
Universal Spaces for (k, k)−Surfaces�

J.C. Ciria1, E. Domínguez1, A.R. Francés1, and A. Quintero2

1 Dpto. de Informática e Ingeniería de Sistemas, Facultad de Ciencias,
Universidad de Zaragoza, E-50009 – Zaragoza, Spain

2 Dpto. de Geometría y Topología, Facultad de Matemáticas,
Universidad de Sevilla, Apto. 1160, E-41080 – Sevilla, Spain

Introduction

In the graph–theoretical approach to Digital Topology, the search for a defini-
tion of digital surfaces as subsets of voxels is still a work in progress since it
was started in the early 1980’s. Despite the interest of the applications in which
it is involved (ranging from visualization to image segmentation and graphics),
there is not yet a well established general notion of digital surface that naturally
extends to higher dimensions (see [5] for a proposal). The fact is that, after the
first definition of surface, proposed by Morgenthaler [13] for Z

3 with the usual
adjacency pairs (26, 6) and (6, 26), each new contribution [10,4,9], either increas-
ing the number of surfaces or extendeding the definition to other adjacencies,
has still left out some objects considered as surfaces for practical purposes [12].

In this paper we find, for each adjacency pair (k, k), k, k ∈ {6, 18, 26} and
(k, k) �= (6, 6), a homogeneous (k, k)-connected digital space whose set of digital
surfaces is larger than any of those quoted above; moreover, it is the largest set of
surfaces within that class of digital spaces as defined in [3]. This is an extension
of a previous result for the (26, 6)-adjacency in [7].

1 A Framework for Digital Topology

This section summarizes the framework for Digital Topology we introduced in [3].
In this approach a digital space is a pair (K, f), where K is a polyhedral complex,
representing the spatial layout of voxels, and f is a lighting function from which
we associate to each digital image an Euclidean polyhedron, called its continuous
analogue, that intends to be a continuous interpretation of the image.

In this paper we will only consider spaces of the form (R3, f), where the
complex R3 is determined by the unit cubes in the Euclidean space R

3 centered
at points of integer coordinates. Each 3-cell in R3 represents a voxel, so that a
digital object displayed in an image is a subset of the set cell3(R3) of 3-cells in
R3; while the lower dimensional cells in R3 (actually, d-cubes, 0 ≤ d < 3) are
used to describe how the voxels could be linked to each other. Notice that each
d-cell σ ∈ R3 can be associated to its center c(σ). In particular, if dimσ = 3
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then c(σ) ∈ Z
3, so that every digital object O in R3 can be naturally identified

with a subset of the discrete space Z
3. Henceforth we shall use this identification

without further comment.
Lighting functions are maps of the form f : P(cell3(R3)) × R3 → {0, 1},

where P(cell3(R3)) stands for the family of all subsets of cell3(R3); i.e, all digital
objects. Each of these maps may be regarded as a “face membership rule”, in
the sense of Kovalevsky [11], that assigns to each digital object O the set of
cells fO = {α ∈ R3 ; f(O, α) = 1}. This set yields a continuous analogue as the
counterpart of O in ordinary topology. Namely, the continuous analogue of O is
the polyhedron |Af

O | ⊆ R
3 triangulated by the subcomplex of the first derived

subdivision of R3, Af
O, consisting of all simplexes whose vertices are centers c(σ)

of cells σ ∈ fO.1 However, to avoid continuous analogues which are contrary to
our usual topological intuition, lighting functions must satisfy the five properties
below. We need some more notation to introduce them.

As usual, given two cells γ, σ ∈ R3 we write γ ≤ σ if γ is a face of σ, and
γ < σ if in addition γ �= σ. The interior of a cell σ is the set ◦

σ= σ − ∂σ, where
∂σ = ∪{γ ; γ < σ} stands for the boundary of σ. We refer to [14] for further
notions on polyhedral topology.

Next, we introduce two types of neighbourhoods of a cell α ∈ R3 in a given
digital object O ⊆ cell3(R3): the star of α in O which is the set st3(α; O) =
{σ ∈ O ; α ≤ σ} of voxels in O having α as a face, and the set st∗3(α; O) = {σ ∈
O ; α ∩ σ �= ∅} called the extended star of α in O. Finally, the support of O is
the set supp(O) of cells of R3 (not necessarily voxels) that are the intersection
of 3-cells in O; that is, α ∈ supp(O) if and only if α = ∩{σ ; σ ∈ st3(α; O)}.
To ease the writing, we use the following notation: st3(α; R3) = st3(α; cell3(R3))
and st∗3(α; R3) = st∗3(α; cell3(R3)).

A lighting function on R3 is a map f : P(cell3(R3)) × R3 → {0, 1} for which
the following five axioms hold for all O ∈ P(cell3(R3)) and α ∈ R3; see [2,3].

