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Abstract. In the field of Discrete Tomography, the 2-color problem con-
sists in determining a matrix whose elements are of two different types,
starting from its horizontal and vertical projections. It is known that the
one color problem has a polynomial time reconstruction algorithm, while,
with k > 2, the k-color problem is NP-complete. Thus, the 2-color prob-
lem constitutes an interesting example of a problem just in the frontier
between hard and easy problems.

In this paper we define a linear time algorithm to solve a set of its
instances, where some values of the horizontal and vertical projections
are constant, while the others are upper bounded by a positive number
proportional to the dimension of the problem. Our algorithm relies on
classical studies for the solution of the one color problem.

Keywords: Discrete tomography, polynomial time algorithm, k-color
problem.

1 Introduction

Recently, a series of valuable improvements in transmission electron microscopy
have finally allowed the resolution of an inspected object till reaching the atomic
scale (HRTEM). More precisely, since these last years it is possible to collect a
huge quantity of data about the density of a material by focusing beams of
electrons across it, and then measuring the decreasing of their energies: denser
areas of the material will absorb more energy from the beams. The HRTEM has
been mainly applied to biological specimens’ studies to find structural defects in
materials, but it has also furnished the bases for a new technique, called QUAN-
TITEM ([9], [11]), that performs a quantitative analysis of highly structured
materials like crystals. In particular QUANTITEM allows to measure the exact
number of atoms (or other primary constituents) of an object along a set of lines
parallel to given directions. Such a measurements, called projections, are usu-
ally arranged as vectors or matrices having integer entries, and they are used to
recover some geometrical properties of the considered object. Usually, the final
goal is its faithful reconstruction. This problem is a typical example of inverse
problem, and fits in the area of computer science called Discrete Tomography,
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a branch of the more general Computerized Tomography where only discrete
structures are considered. Other classical problems of interest for Discrete To-
mography are to determine when one or more projections are consistent with
at least one discrete object belonging to a given class, say consistency problem,
and to search for different objects which share the projections, say uniqueness
problem.

The choice of representing each physical planar object by means of a discrete
set of points in the lattice Z x Z is commonly accepted, and so is also the highly
simplified but relevant model, which uses matrices of elements on a finite set
Y ={x1,...2.} U{0}, where each entry z; € X or 0 stands for the presence of
an atom of the material x; or the absence of atoms in the correspondent point
of Z X Z.

So, a fundamental parameter is the number ¢ of different atoms which compose
the object, and that may be detected by the crossing beams’ decreasing ener-
gies. Actually, the QUANTITEM allows the resolution of polyatomic structures,
collecting the obtained measurements in multidimensional vectors.

The simplest case is in presence of an homogeneous material, i.e. ¢ = 1: this
scenery has been deeply studied in the past years, starting from the classical
result by Ryser who showed, in [I0], how to reconstruct homogeneous planar
sets of points from two projections in polynomial time. Successively, in [6] the
authors extended Ryser’s result to the lattice Z?, with d > 2, and proved the
NP-hardness of the same reconstruction problem in presence of three or more
projections.

Obviously, polyatomic discrete sets inherit this last result, and the successive
researches focused only on the case of two projections, so it is commonly indi-
cated as c-color problem the problem of reconstructing a planar object having
c different types of atoms from two projections, w.l.g. the horizontal and the
vertical ones.

In [7], the authors furnished a proof of the NP-hardness of the ¢-color problem,
with ¢ > 6. Later and with different techniques, in [2], this result was improved,
by showing that the presence of three different types of atoms is sufficient to
maintain the c-color problem NP-hard. Recently, this result has been definitely
extended to ¢ = 2 in [5].

The present paper fits into this research line: we consider a significative class
of instances the 2-color problem where some constraints on the elements of the
two vectors are imposed, and we provide an algorithm that finds a solution to
each element in polynomial time. In a few words, the algorithm uses the imposed
constraints to reduce a given instance I of 2-color into four solvable 1-color ones,
and then acts on their solutions by adding few further elements in order to
reconstruct one of the solutions of I.

