality policy, collected by SEC, and a finite client log log[C];
with log[C)i—1 2 con, collected by LOG;_.

Then a function cexec(con,db;_1,SEC,LOG;_1,0;) defines a controlled execution of
an interaction ©; by the triple (REA;,LOG;,db;), where

— REA; are the collected reactions (possibly) returned to the provider and the clients;

— LOG:; are the collected new client logs; and

— db; is the new instance produced (satisfying con).
Furthermore, for an initial instance dby and initial collected client logs LOG)y this func-
tion is inductively extended to any interaction sequence Q :={ ©1,0,,...,6;,...,.6;)
by applying it stepwise in a straightforward way:

cexec(con,dby,SEC,LOGy,Q)

= ((REA,,LOG,,dby),...,(REA;,LOG;,db;),...,(REAy,LOGy,dby))

The formal definition of the confidentiality requirement we want to achieve by a con-
trolled execution is expressed in terms of the indistinguishability — from the point of
view of some client C — of the actual sequence of instances from an alternative se-
quence whose instances do not satisfy any potential secret — as declared for that client,
together with the indistinguishability of the corresponding interaction sequences. To
keep the notation simple, we give this definition only in the form tailored for the lying

Requirements and Protocols for Inference-Proof Interactions in Information Systems 291

approach. We also emphasize that we will give a definition that is parameterized with
the expressive means of the scenario considered, the clients are assumed to be aware of.

Definition 3 (confidentiality). Let Int be a subcollection of the interactions in the sense
of Def. [l Con a class of sentences for expressing integrity constraints, Pol a class
of sentences for expressing confidentiality policies and Know a class of sentences for
expressing further a priori knowledge. [A controlled execution function cexec preserves
confidentiality (w.r.t. Int, Con, Pol and Know) iff

for all sets of integrity constraints con C Con, for all initial instances dby satisfying
con, for all collections of confidentiality policies SEC expressed with sentences in Pol,
Sor all collections of initial client logs LOG such that for each client C, con C log[Clo
and 1og[Clo \ con is expressed with sentences in Know and log[Clo F~ pot sec disj[C],
for all interaction sequences Q over the underlying subcollection Int, for each client C:
there exists an alternative instance dboc satisfying con and there exists an alternative
interaction sequence Q€ over Int such that from the point of view of C, as defined by
the projection vV of a sequence of triples (REA;, LOG;,db;) to the C-visible parts, in
particular the reactions ans|C);, the following two properties hold:

1. Q with dby and Q€ with dbg produce the same sequence of reactions, i.e.,

v (cexec(con,dby, SEC,LOGy,Q)) = v (cexec(con,db§,SEC,LOGo,0%)) (2)
2. dboc and all db§ as well do not contain any potential secret ¥ in pot sec|C), i.e.,
eval* (P)(db$) = =¥, foralli=0,... (3)

The general scenario simplifies considerably if we consider a fixed instance db;_; and
allow only queries by clients. Assumed not to be colluding, the clients can then be
treated completely separately (ignoring covert channels or related unwanted effects).
Moreover, since answers do not age, no refreshments are needed. For this simplified
scenario, we can restate a mechanism of “controlled query evaluation” using lies, pre-
sented and proved to preserve confidentiality in previous work [1443l4], as follows.

Protocol 1 (query answering)@
client: submit a query request C; : que(®;) to the provider.
provider:

1. check whether adding the correct truth eval®(®;)(db;_1) to the log file log[C];—1
maintained by the provider would preserve the invariant derived from the confiden-
tiality policy pot sec[Ci], i.e.,

log|Cli—1 U{eval*(®;)(db;—1)} V£ port sec disj[Ci]; 4)

' To denote one sort of item, we select an appropriate identifier. To distinguish to which client
C an item refers, we qualify the identifier by a suffix of the form “[C]”. To indicate the state of
an item at a point in time i, we append a subscript “;”’ to the identifier. Finally, if for a client C
a possible alternative “view” is considered, we append a superscript “C”.

2 For saving space, we present all protocols by mixing informal explanations and formal spec-
ifications. Note that answers to the provider are not subject to confidentiality constraints. At
some places, an answer to a client is explicitly shown only in an informal way; then the formal

version is understood to be implicitly specified by the (non)modification of the log file.

292 J. Biskup et al.

2. if (@) holds, then return the correct truth value eval* (®;)(db;_1) to C;
else return the negation —eval*(®;)(db;_1), i.e. a lie, (as justified by a basic lemma
showing that in the negative case the lie does preserve the invariant);
insert the sentence returned into C;’s log.

We concisely summarize the provider’s part of the protocols more formally by:
ans[Ci; = if log[Ci)i—1 U{eval*(®;)(db;—1)} [~ pot sec disj[Ci]
then eval®(®;)(db;—) else —eval*(®;)(db;—1) 5)
log|Cili := log|Cii—1 U{ans[Ci];}

Alternatively, we might see a pair (db;_1,l0g[Ci];—1) as a kind of polyinstantiated in-
stance: Given the request C; : que(®;), the provider first inspects whether the second,
potentially distorted (or “polyinstantiated”) part log[C;];—; already entails an answer;
only otherwise, the first, “real” part is employed to dynamically check the correct an-
swer for eligibility, and if this is not the case, the query sentence is “polyinstantiated”
by inserting the negation of the correct answer into the second part.