(1) object axiom: if α ∈ O then f(O, α) = 1;
(2) support axiom: if α /∈ supp(O) then f(O, α) = 0;
(3) weak monotone axiom: f(O, α) ≤ f(cell3(R3), α);
(4) weak local axiom: f(O, α) = f(st∗3(α; O), α); and,
(5) complement axiom: if O′ ⊆ O ⊆ cell3(R3) and α ∈ R3 are such that

st3(α; O) = st3(α; O′), f(O′, α) = 0 and f(O, α) = 1, then the set α(O′, O) =
∪{ ◦

ω ; ω < α, f(O′, ω) = 0, f(O, ω) = 1} ⊆ ∂α is non-empty and connected.

If f(O, α) = 1 we say that f lights the cell α for the object O, otherwise f
vanishes on α for O.

Example 1. The following are lighting functions on R3: (a) fmax(O, α) = 1 if
and only if α ∈ supp(O); (b) g(O, α) = 1 if and only if st3(α; R3) ⊆ O.

A digital space (R3, f) is Euclidean if its continuous analogue is R
3 (that is, if

f(cell3(R3), α) = 1 for each cell α ∈ R3) and, in addition, it is homogeneous in

1 We often drop the “f ” from the notation and also write AR3 instead Af

cell3(R3)
.
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Fig. 1. Non-empty canonical 0-patterns around a vertex. For d = 1, 2, the list of d-
patterns is longer because st∗3(α; O) may contain up to 12 (respectively, 18) voxels.

the sense that the continuous analogue of any object O does not change under
isometries ϕ : R

3 → R
3 preserving Z

3 (i.e, ϕ(|Af
O |) = |Af

ϕ(O) |). It is obvious
that Axiom 3 above is redundant for Euclidean spaces. Moreover, homogeneity
allows us to rewrite Axiom 4 in terms of a minimal family of objects, called
(canonical) d-patterns , consisting of all subsets of st∗3(αd; R3) which are distinct
up to rotations or symmetries, where αd is a fixed d-cell for 0 ≤ d < 3; see Fig. 1.
More precisely, Axiom 4 becomes f(O, α) = f(P(O, α), αd), where P(O, α) ⊆
st∗3(αd; R3), called the pattern of O in α, is the unique canonical d-pattern for
which there exists a isometry such that ϕ(st∗3(α; O)) = P(O, α).

2 (k, k)-Connected Digital Spaces

In this section we assume that (R3, f) is Euclidean. Our aim is to find some
necessary conditions on the lighting function f so that the space (R3, f) provides
us with the (k, k)-connectedness, as usually defined on Z

3 by mean of adjacency
pairs, k, k ∈ {6, 18, 26}. For this, we first recall that a digital object O in (R3, f)
is said to be connected if its continuous analogue |AO | is connected. On the
other hand, the set of voxels cell3(R3) − O, regarded as the complement of O,
is declared to be O-connected if |AR3 | − |AO | is connected. Moreover, we call
C ⊆ cell3(R3) a component of O (cell3(R3)−O) if it consists of all voxels σ whose
centers c(σ) belong to a component of |AO | (|AR3 |− |AO |, respectively). These
notions of connectedness are characterized by the following notions of adjacency

Definition 1. Two cells σ, τ ∈ O are ∅-adjacent iff f(O, α) = 1 for some com-
mon face α ≤ σ∩τ . Moreover, σ, τ ∈ cell3(R3)−O are O-adjacent iff f(O, α) = 0
for some α ≤ σ ∩ τ .
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More precisely, for X ∈ {∅, O}, the notion of X-adjacency directly leads to
the notions of X-path, X-connectedness and X-component. Then, it can be
proved that C ⊆ O is a component of O if and only it is an ∅-component, while
C ⊆ cell3(R3) − O is a component of the complement cell3(R3) − O if and only
if it is a O-component. See Section 4 in [2] for a detailed proof of this fact in a
much more general context.

By using this characterization, one may get intuitively convinced that the
lighting functions fmax and g in Example 1 describe the (26, 6)- and (6, 26)-
adjacencies usually defined on Z

3. Actually the digital spaces (R3, fmax) and
(R3, g) are (26, 6)- and (6, 26)-spaces, respectively, in the sense of the following

Definition 2. Given an adjacency pair (k, k) in Z
3 we say that the digital space

(R3, f) is a (k, k)-space if the two following properties hold for any digital object
O ⊆ cell3(R3):

1. C is a ∅-component of O if and only if it is a k-component of O; and,
2. C is an O-component of the complement cell3(R3) − O if and only if it is a

k-component.

From now on, we assume that (R3, f) is a Euclidean (k, k)-space, k, k ∈ {6, 18, 26}
and (k, k) �= (6, 6). Examples of these spaces can be found in [1,3,6].

Proposition 1. Let P(O, α) the pattern of a digital object O ⊆ cell3(R3) in a
vertex α ∈ R3. The following properties hold:

1. If P(O, α) = P8 then f(O, α) = 1.
2. f(O, α) = 0 whenever P(O, α) ∈ {P0, P1, Pa

2 , Pb
2, Pa

3 , Pa
4}.