The paper is organized as follows: in section 2 we recall some basic notions
of discrete tomography, and we define the main problem. Then we give some
results about the 1-color problem that will be necessary to prove the correctness
of the solving algorithm. In section 3 we describe two procedures, one regard-
ing the insertion of elements of a given color in a matrix with some particular
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restrictions, and the other concerning the splitting of a multiset of integers into
two parts, satisfying a certain balance property. Finally, in section 4, we define a
special set of instances of the 2-color problem, and then describe the algorithm
which solves such instances. Conclusions are in section 5.

2 Notations and Preliminary Results

Following the standard model, we represent a planar discrete object .S made
up with ¢ different types of atoms using a m x n matrix A = (a,;), whose
elements belong to the set X U {0}, with ¥ = {z1,...z.}. We say that A is a
c-colored matriz, and its dimensions are given by the dimensions of the minimal
bounding rectangle of S. The elements of A having value 0 can be considered as
the background of the object.

For each 1 < i < m, let

hi* = Haij ¢ a;; = x| with 1 <j <n, and 23, € X,
and analogously, for each 1 < j < n, let
it ={a;; 1 a;; =ap}| with 1 <i<m, and 23, € X.
We define . .
H=((hi,...,h7°),...,(hit, ..., hic)) and
V= (" 0r), s (o vie)
as the multi-vectors of horizontal and vertical projections of A, respectively. The
matrix A is said to be consistent with H and V', and by extension, H is said to
be consistent with V. Obviously, when we deal with homogeneous objects, we
have |X| =1, and H and V are integer vectors.

These simple few notions allow us to define the general reconstruction prob-
lem:

c-color

Instance: two multi-vectors
H = ((h{*,...,h7¢), ..., (hZl, ... hie)) and
V=((v7" . v7%), o, (Uit ure).

Task: reconstruct a m x n c—colored matrix A having H and V as horizontal
and vertical projections, if it exists, otherwise give FAILURE.

As a matter of fact, we observe that, by definition, every consistent instance
I = (H,V) of c—color, must satisfy the following simple properties: for each
zeX 1<i<mand1<j<n
(i) 0 < h¥ <m;
(ii)) 0 < v <my
(iil) >, A = Z?:l U3
From now on we consider only instances of c-color that respect these three con-

ditions, and such that the matrices obtained as solutions, if any, have dimension
m X n.
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On the 1-Color Problem

Now we will start by considering the case of the reconstruction of a single
homogeneous object, hence we will deal with matrices having two different val-
ues, which means that X' U {0}, with X' = {a}. This problem has been already
extensively studied by Ryser in [I0]. In the following we point out some proper-
ties common to all couples (H, V') of consistent instances, which will be useful in
the rest of the paper. In such a context the superscript a of the elements of the
projections H and V of a 1-colored matrix will be omitted, since no ambiguities
can occur.

Theorem 1. Let H be an integer vector. H is consistent with all the integer
vectors V. which satisfy conditions (ii), with m = |H|, and (ii%), if and only if
all the elements of H belong to a set {k,k — 1}, with k > 0.

Proof. (<) we will prove that, in this case, the application of the greedy algo-
rithm defined by Ryser always provides a valid solution. We proceed by induction
on the number of columns of the matrix A:

Base. If the matrix is formed by a single column and the projections respect
our assumptions, the result trivially holds.

Inductive step. If the matrix A has more than one column, then set v; elements
in the first column in priority in the lines where h; = k. This operation is possible
as for (4i7) it stands that |h; : h; > 0] > v1.

At this point the matrix formed by the columns 2,...,m of A and with pro-
jections H' and vs, ..., vy, where H' contains the projections of H minus the
projections of column 1, can be correctly filled by inductive hypothesis, since its
values belong to the set {k,k — 1} or {k — 1,k — 2}.