The definition of controlled execution and the protocol of query answering indicate
that, in general, achieving inference-proofness require us to accept a high computational
overhead, in particular by keeping log files and solving implication problems. However,
under some reasonable restrictions substantial optimizations for query answering are
possible [9U11]] (leaving extensions for update processing for future research).

4 Processing Provider Update Requests and View Refreshing

In this section, we originally introduce inference-proof view refreshments and study
their coordination with query answering. More specifically, whenever the provider suc-
cessfully modifies the instance, a client might be left with an aged view, i.e., for a query
previously submitted by him the answer actually obtained on the basis of the instance at
the point of time of the submission differs from the answer on the basis of the modified
instance. Thus, after a successful modification of the instance, the provider should al-
ways refresh the views generated by his previous answers (or other reactions). We will
present and analyze two protocols to meet this requirement.

The first protocol deals with update transactions, and thus a client, receiving a re-
freshment notification and then reasoning about the (hidden) actual modification, has
to consider the possibility that the real cause has been a sequence of updates. Basi-
cally, this protocol determines refreshments by a controlled reevaluation of the pertinent
queries. The second protocol deals with elementary updates, and thus, from a notified
client’s point of view, a real cause of a notification is restricted to a single update. Under
this assumption and the further restriction that only the subclass of literals (rather than
all sentences) is permitted to be used for queries, constraints, a priori knowledge and
confidentiality policies, this protocol does not need to perform complete reevaluations;
instead, basically, it suffices to just inspect the modified literal of the update request.

The two protocols indicate a tradeoff between expressiveness and efficiency: If we
permit unrestricted declarations and interactions, we are faced with the need to per-
form computationally expensive reevaluations; however, under the restrictions men-
tioned above, inference-proof view refreshing can be performed highly efficiently.

Requirements and Protocols for Inference-Proof Interactions in Information Systems 293

Protocol 2 (provider update transaction processing with refreshments)

provider: submit a provider update transaction request P : ptr({¥i1,-.., Xis))
(requesting to set each of the J; ; to true), where the argument sequence consists of
literals containing pairwise different atoms; and let A; := {)i 1,..., Xz }-

1. remove all literals y; ; from the request A; that are already valid in db;_; and notify
the provider;
if the update request is now empty
then do not modify the instance and notify the provider, i.e.,
— db; := db;_,, for all clients C: log[C]; := log[C];— and ans[C]; := €
— ans|[P); := “The requested update is already contained in the database”
2. else if the requested update would be incompatible with the constraints, i.e.,

eval(con conj) ((dbi—1 \ {—:jlxi.j € Ai}) UAi) = false (6)

then do not modify the instance and notify the provider, i.e.,
— db; := db;_, for all clients C: log[C]; := log|[C];— and ans[C]; .= €
— ans[P]; := “Update of A; inconsistent with integrity”
3. else accept the requested update, modify the instance and notify the provider, i.e.,
= db; := (dbiy \{~xijlxi; € Ai}) UA;
— ans[P); := “Update of A; successful”
and,
for all clients C, perform the following refreshment subprotocol for jy := 0 and the
subsequence Q[Clj, := (@j;...,0j, .) of query requests C : que(®P;;) submitted
by C previously:

— using Protocol [I} reevaluate the subsequence using the new instance db; and
the client log log[C], and thereby producing a new current client lod log [Cl;
— determine the deviating answers refresh[C|; := log[C]; \ log[C];—1
— if there are deviations, notify the client C, i.e.,
ans|C|; := if refresh|[C]; # @ then refresh[C]; else €

Example 1. We consider a vocabulary schema and, for the sake of simplicity, only one
client C with confidentiality policy pot sec|C] and initial log file l0g[C]o, and an initial
instance dby as follows: schema:={a,b,c,d, e, f,s1,52,t1,12}, pot sec[C] = {s1,s2,(t;1 A
)}, log[Clo := con:={aV bV s}, dby := {—a,b,c,~d,e, f,—s1,7s2,11,t, }. Table[I]
exhibits an interaction sequence and the resulting effects.
As seen to be possible by the client C, an alternative instance is given by

dbg :={—a,b,c,~d,e, f,—s1,7s2,t1, 12 }
and an alternative interaction sequence by
Q€ .= (C: que((cAd NeNf)Vs1),C:que(ty),C : que(ts), P : ptr({—t1,t2,a,d)),C : que(sy)).

3 Using the parameter jj := 0, the refreshment subprotocol does not change any sentence of
the initial log file. Seeing the integrity constraints cons as schema data, we have to keep them
invariant. Seeing an update request to refer only to the instance, we obtain the option to intro-
duce a separate control operation to modify the a priori knowledge in [og[C]o \ cons, which we
do not treat further in this paper. However, dealing with view updates, we will enable a client
to modify the a priori knowledge.