3. If P(O, α) = Pc
2, then f(O, α) = 1 iff k = 26.

4. For k = 6, f(O, α) = 1 whenever P(O, α) ∈ X = {Pc
3, P

b
4, P

e
4, P

f
4 , Pb

5, P
c
5, P

b
6}.

5. If P(O, α) = Pc
6, then f(O, α) = 1 iff k ∈ {6, 18}.

Proof. Property (1) is an immediate consequence of the definition of Euclidean
digital spaces and Axiom 4. Similarly, (2) follows from Axiom 2. To show (3) no-
tice that f(st3(α; O), α) = 1 iff st3(α; O) is ∅-connected, and hence k-connected;
however, it is a 26-connected set but is not 18-connected. For the proof of (4)
and (5) let us consider the object O1 = (cell3(R3) − st∗3(α; R3)) ∪ st∗3(α; O). If
f(O, α) = 0, Axiom 4 implies that its complement cell3(R3) − O1 would be O1-
connected, but it is not 6-connected if P(O, α) ∈ X and is not 18-connected if
P(O, α) = Pc

6. 
�
Proposition 2. Let O ⊆ cell3(R3) be a digital object and β = 〈α1, α2〉 ∈ R3 be a
1-cell such that f(O, α1) = f(O, α2). If st3(β; O) = st3(β; R3) then f(O, β) = 1.
Moreover, if (R3, f) is a (k, 6)-space and st3(β; O) = {σ, τ}, with β = σ ∩ τ ,
then f(O, β) = 1 as well.

Proof. It suffices to find an object O′ ⊇ O such that st3(β; O′) = st3(β; O) and
f(O′, δ) = 1 for each cell δ ∈ {β, α1, α2}. In these conditions, it is readily checked
that β(O, O′) is either empty or equal to the non-connected set {α1, α2}. Hence,
f(O, β) = 1 by Axiom 5.
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If st3(β; O) = st3(β; R3) we use the object O1 = cell3(R3), while we take O2 =
cell3(R3)−{σ′, τ ′}, where {σ′, τ ′} = st3(β; R3)− st3(β; O), if st3(β; O) = {σ, τ}.
In the first case, f(O1, δ) = 1, δ ∈ {β, α1, α2}, since (R3, f) is Euclidean. In the
second, the equalities f(O2, δ) = 1 also hold since, in addition, the complement
cell3(R3) − O2 is not 6-connected. 
�
Proposition 3. Let O ⊆ cell3(R3) be a digital object and γ ∈ supp(O) a 2-cell.
Then γ or some of its faces are lighted for O.

Proof. Assume f(O, δ) = 0 for each proper face δ < γ, and let us consider
the object O1 = (cell3(R3) − st3(β0; R3) − st3(β2; R3)) ∪ st3(β0; O) ∪ st3(β2; O),
where βi, 0 ≤ i ≤ 3, are the four 1-faces of γ, and αi = βi ∩ βi+1(mod 4) its
vertices. Since (R3, f) is homogeneous we know that f(O1, α0) = f(O1, α1) and
f(O1, α2) = f(O1, α3). Thus, for i = 0, 2, the sets βi(O, O1) are empty or non-
connected and f(O1, βi) = 0 by Axiom 5. On the other hand, by Proposition 2
f(O1, β1) = 1 if f vanishes on both vertices α1, α2 for O1. Hence, some cell in the
set {α1, β1, α2}, and similarly for {α3, β3, α0}, is lighted for O1. This way the sets
γ(O, O1) and γ(O1, cell3(R3)) are non-connected, and f(O1, γ) = f(O, γ) = 1
also by Axiom 5. 
�

3 (k, k)-Surfaces

Similarly to our previous definition of connectedness on a digital space (R3, f),
we use continuous analogues to introduce the notion of digital surface. Namely,
a digital object S is a digital surface in the digital space (R3, f), an f -surface
for short, if |AS | is a (combinatorial) surface without boundary; that is, if for
each vertex v ∈ AS its link lk(v;AS) = {A ∈ AS ; v, A < B ∈ AS and v /∈ A} is
a 1-sphere.

Along this section S will stand for an arbitrary f -surface S in a given Eu-
clidean (k, k)-space (R3, f), where k, k ∈ {6, 18, 26} and (k, k) �= (6, 6). Our
goal is to compute its continuous analogue; actually, we will determine the value
f(S, δ) for almost each cell δ ∈ R3. A simple although crucial tool for this task
is the following

Remark 1. By the definition of continuous analogues, each vertex in AS is the
center c(γ) of a cell γ ∈ R3 lighted for the surface S. Moreover, the cycle
lk(c(γ);AS) is the complex determined by the set of cells Xγ

S = {δ ∈ R3 ; δ <
γ or γ < δ and f(S, δ) = 1}, which is contained in Y γ

S = {δ ∈ R3 ; δ < γ or γ <
δ and δ ∈ supp(S)} by Axiom 2.