(=) let us proceed by contradiction assuming that there exists a vector H, which
is compatible with each vector V satisfying (i7) and (ii¢), and having two elements
that differ at least by two. Let us consider the array V = {n,...,n,7,0,...,0},
that satisfies (i7). Moreover it is easy to verify that any matrix having V as vector
of vertical projections must have any couple of horizontal projections differing of

at most by 1, leading to a contradiction. ad

3 Two Useful Procedures

In this paragraph we show two procedures that will be used in the main al-
gorithm for solving particular instances of the 2-color problem. The first one,
called Insertion, acts on a 2-colored matrix, and changes the positions of some
elements inside it. The second, called Balance splits an integer vector into two
parts, maintaining balanced the sums of their elements.

3.1 Procedure 1: Insertion

Let A be a 2-colored matrix of dimension m xn on the alphabet X' = {a, b} U{0}.
The matrix A is said to be ¢ — sparse if each of its rows contains only elements 0
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except for at most ¢ positions, which are filled with elements a, with 0 < ¢ < n.
The procedure Insertion we are going to define performs the following:

Task. given a set R of at most min{m,n — c} rows of a c-sparse matriz A,
replace, inside each row of R, an element O with an element b so that there
exists at most one element b for each column of A.

Procedure. Insertion

for each ¢ € R do
set ok = false
for each j such as 1 < j <n do
if a; ; = 0 and no element b is present in column j then
set a;; =0
set ok = true
exit j loop
end if
next j
if ok = false then give FAILURE;
next 7
give matrix A as OUTPUT.

Theorem 2. The procedure Insertion having as input a set R of rows of a
c-sparse 2-colored matriz M never gives FAILURE.

The proof directly follows from the observation that, that if a row ¢ contains no
elements 0 to be changed into a b, then at least n — ¢ elements b have already
been placed in the rows of R, and this is a contradiction.

Lemma 1. The procedure Insertion acts in O(mn) computational time.

The proof is immediate, since the elements of R are O(m), and for each of them,
at most O(n) elements of A are scanned.

3.2 Procedure 2: Balance

Now, let us consider an integer vector S = (s1,...,8q), and two integers min
and Maz, such that 0 < min < s < Max, with k€ 1,...,d.

We define the procedure Balance which performs the following:
Task. determine a rearrangement S of the elements of S such that

d d
0<> 85— Y &< Mar, withd =[4]. (1)
k=1 k=d'+1

Procedure. Balance

Step 1. Let S be the vector S increasingly ordered, and set d’ = fg];
Step 2. for each 1 < k < d’, set 5, = 8op_1;
Step 3. for each d' +1 < k < d, set 5 = 33(4—ar);
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Step 4. give vector S as OUTPUT.

It is easy to see that the vector S satisfies the required task, in fact, if d is odd
it holds

d d (d=1)/2 (d—1)/2
0<> Sk— > Sk= Y (Sar1—82m)+8a< D (Sor-1—Sops1)+8a =
F=1  k=d+1 k=1 p

=4 — 44484 =54 < Maxz,

otherwise, if d is even we can similarly check that

d’ d
0< E S — E sk < Max — min.
k=1 k=d'+1

Lemma 2. The procedure Balance acts in O(d + Mazx) computational time.

The result is immediate, since O(d + Max) is required to order the vector S
using counting sort, and O(d) to scan S and create S.

Finally, we define 0pgaiance the permutation of the elements of S performed
by Balance to obtain S.