294 J. Biskup et al.

Table 1. An interaction sequence and the resulting effects for Protocol 2]

interaction effect
P ptr((=b,—e)) dby :={-a,b,c,~d,e,f,~s1,752,t1,12}
invisible incompatibility ans[C]y :={}

log|C]; :={(aVbVsy)}
C:que((cNdNeNf)Vsy) dby :={—a,b,c,~d,e, f,—s1,782,11,t2}

distorted answer ans[Cly :={-((cANdNeNf)Vs1)}
1og|Cly :={(aVbVsy),~((cNdNeNf)Vs1)}
C: que(t) dbsy :={—a,b,c,~d,e, f,—s1,782,11,t2}
correct answer ans[Cls := {11}
log|Cl3 :={(aVbVsy),~((cAdNeN f)Vs1),11}
C: que(t) dby :={—a,b,c,~d,e, f,—s1,782,11,t2}
distorted answer ans[Cly :={—1r}
1og|Cla :={(aVbVsy),~((cNdNeNf)Vs1),t1,~tr}
P:ptr({—ty,s1)) dbs :={—a,b,c,~d,e, f,s1,7s2,7t1,tp}
refreshment ans[Cls :={((cANdNeNf)Vs1),~t1,0}
log|Cls :=={(aVbVsy),((cANdNeAf)Vs),nt1,t}
C : que(sy) dbg :={—a,b,c,~d,e, f,s1,7s2,11,tp}
correct answer ans[Clg :={—s2}
log|Cle :=={(aVbVsy),((cANdNeAf)Vsy),t1,tp, 52}
P :ptr({s2)) db7 :={—a,b,c,~d,e, f,s1,s2,7t],2}
hidden update ans[Cl7 :={}

1og|Cl7 :={(aVbVsy),((cANdNeAf)Vsy),t1,tp, 52}

Theorem 1 (inference-proof provider update transactions with refreshments). For
Int being the subcollection of queries and provider update transactions in the sense
of Def. [ll and Con, Pol and Know being the full class of all sentences, the controlled
execution function that is based on Protocol[ll(queries) and Protocol[2l(provider update
transactions) preserves confidentiality in the sense of Def.[3]

Proof. We focus on one of the clients, say client C, and omit the qualification “[C]” for
components of policies, reactions and log files related to C. As required by Def.[3] we
start with a given general situation relevant for C, namely the integrity constraints con,
the potential secrets pot sec and the initial log file logg with con C log[C]o and logg -
pot sec disj, and the initial instance dby and the original sequence Q = { ©,0;,...,6;,
...,0%) of interactions, w.o.l.g. of the kind P : prr({xi1,..., X)) or C : que(®;),
which iteratively produce a sequence of instances db; as defined by the protocols.
We will construct an alternative instance db$ and an alternative interaction sequence
0¢=(06f,0f,...,05,...,0F), which generates a sequence of alternative instances
dbl-c. We will proceed inductively, for each interaction distinguishing its kind, and prove
the properties described further in Def.[3l To elaborate on the induction, we even achieve
the following stronger properties:

1. The subsequence Qgue := (Oj,,...,0;,) of Q formed by the query requests C :

» ke
que(®;,) is identical with the subsequence of Q¢ formed by the query requests.
2. Forall i =1,... k, the original reaction ans; and the alternative reaction ansic re-

turned to C are identical, i.e., ans; = ansic, and thus we also have that the original

Requirements and Protocols for Inference-Proof Interactions in Information Systems 295

and the alternative log files are identical, i.e., log; = logic. By definition, we also
have log =: log.

3. Foralli=0,...,k, the alternative instance dbic satisfies con, but it does not satisfy
pot sec disj and thus makes all potential secrets ¥ in pot sec false, i.e.,
eval* (W) (db§) = =Y.

4. Moreover, for all i =0,.. .k, the alternative instance db,-c satisfies all answers that
would be returned if the subsequence Q. of all submitted queries was evaluated
by Protocol [Tl for the potential secrets pot sec, the initial log file logy and the in-
stance db;. This “look-back-and-ahead” property implies that the result of this fic-
titious evaluation, denoted by logyu.,; is identical with the corresponding result for
the alternative instance db{, denoted by loggu”. Thus we have loggue,i = loggue_’i.