If δ is a 3-cell, Axioms 1 and 2 in the definition of lighting functions imply that
f(S, δ) = 1 if and only if δ ∈ S. For 1-cells we will prove the following

Theorem 1. Given a 1-cell β ∈ R3, let α1, α2 < β be its vertices and γj ∈ R3

be the four 2-cells such that β < γj, 1 ≤ j ≤ 4. Then f(S, β) = 1 if and only if
one of the two following properties holds:
1. st3(β; S) = {σ, τ}, with β = σ ∩ τ and, moreover, f(S, αi) = 1, i = 1, 2, and

f(S, γj) = 0, 1 ≤ j ≤ 4.
2. st3(β; S) = st3(β; R3), f(S, αi) = 0 and f(S, γj) = 1, i = 1, 2, 1 ≤ j ≤ 4.
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The proof of Theorem 1 needs the results in Sect. 2 as well as to know the
lighting of some vertices of R3 for the surface. However, the “only if” part is a
consequence of the following

Proposition 4. Let β ∈ R3 be a 1-cell. Then f(S, β) = 0 if one of the following
conditions holds:

1. st3(β; S) consists of exactly three elements.
2. st3(β; S) = st3(β; R3) and f(S, α) = 1 for some vertex α < β.

Proof. Assume on the contrary that f(S, β) = 1. We shall prove that the link
L = lk(c(β);AS) is not a 1-sphere, which is a contradiction. If condition (1)
holds, it is readily checked that the 2- and 3-cells of the set Y β

S , as defined in
Remark 1, do not determine a cycle in AS unless c(α) also belongs to L for some
vertex α < β. But then c(α) is an end of all edges 〈c(α), c(σi)〉 ∈ L, where σi

ranges over the star of β in S, and thus L is not a 1-sphere if st3(β; S) has three
or four elements. 
�

Proof. of Theorem 1 (“only if” part) If f(S, β) = 1 then β ∈ supp(S), and either
st3(β; S) = {σ, τ}, with β = σ∩ τ , or st3(β; S) = st3(β; R3) by Proposition 4. In
the first case only the two vertices of β may belong to Y β

S , which must be lighted
since L = lk(c(β);AS) is a cycle. In the second case, we already know, also by
Proposition 4, that f(S, αi) = 0, i = 1, 2. Then f(S, γj) = 1 in order that L is a
1-sphere. 
�

Remark 2. If a vertex α ∈ R3 is lighted for the surface S the “only if” part of
Theorem 1 allows us to be more precise than in Remark 1. Indeed, the set of
cells Xα

S , determining the link lk(c(α);AS), is contained in the disjoint union
st3(α; S) ∪ Zα

S , where Zα
S = {δ > α ; st3(δ; S) = {σ, τ}, δ = σ ∩ τ}.

Using this remark we are able to describe locally the continuous analogue of an
f -surface S around any vertex α which is lighted for it. Before, and in addition
to those found in Proposition 1, we next identify some more patterns of an
f -surface S around a vertex α for which f(S, α) = 0.

Proposition 5. Let P(S, α) be the pattern of an f -surface S around a vertex
α ∈ R3. If P(S, α) ∈ {Pc

2, P
b
3, P

c
4, P

d
4, P

a
5, P

c
5, P

b
6, P7} then f(S, α) = 0.

Proof. Assume that f(S, α) = 1. For each voxel σ ∈ st3(α; S) let us consider
the set Zσ = {δ ∈ Zα

S ; δ < σ}; see Remark 2. Since L = lk(c(α);AS) is a
cycle, c(σ) ∈ L is in two edges of L; in other words, exactly two elements of Zσ

belong to Xα
S . However, if P(S, α) ∈ {Pc

2, P
b
3, P

c
4, P

d
4, P

a
5} it is easily found a voxel

σ ∈ st3(α; S) for which the set Zσ is a sigleton or the emptyset. On the other
hand, for each of the patterns Pc

5, Pb
6 and P7 there is a proper subset of voxels

A ⊂ st3(α; S) such that, for each σ ∈ A, Zσ ⊂ Xα
S since it consists of exactly

two elements. But then one observes that the cells in A ∪ (∪σ∈AZσ) determines
a cycle in L which leaves out the centers of the voxels in st3(α; S) − A. 
�
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4 Pb
5 Pc

6 Pa
6

Fig. 2. Continuous analogue of a surface S around a vertex α ∈ R3

Remark 3. Given an f -surface S and a vertex α ∈ R3 such that f(S, α) = 1 we
know that P(S, α) ∈ {Pc

3, P
b
4, P

e
4, P

f
4 , Pb

5, P
a
6, P

c
6, P8} from Propositions 1 and 5.