4 Solving Some Instances of the 2-Color Problem

In this paragraph we define a subset of instances of 2-color, and then we present
a polynomial algorithm to solve the problem. These instances are defined by
some constraints on their values: in a word, some elements of H and V are
constant, while the remaining elements are smaller than a given number which
is somehow proportional to the minimum between m and n, the dimensions
of the reconstructed matrix. Our approach to the problem can be naturally
generalized to the whole set of instances of 2-color, unfortunately without being
able to polynomially bound the computational complexity. So, let us define the
following problem:

2c-restricted

Instance. two consistent vectors of projections

H = ((h%,hY), ..., (h%, kb)) and V = (08, 00),. .., (v%,02))

n»-n

such that
(1) all the elements of H and V are bounded by an integer M such that
— M = |min{m,n}/3] if m and n are both even,
— M = |min{m,n}/4] otherwise;
(2) there are two positive integers ¢; and co such that for all 1 < i < m,
1 <j <n wehave h{ =¢; andv?:(:Q.
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Task. reconstruct a m x n 2—colored matrix A having H and V as horizontal
and vertical projections, if it exists, otherwise give FAILURE.

The imposed constraints on the projections of 2¢ — restricted allow a fast re-
construction algorithm. The algorithm is mainly based on the fact that, for each
of its instances, there exists a solution which can be divided into four disjoint
parts, say NW, NE, SW_ and SE, each of them containing only one color, say
the dominant one, except for a fixed number of elements.

More precisely, given an instance I we split the non constant part H® of H
[resp. V@ of V], into two parts which differ at most by M, using the procedure
Balance. Successively we arrange these parts into four instances of 1-color which
are used to set the dominant color in the four parts NW, NE, SW,and SE. At
this step it is not guaranteed that all these instances satisfy (iii), so we have to
slightly modify them by setting aside some elements, at most M for each one,
to make them consistent and, furthermore, solvable by Lemma [Tl

Once we have reconstructed the four submatrices NW, NE, SW, and SF,
we obtain a partial solution which turns into the final one, which we call A, after
placing the previously removed elements by procedure Insertion. Theorem
assures that this process successfully ends.

Now we define the four submatrices NW, NE, SW, and SE of a m x n
matrix A

NW is the submatrix formed by the intersection of the first [m/2] rows with
the first [n/2] columns;

NE is the submatrix formed by the intersection of the first |m/2| rows with
the last [n/2] columns;

SW is the submatrix formed by the intersection of the last [m/2] rows with
the first [n/2] columns;

SE is the submatrix formed by the intersection of the last [m/2] rows with
the last [n/2] columns.

So, let us define the algorithm.
Algorithm. Reconstruct

Step 1. let H® = (hb,... kb)) [resp. V* = (v{,...,v%)].
Apply procedure Balance to H® [resp. V%], and let HY [resp. Y~/a] be its
output. In this way the sums of the elements in the first and second half of
H? [resp. V] have a bounded difference.
Let 0% 1umee 1€SD- 0% 1unee] b€ one of the permutations of the elements of
H? [resp. V7] that leads to H? [resp. V).

Compute the vector H = ((c1,h%),.. ., (cl,ﬁfn)) [resp. V= (0%, ¢2),- .., (U5, c2))]-
Let m’ = [m/2] and n' = [n/2].

Step 2.
now we compute and store in Dy, or D% the (number of) elements a that
lie in the submatrices SW or NFE of the final solution, where the dominant

color is b.
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The symmetrical computation of D% or D%, is carried with respect to the
color b and the submatrices SE and NW.
These numbers are computed in such a manner to allow the instances of
the 1-color problems, which partially reconstruct the four submatrices of the
final solution, to satisfy condition (ii).
iy ot >me
then set D&y, = > 1_, 0% —m/ ¢1, and D% =0
else set D% =m' ¢ — Zz;l v¢, and D&y, = 0.
IS0, kL > (n—n')cy then set D?YVW = 7 Bt —(n—n')ca, and DY =0
else set Dby = (n—n')co — > 4L, A, and D4y, = 0.
W.l.g. assume that D%y, = DgE =0, and , as a consequence, D?VW >0 and
fp > 0.
Step 3. (where the submatrix NW is reconstructed)

Step 3.1: create the instance Iy, = (HYW, VW) of 1-color such that

-hMW =¢; — 1, with 1 <i < D% p;
- YW = ¢y, with D5 < i < m/;
—v}VW:T);‘ with 1 < j <n'.