The actual construction of the alternative instances is based on the enforced invariant
expressing that a client’s log file never implies pot sec disj: the alternative instances are
taken as appropriate witnesses for such non-implications. The details of the construction
and the verification of the claimed properties are omitted for the lack of space. a

Protocol 3 (elementary provider update processing with refreshments)
provider: submit an elementary provider update request P : pup(;) to set y; to true
Essentially, same as Protocol 2] with some straightforward simplifiations and the fol-
lowing optimized refreshment subprotocol, performed for all clients C:
if either the client C is prohibited to learn the update performed
or the client is eligible but so far has “no belief” on —y;, i.e.,
Xi = pot sec disj[C] or (xi = pot sec disj[C] and log[Cli—1 [~ —xi)
then the update remains invisible to that client, i.e.,
—ans|C); := €, and log[C]; := log|C];—1
else notify that client and log the notification, i.e.,
—ans|Cli:== i
~10g[Cl; := (logi—1 \ {—xi}) U {xi}

Example 2. We consider a vocabulary schema and, for simplicity, only one client C
with confidentiality policy pot sec and initial log file logg, and an initial instance dby
as follows: schema := {a,b,c,d,s;,s2}, pot sec|C] := {s1,s2}, log[Clo := con := {a},
dby := {a,b,~c,d,—s1,s,}. Table 2l exhibits an interaction sequence and the resulting
effects, for which db§ := {a,b,—c,d,—s;,—s, } is an alternative instance and Q€ := (C':
que(c),C : que(sy),C : que(d),P : pup(c)) is an alternative interaction sequence.

Theorem 2 (inference-proof elementary provider updates with optimized refresh-
ments). For Int being the subcollection of queries with a literal and elementary provider
updates in the sense of Def.[[l and Con, Pol and Know being the class of literals, the
controlled execution function that is based on Protocol[ll(queries) and Protocol[3l(ele-
mentary provider updates) preserves confidentiality in the sense of Def. 3

Proof. The omitted proof follows the inductive structure employed for Theorem[Il Al-
ternatively, we could profit from that proof as follows. By definition, Protocol [3] is a
specialization of Protocol [2] regarding Cases 1 and 2. Regarding Case 3, it is a spe-
cialization as well, since switching the truth value of a literal y; cannot affect the truth

296 J. Biskup et al.

Table 2. An interaction sequence and the resulting effects for Protocol 3]

interaction effect

P : pup(b) dby :={a,b,—~c,d,—sy,s,}

already contained update ans[C]y :={}, log|C]; := {a}

P : pup(—a) dby :={a,b,—~c,d,—sy,s,}

invisible incompatibility ans[Cly :={}, log[C]y := {a}

C : que(c) dbsy :={a,b,—c,d,—s1,s}

correct answer ans[Cl3 := {—c}, log[C]3 :={a,~c}

C : que(sy) dby :={a,b,—~c,d,—sy,s,}

correct answer ans[Clg :={—s1}, log[Cls :={a,—c,—s1}
P :pup(sy) dbs :={a,b,~c,d,sy,s}

hidden update ans[Cls :={}, log|[C]s5 :={a,—c,—s1 }

C: que(d) dbg :={a,b,—c,d,s1,s2}

correct answer ans[Clg := {d}, log[Cle := {a,—c,d,—s1 }
P : pup(c) db; :={a,b,c,d,s,s2}

refreshment ans[Cl7 :={c}, log|[Cl7 :={a,c,d,—s1}
P : pup(—b) dbg :={a,—b,c,d,sy,s2}

hidden update ans[Clg :={}, log|Cls :=={a,c,d, s}

values of other literals. Theorem [1] then states that Protocol 3] preserves confidentiality
if the client sees alternative transactions as “possible”. Thus, it suffices to verify that an
original one-step transaction always permits an alternative one-step transaction. O

5 Processing View Update Requests

We will now treat view updates in the context of our scenario, which includes queries,
provider updates and transactions. Our main protocol is based on the following ideas.
First, we reconsider the protocol for a special case studied in [12]]. For a restricted
scenario of only one client and without provider updates, this protocol processes an
elementary view update C; : vup();). The protocol consists of four, subsequently con-
sidered steps, which represent four disjunct cases for the response to the client C;. These
cases capture the intuition that the client’s request to set the truth value of the literal y;
to true implicitly contains several queries that are answered by the provider’s reactions.
These implicit queries include whether y; is already frue and whether the constraints
would be valid after switching y; to true. Obviously, we have to identify all implicit
queries and then control them as if they were explicitly submitted. The protocol for the
general case, presented in this work, keeps the overall structure of the specialized one,
but substantially extends it regarding refreshments for other clients and transactions.
We need the following tools: For a set A of sentences, neg(A) negates each sentence
in A; for a sentence ¢ and a literal)y, neg(¢, x) replaces every occurrence of the atom
specified by the literal)y in the formula ¢ by the negated atom; the latter function
handles a set of sentences and a set of literals, respectively, element-wise. For example,
neg(—(aAb)V —a,~a) = —=(-aAb)Va;and we obtain a basic property:

= _J@\{x})u{-x} foryecadb
eval(¢)(db) = eval(neg(¢al)) (dbx)wibl = {(db\ {_%}) Ulx} otherwise

Requirements and Protocols for Inference-Proof Interactions in Information Systems 297

Thus, we obtain the same results evaluating a sentence on an instance and evaluating
the y-negated formula on the instance created by negating the atom specified by .