For each of these patterns, except for P8, we can determine the lighting of every
cell in Zα

S by using the same technique as in the proof above. That is, we com-
pletely know the continuous analogue of the surface inside the unit cube Cα ⊂ R

3

whose vertices are the centers of the eight voxels containing α; see Fig. 2.
Indeed, if P(S, α) ∈ {Pc

3, P
b
4, P

e
4, P

b
5, P

c
6} each set Zσ, σ ∈ st3(α; S), consists

of two cells. Therefore, all of them are lighted for the surface (i.e., Zα
S ⊂ Xα

S ).
For Pa

6 , let σ, τ be the two voxels in st3(α; S) which are 6-adjacent to three
other voxels in the star of α in S. One readily checks that for each voxel ρ ∈
A = st3(α; S) − {σ, τ} the set Zρ has two elements and then it is contained in
Xα

S ; moreover, Xα
S = st3(α; S) ∪ (∪ρ∈AZρ) since this set determines a cycle in

lk(c(α);AS). In other words, γ = σ ∩ τ is the only 2-cell in supp(st3(α; S)) such
that f(S, γ) = 0; moreover, also f(S, βi) = 0 for the two edges α < β1, β2 < γ.

Finally, at this point we can only determine the continuous analogue for Pf
4

up to symmetries. We know that only two of the three 1-cells in each of the sets
Zσi , where st3(α; S) = {σ1, σ2, σ3, σ4}, can be lighted for the surface. However
the selection of two cells in Zσ1 determines what cells in Zσ2 , Zσ3 , Zσ4 must be
lighted in order that lk(c(α);AS) is a cycle.

To complete our analysis of the lighting on vertices and edges of R3 for S we
use some separation properties of f -surfaces. Firstly, notice that, from our defi-
nition of (k, k)-space and the characterization of connectedness on a Euclidean
space (R3, f) in Sect. 2, the k-components of cell3(R3) − S are characterizing
the connected components of R

3 − |AS | = |AR3 | − |AS |. Therefore, we obtain
the following separation result as a corollary of the well-known Jordan-Brouwer
Theorem; see Sect. 5 in [3].

Theorem 2. Let S be a k-connected f -surface in a Euclidean (k, k)-space (R3, f).
Then S separates its complement cell3(R3) − S into two k-components.

Next proposition shows that the k-componentes of cell3(R3) − S can be locally
determined by using the notion of relative ball from polyhedral topology. Recall
that given a closed topological surface M ⊂ R

3 in the Euclidean space, a relative
ball (B3, B2) in (R3, M) is a pair of topological balls B2 ⊂ B3 such that B2 ∩
∂B3 = ∂B2 and B2 = B3∩M . The key property of relative balls, which is also a
consequence of the Jordan-Brouwer Theorem, states that the difference B3−B2

has exactly two connected components, each contained in a distinct component
of R

3 − M ; see [2] for details.
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Proposition 6. Two 26-adjacent voxels σ, τ /∈ S belong to the same k-compo-
nent of cell3(R3) − S if and only if f(S, σ ∩ τ) = 0.

Proof. If f(S, δ) = 0, where δ = σ∩ τ , then σ and τ are S-adjacent. Hence, they
belong to the same k-component of cell3(R3) − S by Definition 2.

Conversely, assume f(S, δ) = 1. It is not difficult to show that the pair of
polyhedra (|st(c(δ),AR3 ) |, |st(c(δ),AS) |) is a relative ball in (R3, |AS |), where
st(c(δ),AX) = {A ∈ AX ; c(α), A < B ∈ AX} is the star of c(δ) in AX . There-
fore, it will suffice to show that each c(σ) and c(τ) belong to a distinct component
of the difference D = |st(c(δ),AR3 ) | − |st(c(δ),AS) |.

Notice that dim δ ≤ 1; otherwise, if δ is a 2-cell then δ /∈ supp(S), and
f(S, δ) = 0 by Axiom 2, since σ, τ /∈ S. If dim δ = 1 the “only if” part of Theo-
rem 1 yields that st3(δ; S) = {σ′, τ ′} = st3(δ; R3) − {σ, τ}. Then |st(c(δ),AR3 ) |
is the double cone from the vertices v1, v2 < δ over the unit square whose ver-
tices are the centers of the voxels in st3(δ; R3), while |st(c(δ),AS) | is the double
cone from v1 and v2 over the union of edges 〈c(δ), c(σ′)〉∪〈c(δ), c(τ ′)〉. After this
description it is easily checked that c(σ) and c(τ) belong to distinct components
of the difference D.

If dim δ = 0, |st(c(δ),AR3 ) | is the cube Cδ ⊂ R
3 with vertices at the centers

of the eight voxels containing δ. Moreover, P(S, δ) ∈ {Pc
3, P

b
4, P

e
4, P

b
5, P

c
6} by

Propositions 1 and 5. Then, |st(c(δ),AS) | is the continuous analogue locally
described in Remark 3 and the result follows; see Fig. 2. 
�
Corollary 1. Assume k ∈ {18, 26}. Then f(S, δ) = 0 for each cell δ ∈ R3

satisfying one of the following conditions:

1. δ is an edge such that st3(δ; S) = {σ, τ} with δ = σ ∩ τ .
2. δ is a vertex and P(S, δ) ∈ {Pc

3, P
b
4, P

e
4, P

f
4 , Pb

5}.