Step 3.2: solve the instance Ify, of 1-color (by means of Ryser’s algo-
rithm, as described in [I0]) and insert the values a in the correspondent
submatrix NW of A.

Step 3.3: run the procedure Insertion with R = {1,..., D%y} (notice
that the submatrix NW is M-sparse). Store the indexes of the columns
where the D%y, elements b are placed in Ryw .

Step 4. (where the submatrix NE is reconstructed);

Step 4.1: create the instance I}, = (HVF, VNE) of 1-color such that
- hNE = b — 1, with 1 <i < Dlyyp;
- hNE = hb with DYy, < j <m/;
—U;VE:CQ withl1 <j<n-n'
Step 4.2: solve the instance I% , of 1-color and insert the values b in the
correspondent submatrix NE of A.

Step 4.3: run the procedure Insertion with R = {1,..., D% y}. Store the
indexes of the columns where the D%, 5 elements a are placed in Ryg.

Step 5,6: (where the submatrix SW [resp. SE] is reconstructed) now act
similarly as in Step 3.2 [resp. Step 4.2] to reconstruct the two remaining
submatrices, with the following remark: in Step 5.1 [resp. Step 6.1], the two
projections of the instance Isw = (Hsw,Vsw) [resp. Isg = (Hsg, Vsg)],
can be computed by simply subtracting from H and V the elements a [resp.
b] stored in Ryw [resp. Rng], i.e. those already placed in NW [resp. NE].

Step 7: permute the rows of A according to (U%alame)*l7 then permute the
columns of A according to (0%,,,,e.) ', and finally return the updated ma-
trix A as OUTPUT.
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4.1 An Example of the Execution of the Algorithm

To clarify the steps of the reconstruction procedure we furnish the following
example:

Let us represent a m x n, 2-colored matrix by means of a m x n set of cells
on a squared surface having two different colors, say red and blue; red, blue and
void cells correspond to the elements a, b, and 0 of the matrix, respectively. Let
us consider the instance I = (H, V') such that

It is easy to check that H and V respect conditions (i), (ii) and (iii) for each
color, and that I is an instance of 2c¢ — restricted.Since H®"¢ and V7? are
already balanced, i.e. they satisfy equation (], there is no need to perform
procedure Balance, and so for sake of simplicity we skip Step 1 and consider
H=H,and V = V. The steps of the procedure Reconstruction are sketched in
Fig. [[l starting from a), where the instance I is depicted; furthermore, we have
m’ =n’ = 6. In Step 2 we compute D¢ = 1, and D3¢ = 0, then we compute
Dblue = () D¥ue = 2. These numbers represent the red and blue elements that
have to be added to each of the four submatrices.

Since D%5d # 0 and D%Y #£ 0, we start the reconstruction process from
one of these two submatrices, say the SW submatrix, then we proceed with
the other. So, two blue cells are moved from the submatrix SW to SE, and we
create the instance of 1-color I%%¢ = (HSW VW) with HSW = (3,3,1,4,4,3),
and VW = (3,3,3,3,3,3). Finally we solve I54¢, as in Fig. [l b), and we add,
by means of the procedure Insertion, one red cell in the first free position, as
required by D%5%; this concludes Step 3.

Similarly to Step 3, we perform Step 4, where we reconstruct the subma-

trix SE, and, successively we add two blue cells as required by Df’gl}iiﬂ as in

Fig. [ d).

Now, we perform Steps 5 and 6 after creating the instances IV = (HN¥W VNW)
and INF = (HNE VNE) respectively, where HYW = (2,2,2,2,2,2), VIVW =
(1,3,1,3,3,1), HN? = (3,3,4,3,1,2),and VN = (2,2,3,3,3 3)

The reconstruction of the two submatrices NW and NFE, together with the
whole solution of I, are depicted in Fig. [ e).