Second, as in [12]], we have to suitably resolve conflicts between integrity and confi-
dentiality, well-known from polyinstantiation for mandatory access control. More
specifically, on the one hand, a requested update could violate integrity but, on the other
hand, a notification of this fact to the requesting client C; would endanger confidential-
ity. Under polyinstantiation, the conflict is handled by keeping both the original value,
classified to be employed for sufficiently cleared users, and an updated value, classified
to be employed in particular for the requestor. In our discretionary approach, we will
elaborate a similar solution: Roughly, the provider claims to perform the update but ac-
tually leaves the instance unmodified and only reflects the update in the log file of C;.
Thus, described alternatively in terms of seeing the pair (db;_1,log[C];—1) as a kind of
polyinstantiated instance, the update sentences are going to be “polyinstantiated”.

Third, as a new feature, we have to add refreshments for the other clients C # C;
and, for our broader context, to take care about all reactions received by such a client.
Basically, there are three cases: answers to explicit queries, answers to implicit queries
as discussed above, and refreshments of both kinds of answers. However, these cases are
uniformly represented by the current log file log[C]; maintained by the provider. Thus,
essentially, the provider has to refresh this log file, in general respecting the insertion
sequence. Note that in general a client receiving a refreshment notification will not be
able to distinguish whether the underlying update originates from another client or the
provider (if the underlying update would be permitted for all participants involved).

Fourth, as an additional challenge, transactions raise the problem that some of the
included requests might be harmful whereas others are not. We solve this problem by
iteratively splitting the set A; of all literals involved into two parts ComA; and IncA;,
where ComA; contains the literals identified to be compatible to the client’s view and
IncA; the incompatible ones.

Protocol 4 (view update transaction processing)

client: submit a view update transaction request C; : ver({Xi.1,- .., Xiz)) to the provider
to set each of the y; ;, containing pairwise different atoms, to true.

provider:

1. initialize the literal sets ComA; and IncA;, i.e., ComA; := 0, IncA; := 0,
and then iteratively inspect each literal for compatibility as follows:
for j=1,....1
if therequest to update y; ; is compatible with the client’s view (corresponding
to the concept of “acceptability” in [2]; meaning that the request either needs not
to be performed or should not be performed for the sake of confidentiality), i.e.,

[eval™(xij)(db;—1) = xi,j and

7
log|Cli—1 Uneg(IncA;) UComA; U{y; j} - pot sec disj[Ci] | or @

[eval”(xi ;)(dbi-1) =~y ; and

8
log|Cili—1 Uneg(IncA;) UComA; U{—y; ;} = pot sec disj[Ci]] ®)

then ComA;:=ComA;U{yi;} else IncA;:=IncA;U{yi}:

298

J. Biskup et al.

if IncA; = 0 (i.e., all requests are seen as compatible)
then do not modify the instance, log the request like a query response, and notify
the client G, i.e.,

- db, = dbl;l
- log[Ci]i := log[Ci]i—1 UComA;
— ans|C;j]; := “The requested update is already contained in the instance”

else if allowing the incompatible part would infer a secret or violate the con-
straints and this fact is known to the client C; a priori, i.e.,

neg(log[Cli—1,IncA;) UlncA; U ComA; U con |= pot sec disj|Cj])

then do not modify the instance, log the compatible and the negated incompatible
parts like query responses, and notify the client C;, i.e.,

- db, = dbl;l
- log[Ci]i := log[Ci]i—1 Uneg(IncA;) UComA;
— ans|C;); := “The part ComA; of the requested update is already contained in the

instance, and updating the part Inc4; is inconsistent with secrets or integrity”
else if allowing the requested update would violate the constraints and this is
unknown to the client a priori but not harmful, i.e,

eval(con conj) ((db,-,l \ neg(IncA;UComA;)) UlncA; U ComA,-) = false and
(10)

log[Ci]i—1 Uneg(IncA;) UComA; U {neg(—con conj,IncA;)} - pot sec disj[C}]
(1D
then do not modify the instance, log the negated incompatible part of the request,
the compatible part of the request and a sentence expressing the incompatibility
like query responses, and notify the client C;, i.e,

- db, = dbl;l
- log[Ci]; :=10g[Cii—1 Uneg(IncA;) UComA; U { neg(—con conj,IncA;)}
— ans|C;; := “The part ComA,; of the requested update is already contained in the

instance, and updating the part /nc4; is incompatible with integrity”
else
accept the requested update and notify the client C; and, if the instance is actually
changed, refresh the views of all other clients, i.e.,
- if eval(con conj) ((db,-,l \ neg(IncA;UComA;)) UlncA; UComA,-) = false
then db; := db;_;
(thus the update is not performed in the actual instance and some kind of
“polyinstantiation” will occur when the update is performed in the log file)
else db; := (db;_1 \ neg(IncA;UComA;)) UlIncA;UComA;
- log[C}]; := neg(log|[Cili—1,IncA;) UlncA; UComA; U con
(thus the update comprises an implicit refreshment] of the user log log[C]]
which can be computed by the client C; himself or be communicated to him)

4 Notably, this refreshment includes the part neg(log[Clo \ con, IncA;) which represents the up-
dated apriori knowledge.