Proof. If δ is a vertex and P(S, δ) = Pf
4 then each edge β > δ is the intersection

of two 18-adjacent voxels in st3(δ; R3)−S ⊂ cell3(R3)−S and thus f(S, β) = 0.
Therefore f(S, δ) = 0 since, otherwise, the link lk(c(δ);AS) is a discrete set of
points consisting just of the centers of the four voxels in st3(δ; S). For all the
remaining cases it is not difficult to find a pair of voxels σ′, τ ′ in a 18-component
of st3(δ; R3) − S such that δ = σ′ ∩ τ ′.

Propositions 1 and 5 as well as the corollary above provides us with all the
information we need about the lighting of vertices for an f -surface S, which is
summarized as follows. We are also ready to finish the proof of Theorem 1.

Theorem 3. Let S be an f -surface in a Euclidean (k, k)-space (R3, f), and let
α ∈ R3 be a vertex such that P(S, α) /∈ {Pa

6 , P8}. Then P(S, α) /∈ FPk,k and,
moreover, f(S, α) = 1 if and only if P(S, α) ∈ Pk. The sets FPk,k and Pk,
whose elements are respectively called (k, k)-forbidden patterns and k-plates,
are defined as follows: FP6,26, FP18,26, FP6,18 and FP18,18 are the empty set,
FP26,26 = FP26,18 = {Pc

2}, FP18,6 = {Pc
5, P

b
6} and FP26,6 = {Pc

2, P
c
5, P

b
6}; P6 =

{Pc
3, P

b
4, P

e
4, P

f
4 , Pb

5, P
c
6}, P18 = {Pc

6} and P26 = ∅.



Universal Spaces for (k, k)−Surfaces 393

Proof. of Theorem1 (“if” part) If S is a (k, k)-f -surface for k ∈ {18, 26} and
st3(β; S) = {σ, τ} condition (1) does not hold and, so, there is nothing to prove.
Indeed, for each vertex α < β, P(S, α) ∈ {Pb

2, P
b
3, P

c
3, P

b
4, P

e
4, P

f
4 , Pb

5, P
c
5, P

b
6};

therefore f(S, α) = 0 by Corollary 1 and Propositions 1 and 5. For the rest of
cases the result is an immediate consequence of Proposition 2. 
�
Notice that in the theorem above we have excluded P8 from our analysis. This
pattern is usually considered as a small blob and it is widely rejected as part
of a surface. Following this criterion, from now on we will only consider regular
spaces according to the next definition.

Definition 3. An Euclidean (k, k)-space is said to be regular if P(S, α) �= P8

for any surface S and any vertex α ∈ R3.

Remark 4. We have also eluded Pa
6 in Theorem 3. Actually, a surface S contain-

ing this pattern can have two different but homeomorphic continuous analogues,
depending on the value of f(S, α) for any vertex α ∈ R3 such that P(S, α) = Pa

6

(recall that we are only considering homogeneous digital spaces). If f(S, α) = 1,
we have already described locally the continuous analogue of S around α in Re-
mark 3. For describing the intersection |AS |∩Cα, where Cα ⊂ R

3 is the unit cube
with vertices at the centers of the voxels in st3(α; R3), in case f(S, α) = 0, let
us consider the two edges βi = 〈α, αi〉 of R3 such that st3(βi; S) = st3(βi; R3),
i = 1, 2. If (R3, f) is a regular space Theorem 3 yields that f(S, αi) = 0 for
i = 1, 2 and, then, f(S, βi) = 1 by Theorem 1; moreover, any 2-cell containing
α is lighted for S. So that, the continuous analogue of S around α is the union
of the two unit squares whose vertices are the centers of the voxels in st3(α; S).

We finish this section showing that certain patterns around an edge are forbidden
in a (k, k)-f -surface when k, k ∈ {18, 26}.
Proposition 7. Let S be a digital surface in a Euclidean (k, k)-space (R3, f),
k, k ∈ {18, 26}. If β ∈ R3 is an edge such that st3(β; S) = {σ, τ}, with β = σ∩τ ,
then σ and τ belong to a 6-component of st∗3(β; S).
Proof. (sketch) Assume, on the contrary, that σ and τ are in distinct 6-compo-
nents of st∗3(β; S). Then one checks that P(S, αi) ∈ {Pb

2, Pb
3, Pc

3, Pb
4, Pe

4, P
f
4 , Pc

5}
for the two vertices α1, α2 < β, and thus f(S, δ) = 0, for δ ∈ {β, α1, α2} by
Corollary 1 and Theorem 3. From these facts we build a 18-connected object
O1, possibly infinite, such that P(O1, β