4.2 Correctness

Now we prove that the algorithm Reconstruct having as input a generic instance
I of 2¢ — restricted always leads to a solution by showing that:

i) each instance of 1-color related to the four submatrices NW, NE, SW and
SE admits a solution;

ii) each reconstructed submatrix satisfies the conditions required by the pro-
cedure Insertion.
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Fig. 1. The steps of Reconstruction on the instance I

Assertion i) is straightforward since each instance of 1-color related to the sub-
matrices NW, NE, SW and SFE created in Steps 3, 4, 5 and 6 of Reconstruction
has at least one among the horizontal or the vertical projections whose values
are in {k—1,k}, where k = ¢y or k = ¢y. Further, the number of cells in the hor-
izontal and vertical projections are consistent thanks to the use of the variables
D. So, the hypothesis of Theorem [I] are satisfied (with respect to each instance),
and consequently each instance admits a solution.
Assertion ii) follows after observing that

- each reconstructed submatrix is M-sparse;

- if m or n are odd, the values DYy, D% g, D&y, and D%y are positive and
each of them bounded by [n/2| — M. As an example, let us consider DYy :
its value is either zero or it holds D%y, < [(M — 1)/2 + ¢2/2] (remind

that the application of the procedure Balance to H® produces ZZL:,I nb —
S oh a1 Wy < M —1). Let min = min{m,n}, and observe that c; < min/4.

Consequently
Diw < [(M —1)/2+ ¢2/2] < (min —4)/8 + min/8 + 1 = min/4 + 1/2
and assuming that min > 3, we finally reach
DYy < min/4+41/2 <min/2 < [n/2] — M.

The same argument can be used to prove the analogous result for D g,
D¢y, and D% p.
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With similar arguments, we can prove that if the dimensions m and n of the
solution matrix are both even, the maximum value M of the elements of H?®
and V¢ becomes |min{m,n}/3] as, in such a setting, the four values D%,
D%, D&y, and D% are upper bounded by [(M — 1)/2].

- each submatrix has more than D4y [resp. D% g, D&y, and D%p] rows.

So, all the hypotheses to apply the procedure Insertion to each reconstructed
submatrix NW, NE, SW and SE are satisfied, as desired.

4.3 Complexity

Theorem 3. The algorithm Reconstruct finds a solution to a generic instance
I of 2¢ — restricted in O(mn) computational time.

Proof We will analyze the complexity of each step of Reconstruct

Step 1: The procedure Balance acts in O(m+n) (see Lemma[2)) computational
time, and the same for the computation of the vectors Hand V.

Step 2: All the computations are clearly performed in O(n + m).

Steps 3 — 6: Each step takes O(mn) computational time, since Ryser’s algo-
rithm for solving the 1-color problem takes O(mn), and the same holds for
procedure Insertion (see Lemma [I]).

Steps 7: The output matrix A is computed in O(nm) computational time.

So, Reconstruct takes O(m n) computational time as desired. O

5 Further Research

In this paper we show a class of instances of the 2-color problem which can
be solved in linear (computational) time with respect to the dimensions of the
solution matrix. The algorithm we propose is mainly based on the existence of
a family of 2-colored matrices which, after an appropriate organization of its
rows and columns, can be divided into disjoint submatrices each with only one
color, so that we are allowed to use, for each of these cases, the standard Ryser’s
reconstruction algorithm for 1-colored matrices.

The proposed result gives birth to a new way of challenging subclasses of
instances of the 2 — color problem, searching for all those solutions where the
two colors are somehow disjoint in each row and column. As a consequence, the
proposed algorithm Reconstruct seems to allow a further series of refinements
by using techniques that decompose each instance into smaller ones in the divide
et impera fashion, and which may lead to the definition of the non polynomial
set of instances of 2 — color, to the limit; obviously the hardest task will be to
keep polynomially bounded the amount of time needed for the whole process.

Our result suggests that the hard part of 2-color has to contain only those
instances having non uniform projections for both colors, and it furnishes hints
and inspiration for future researches.
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