Requirements and Protocols for Inference-Proof Interactions in Information Systems 299

— ans|C;); := “The part ComA; of the requested update is already contained in the
instance, and the update of the part IncA; is successful”

— if db; # db;_,
then, for all C # C;, process the refreshment subprotocol of Protocol 2] for the
user log log[C]j, and the sequence of query requests Q[C];, constructed from

the actual sequence of previous interactions Q := (©y,...,0;_1) as follows:
e let jjo be the largest j < i such that ©; is a successful (i.e., Case 4 of Pro-

tocol H applies) view update transaction issued by the client C, if such a j
exists; otherwise let jy be 0;

e to form Q[C]},, first skip all interactions ©; up to jo;

e then, starting from jo, if a subsequent interaction ©; of Q returned a
nonempty answer ans[C]; to the client C, then add the query request C :
que(ans[C];) to Q[C],; otherwise skip that interaction.

Example 3. We consider a vocabulary schema and, again for the sake of simplicity, only
one client C with confidentiality policy pot sec and initial log file logg, and an initial
instance dbg and a view update transaction request as follows: schema :={a,b,c,s1,s2},
pot sec:={s1,52},logy:=con:={—aVsy,—cVb,—s3V—c},dby:={a,—b,—c,s1,52},
O :=C:vir({(—a,c,b)).
Since the literal —a satisfies (8), —a becomes an element of ComA. Subsequently, nei-
ther the literal ¢ nor the literal b satisfies (Z) or (8) and thus they become members of
IncA. Thus, at the end of Case 1 we have obtained ComA = {—a} and IncA = {c,b}.
In Case 2, the condition (9) is not satisfied, since

{=aVsi,cV—=b,—s3VclU{c,b,ma}U{—aVs,—cVb,~sV-c} s Vs
In Case 3, since (I0) holds, i.e.,

eval([-aV si] A[-cV B A[=s;V =c]) ({—a,b,c,s1,5:}) = false ,
an incompatibility with the integrity constraints is detected, but this fact must be hidden,
since (L) does not hold, i.e.,

{—aVsi,~cVb,=syV-ctU{—c,—b,mat U{=([-aVsi|AfcV-b]A][-syVcl} = s Vs
Finally, in Case 4 we obtain

db; = dby, since (10) holds, and

logy :=={—aVsi,cV—b,~s;Vc}U{c,b,ma}U{—aVsi,—cVb,—~sV-c},
which is the antecedent of condition (9) already checked to be harmless in Case 2. There
are no refreshments, since the instance has not actually been changed.

Theorem 3 (inference-proof view update transactions). For Int being the subcollec-
tion of queries, provider update transactions and view update transactions in the sense
of Def.[ll and Con, Pol and Know being the full class of all sentences, the controlled
execution function that is based on Protocol[ll (query answering), Protocol[2 (provider
update transaction processing), modified such that in Case 3 the refreshment subpro-
tocol is performed with the parameters jo and Q[C|, as described in Case 4 of Proto-
cold and Protocol | (view update transaction processing) preserves confidentiality in
the sense of Def.[3l

Proof. The omitted proof extends the arguments sketched for Theorem/[Il a

To finish this section, we sketch a protocol that combines elementary view updates with
elementary provider updates under the restriction to only deal with literals. Omitting
the proof, we claim that we can then perform refreshments in the optimized form.

300 J. Biskup et al.

Protocol 5 (elementary update processing with optimized refreshments)

We take the specialized protocol presented in [12)] and add refreshments performed
with the optimized refreshment subprotocol declared in Case 3 of Protocol Bl suitably
modified to consider the parameters jy and Q[C];,.

Theorem 4 (inference-proof elementary updates with optimized refreshments). For
Int being the subcollection of queries with a literal and elementary provider updates and

elementary view updates in the sense of Def.[Iland Con, Pol and Know being the class

of literals, the controlled execution function that is based on Protocol[ll(query answer-

ing), Protocol[3l(elementary provider update processing), suitably modified to consider
the parameters jo and Q[Clj, in the optimized refreshment subprotocol, and Protocol[3]
(elementary update processing) preserves confidentiality in the sense of Def.

6 Related Work and Conclusion

We provided a thorough proof of concept for dynamic, instance-dependent inference
control of both querying and updating including enforcing integrity constraints within
a provider-client architecture of an information system. Basically, the results suggest
the following: Once a provider can control a client’s ability to gain forbidden informa-
tion based on answers to arbitrary query sequences, then the provider can extend the
inference-proofness achieved to interaction sequences containing updates as well. We
formally demonstrated this feature for a specifically instantiated model, focusing on
propositional logic, closed queries and lying as a distortion mechanism. We conjecture
that similar results can be obtained for first-order logic, open queries and refusals, as
studied in previous work on querying. Practically, we somehow have to restrict the ex-
pressiveness of some suitable parts of the model, see [9411]], in order to escape from the
infeasible algorithmic complexity or even undecidability of solving arbitrary implica-
tion problems in the underlying logic. Moreover, to stay within the realm of practical-
ity, we deliberately refrained from considering probabilities and quantifying informa-
tion gains in terms of information theory. Accordingly, our contribution is in line with
many other studies on “possibilistic secrecy”, see e.g., [19.24)3632142/26/40]. Often
such work was extended to “probabilistic secrecy”, see, e.g., [25.29/353833134/21126].
However, similar to Shannon’s perfect encryption, “perfect probabilistic secrecy” seems
to be achievable only at a price one cannot afford in general, and practical special cases
tend to have a characterization in purely possibilistic terms.