′) = P(S, β) for each edge β′ ∈ supp(O1)
which is a face of exactly two voxels in O1. However, it can be proved that O1

is not ∅-connected in (R3, f), which is a contradiction. 
�

4 Universal (k, k)-Spaces

In this section we reach our goal: for each adjacency pair (k, k) �= (6, 6), k, k ∈
{6, 18, 26}, we define a lighting function on the complex R3 which gives us a
regular (k, k)-space Ek,k = (R3, fk,k) whose set of digital surfaces is the largest
within that class of digital spaces. Namely, we will prove the following
Theorem 4. Any digital surface S in a regular (k, k)-space (R3, f) is also a digital
surface in the space Ek,k = (R3, fk,k), which is called the universal (k, k)-space.
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In the definition of Ek,k we use the set of forbidden patterns introduced in
Theorem 3 and the set of k-plates, that are the elementary “bricks” from which
f -surfaces of Euclidean (k, k)-spaces are built. Indeed, the lighting function fk,k

is defined as follows. Given a digital object O ⊆ cell3(R3) and a cell δ ∈ R3,
fk,k(O, δ) = 1 if and only one of the following conditions holds:

1. dim δ ≥ 2 and δ ∈ supp(O)
2. dim δ = 0 and P(O, δ) ∈ Pk ∪ FPk,k ∪ {P8}
3. dim δ = 1 and st3(δ; O) = st3(δ; R3) (a square plate), or
4. dim δ = 1 and st3(δ; O) = {σ, τ}, with δ = σ∩ τ , and one of the next further

conditions also holds: (a) for k = 6, and k �= 6, fk,6(O, α1) = fk,6(O, α2),
where α1, α2 are the two vertices of the 1-cell δ; or (b) if σ, τ belong to
distinct 6-components of st∗3(δ; O), for k, k ∈ {18, 26}.

Notice that if k = 6, and k ∈ {18, 26}, none of the conditions 4(a) and 4(b) hold.
So, f6,k(O, δ) = 1 for a 1-cell δ ∈ R3 if and only if st3(δ; O) = st3(δ; R3).

It is not difficult, but a tedious task, to check that each fk,k is a lighting
function, and to prove that Ek,k is actually a homogeneous (k, k)-space. To
show that all of them are regular spaces, assume that O is a digital objet and
α ∈ R3 is a vertex such that P(O, α) = P8; that is, st3(α; O) = st3(α; R3).
Then, it is readily checked from the definition that fk,k(O, δ) = 1 for each cell
δ ≥ α. Therefore, the unit cube Cα ⊂ R

3 centered at α, and whose vertices are
the centers of all voxels in st3(α; R3), is contained in |AO |; thus no surface in
Ek,k can contain the pattern P8. This also proves that Ek,k is Euclidean since
f(cell3(R3), δ) = 1 for every cell δ ∈ R3.

In Remark 4 we suggested that the continuous analogue of a given surface
in two different (k, k)-spaces may differ only if it contains the pattern Pa

6 . Next
results make more precise this in relation with the universal (k, k)-space.

Proposition 8. Let S be a surface in a regular (k, k)-space (R3, f). If δ ∈ R3

is a cell such that P(S, α) �= Pa
6 for all vertices α ≤ δ, then f(S, δ) = fk,k(S, δ).

Proof. We may assume that δ ∈ supp(S), otherwise both f and fk,k vanish on
δ for S by Axiom 2 of lighting functions.

Assume firstly that δ is a vertex of R3, and so f(S, δ) = 1 iff P(S, δ) ∈ Pk

by Theorem 3. Moreover, since (R3, f) is regular the same theorem and the
hypothesis ensures that P(S, δ) /∈ FPk,k ∪ {Pa

6, P8} and, under these conditions,
the definition of fk,k also yields that fk,k(S, δ) = 1 iff P(S, δ) ∈ Pk.

If δ is a 2-cell, fk,k(S, δ) = 1 by definition. We reach a contradiction if f(S, δ) =
0. Indeed, in that case Proposition 3 gives us a face α < δ which is lighted for S.
Since st3(δ; S) ⊆ st3(α; S), condition (2) in Theorem 1 must hold if dimα = 1.
Otherwise, if α is a vertex, then st3(α; S) is a k-plate by Theorem 3 and we
showed that δ is then lighted in Remark 3.

Finally, if dim δ = 1 and δ ∈ supp(S) three cases are possible: (a) st3(δ; S) =
{σ, τ}, with δ = σ ∩ τ ; (b) st3(δ; S) = {σ, τ, ρ}; and (c) st3(δ; S) = st3(δ; R3). In
case (b) both fk,k and f vanish on δ by definition and Theorem 1, respectively.
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We claim that f(S, δ) = 1 in case (c). Indeed, let α1, α2 be the vertices of
the edge δ. Since st3(δ; S) ⊆ st3(αi; S) and (R3, f) is regular we know that
P(S, αi) ∈ {Pa

4, Pa
5 , Pb

6, P7}; moreover, P(S, αi) �= Pb
6 if k = 6. In any case

these patterns are not k-plates. Then f(S, αi) = 0, i = 1, 2, by Theorem 3, and
Proposition 2 yields our claim. The case (a) requires two different arguments
for k = 6 and k ∈ {18, 26}. If k = 6, and so k �= 6, we have already proved
that f(S, αi) = fk,k(S, αi) for the two vertices α1, α2 < δ. Then also f(S, δ) =
fk,k(S, δ) by definition of fk,k and Theorem 1. Finally, if k ∈ {18, 26} we know
that f(S, δ) = 0 by Corollary 1 and, moreover, st∗3(δ; S) is 6-connected if k �= 6
by Proposition 7. Under these conditions we get fk,k(S, δ) = 0 by definition. 
�

Proposition 9. Let S be a surface in a regular (k, k)-space (R3, f). Given a
vertex α ∈ R3, let Cα ⊂ R

3 be the unit cube centered at α. If P(S, α) = Pa
6 the

two following properties hold:

1. Dα
f = |Af

S | ∩ Cα and Dα
U = |Afk,k

S | ∩ Cα are both 2-balls with common
border; that is, ∂Dα

f = ∂Dα
U .

2. There exists a pl-homeomorphism ϕα : Dα
f → Dα

U which extends the identity
in the border; moreover, if f(S, α) = 0 then ϕα = id.

Proof. From the definition of the lighting function fk,k it is readily checked that
all the 2- and 3-cells δ > α, δ ∈ supp(S), and also the two 1-cells β1, β2 > α such
that st3(βi; S) = st3(βi; R3) are lighted for S, while fk,k(S, δ) = 0 for any other
cell δ ≥ α. This way, the disk Dα

U is the union of the two unit squares defined
by the centers of all voxels in st3(α; S). In particular, Dα

U = Dα
f if f(S, α) = 0

by Remark 4.
If f(S, α) = 1 we know by Remark 3 that Dα

f is also a disk and from the
above description of Dα

U it becomes clear that ∂Dα
f = ∂Dα

U . Moreover, ϕα can
be defined as the conic extension of the identity that assigns the center c(α) to
c(σ ∩ τ), where σ, τ ∈ st3(α; S) are the two only 3-cells which are 6-adjacent to
three other 3-cells in that set.

Proof. (of Theorem 4) We claim that the polyhedra |Af
S | and |Afk,k

S | are pl -
homeomorphic. Thus, the continuous analogues of S in both digital spaces
(R3, f) and Ek,k are combinatorial surfaces.

To ease the reading we will write |AU
S | instead |Afk,k

S |, while keep |Af
S | for the con-

tinuous analogue of S in the space (R3, f). In order to define a pl -homeomorphism
ϕ : |Af

S | → |AU
S | let us consider the sets of disks {Dα

f = |Af
S | ∩ Cα}α∈A and

{Dα
U = |AU

S | ∩ Cα}α∈A, where A stands for the set of vertices α ∈ R3 such that
P(S, α) = Pa

6 and Cα ⊂ R
3 is the unit cube centered at α. For each vertex α ∈ A

we set ϕ = ϕα, where ϕα : Dα
f → Dα

U are the pl -homeomorphisms provided by

Proposition 9, while from Proposition 8 we can define ϕ : |Af
S | − ∪α∈ADα

f →
|AU

S | − ∪α∈ADα
U as the identity. Notice that ϕ = id if f(S, α) = 0 for some

vertex α ∈ A, so we may assume that f(S, α) = 1 for all of them. In order
to check that ϕ and ϕ−1 are well defined it suffices to prove that Dα

g ∩ Dα′
g ⊆
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∂Dα
g ∩ ∂Dα′

g for each pair of distinct vertices α, α′ ∈ A, where g ∈ {f, U}, and
also Dα

U ∩ (|AU
S | − ∪λ∈ADλ

U ) ⊆ ∂Dα
U for each α ∈ A.

Given α ∈ A, let β1, β2 > α the two edges such that st3(βi; S) = st3(βi; R3)
and γ > α the 2-cell having β1 and β2 as faces. From Remark 3 we know that
f(S, δ) = 0 for δ ∈ {γ, β1, β2} and then no other face of γ, but α, is lighted by f
for S by Axiom 5. In particular, P(S, α′) /∈ Pk ∪{Pa

6} for each vertex α �= α′ < γ
and the result follows. 
�
Theorem 4 suggests that, for each adjacency pair (k, k) �= (6, 6), k, k ∈ {6, 18, 26},
the fk,k-surfaces of the universal (k, k)-space Ek,k could be identified with (k, k)-
surfaces of the discrete space Z

3. This leads to the problem of characterizing the
fk,k-surfaces just in terms of the adjacency pairs (k, k), similarly to Morgenthaler’s
definition of (26, 6)-surfaces in [13].
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