We see the main differences with other approaches to “possibilistic secrecy” as fol-
lows. First, while many approaches look for “overall” confidentiality, we achieve con-
fidentiality discretionarily selected at the finest granularity, by declaring the concrete
sentences that need protection. Second, while many approaches study abstract concepts
of confidentiality for some system, we design concrete protocols to guarantee discre-
tionary, fine-granulated confidentiality as a control mechanism, to be integrated into
an information system and to be inference-proof regarding an “attacker” who is fully
aware of the design. Third, while many approaches prefer a static analysis of all po-
tential behaviors of a global system, e.g., [24436I32/26], or of all potential instances
of an information system for a query, e.g., [42l33], in contrast, for favoring availabil-
ity, we explore a dynamic approach to control the interactions that actually take place,

Requirements and Protocols for Inference-Proof Interactions in Information Systems 301

at the price of having to maintain log files in general and to anticipate future interac-
tions at runtime. Fourth, while many approaches employ an abstract notion of a system
in terms of abstract traces or states, in contrast (but similar to, e.g., [42/3312640]), we
deal with the particularities of logic-oriented information systems. Finally, our approach
has some obvious relationships to the work on mandatory control of information sys-
tems with polyinstantiation, see, e.g., [20031128I37/1617/41]]. Our approach shares with
polyinstantiation the basic underlying idea, but elaborates it in a substantially different
way: We declare the specific confidentiality requirements in a discretionary form of
finest granularity; in the first place, we materialize the versions only by the provider’s
reactions to a client; complementary, however, we have to require that the provider
maintains a log file for each client; we deal with the problem of inference-proof re-
freshments of aged views (also treated in [22]]); we prove our protocols as secure with
regard to an explicitly stated and elaborated notion of confidentiality preservation.

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley, Reading
(1995)

2. Bancilhon, F., Spyratos, N.: Update semantics of relational views. ACM Trans. Database
Syst. 6(4), 557-575 (1981)

3. Biskup, J., Bonatti, P.A.: Lying versus refusal for known potential secrets. Data Knowl.
Eng. 38(2), 199-222 (2001)

4. Biskup, J., Bonatti, P.A.: Controlled query evaluation for enforcing confidentiality in com-
plete information systems. Int. J. Inf. Sec. 3, 14-27 (2004)

5. Biskup, J., Bonatti, P.A.: Controlled query evaluation for known policies by combining lying
and refusal. Ann. Math. Art. Intell. 40, 37-62 (2004)

6. Biskup, J., Bonatti, P.A.: Controlled query evaluation with open queries for a decidable rela-
tional submodel. Ann. Math. Art. Intell. 50, 39-77 (2007)

7. Biskup, J., Weibert, T.: Confidentiality policies for controlled query evaluation. In: Barker, S.,
Ahn, G.-J. (eds.) Data and Applications Security 2007. LNCS, vol. 4602, pp. 1-13. Springer,
Heidelberg (2007)

8. Biskup, J., Weibert, T.: Keeping secrets in incomplete databases. Int. J. Inf. Sec. 7, 199-217
(2008)

9. Biskup, J., Embley, D., Lochner, J.-H.: Reducing inference control to access control for nor-
malized database schemas. Information Processing Letters 106, 8—12 (2008)

10. Biskup, J.: Security in Computing Systems — Challenges, Approaches and Solutions.
Springer, Heidelberg (2009)

11. Biskup, J., Lochner, J.-H., Sonntag, S.: Optimization of the controlled evaluation of closed
relational queries. In: Proc. IFIP/SEC 2009, IFIP Series 297, pp. 214-225. Springer, Heidel-
berg (2009)

12. Biskup, J., Seiler, J., Weibert, T.: Controlled query evaluation and inference-free view up-
dates. In: DBSec 2009. LNCS, vol. 5645, pp. 1-16. Springer, Heidelberg (2009)

13. Bohannon, A., Pierce, B.C., Vaughan, J.A.: Relational lenses: a language for updatable
views. In: PODS 2006, pp. 338-347. ACM, New York (2006)

14. Bonatti, P.A., Kraus, S., Subrahmanian, V.S.: Foundations of secure deductive databases.
IEEE Trans. Knowledge and Data Eng. 7(3), 406-422 (1995)

15. Brodsky, A., Farkas, C., Jajodia, S.: Secure databases: constraints, inference channels and
monitoring disclosure. IEEE Trans. Knowledge and Data Eng. 12(6), 900-919 (2000)

16. Cuppens, F., Gabillon, A.: Logical foundation of multilevel databases. Data Knowl. Eng. 29,
259-291 (1999)

17. Cuppens, F., Gabillon, A.: Cover story management. Data Knowl. Eng. 37, 177-201 (2001)

302

18.

19.
20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

J. Biskup et al.

Dayal, U., Bernstein, P.A.: On correct translation of update operations on relational views.
ACM Trans. Database Systems 8, 381-416 (1982)

Denning, D.E.: Cryptography and Data Security. Addison-Wesley, Reading (1982)
Denning, D.E., Akl, S., Heckman, M., Lunt, T., Morgenstern, M., Neumann, P., Schell, R.:
Views for multilevel database security. IEEE Trans. Software Eng. 13(2), 129-140 (1987)
Evfimieski, A., Fagin, R., Woodruff, D.: Epistemic privacy. In: PODS 2008, pp. 171-180.
ACM, New York (2008)

Farkas, C., Toland, T.S., Eastman, C.M.: The inference problem and updates in relational
databases. In: Proc. DBSec 2001, IFIP Conf. Proc., vol. 215, pp. 181-194. Kluwer, Dordrecht
(2001)

Farkas, C., Jajodia, S.: The inference problem: a survey. SIGKDD Explor. Newsl. 4(2), 6-11
(2002)

Goquen, J.A., Mesequer, J.: Unwinding and inference control. In: Proc. IEEE Symp. on
Security and Privacy, Oakland, pp. 75-86 (1984)

Gray 111, J.W.: Toward a mathematical foundation for information flow properties. In: Proc.
IEEE Symposium on Security and Privacy, Oakland, pp. 21-34 (1991)

Halpern, J.Y., O’Neill, K.R.: Secrecy in multiagent systems. ACM Trans. Information and
Systems Security 12(1), Article 5, 5.1-5.47 (2008)

Hegner, S.J.: An order-based theory of updates for relational views. Ann. Math. Art. In-
tell. 40, 63—-125 (2004)

Jajodia, S., Sandhu, R.S.: Towards a multilevel secure relational data model. In: Proc. ACM
SIGMOD Int. Conf. on Management of Data, pp. 50-59 (May 1991)

Kenthapadi, K., Mishra, N., Nissim, K.: Simulatable auditing. In: PODS 2005, pp. 118-127.
ACM, New York (2005)

Langerak, R.: View updates in relational databases with an independent scheme. ACM Trans.
Database Systems 15, 40-66 (1990)

Lunt, T.F., Denning, D.E., Schell, R.R., Heckman, M., Shockley, W.R.: The SeaView security
model. IEEE Trans. Software Eng. 16(6), 593—607 (1990)

Mantel, H.: On the composition of secure systems. In: Proc. 2002 IEEE Symp. on Security
and Privacy, Oakland, pp. 88-101 (2002)

Miklau, G., Suciu, D.: A formal analysis of information disclosure in data exchange. J. Com-
puter and System Sciences 73, 507-534 (2007)

Motwani, R., Nabar, S.U., Thomas, D.: Auditing SQL queries. In: Proc. Int. Conf. on Data
Eng., ICDE 2008, pp. 287-296. IEEE, Los Alamitos (2008)

Nabar, S.U., Narthi, B., Kenthapadi, K., Mishra, N., Motwani, R.: Towardsa robustness in
query auditing. In: VLDB 2006, VLDB Endowment, pp. 151-162 (2006)

Ryan, P.: Mathematical models of computer security. In: Focardi, R., Gorrieri, R. (eds.)
FOSAD 2000. LNCS, vol. 2171, pp. 1-62. Springer, Heidelberg (2001)

Sandhu, R.S., Jajodia, S.: Polyinstantiation for cover stories. In: Deswarte, Y., Quisquater, J.-
J., Eizenberg, G. (eds.) ESORICS 1992. LNCS, vol. 648, pp. 307-328. Springer, Heidelberg
(1992)

Santen, T.: A formal framework for confidentiality-preserving refinement. In: Gollmann, D.,
Meier, J., Sabelfeld, A. (eds.) ESORICS 2006. LNCS, vol. 4189, pp. 225-242. Springer,
Heidelberg (2006)

Sicherman, G.L., de Jonge, W., van de Riet, R.P.: Answering queries without revealing se-
crets. ACM Trans. Database Systems 8(1), 41-59 (1983)

Stouppa, P., Studer, T.: Data privacy for ALC knowledge bases. In: Artemov, S., Nerode, A.
(eds.) LFCS 2009. LNCS, vol. 5407, pp. 309-421. Springer, Heidelberg (2008)

Winslett, M., Smith, K., Qian, X.: Formal query languages for secure relational databases.
ACM Trans. Database Systems 19(4), 626—-662 (1994)

Zhang, Z., Mendelzon, A.O.: Authorization views and conditional query containment. In:
Eiter, T., Libkin, L. (eds.) ICDT 2005. LNCS, vol. 3363, pp. 259-273. Springer, Heidelberg
(2004)

	Requirements and Protocols for Inference-Proof Interactions in Information Systems
	Introduction and Survey
	Scenario and Problem Statement
	Formal Model and Confidentiality Requirements
	Processing Provider Update Requests and View Refreshing
	Processing View Update Requests
	Related Work and Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

