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Abstract. A new algorithm to compute the homology of a finitely gen-
erated chain complex is proposed in this work. It is based on grouping
algebraic reductions of the complex into structures that can be encoded
as directed acyclic graphs. This leads to sequences of projection maps
that reduce the number of generators in the complex while preserving
its homology. This organization of reduction pairs allows to update the
boundary information in a single step for a whole set of reductions which
shows impressive gains in computational performance compared to ex-
isting methods. In addition, this method gives the homology generators
for a small additional cost.
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1 Introduction

Computation of homology has become a very important tool in many applica-
tions and domains such as dynamical systems, image processing and recognition,
and visualization. In dynamics, invariants such as the Conley index are computed
using homology algorithms. In digital image analysis, topological invariants are
useful in shape description, indexation, and classification. Among shape descrip-
tors based on homology theory, there is the Morse shape descriptor [1,2], and
the persistence barcodes for shape [3]. The necessity of improved algorithms
appears evident as new applications of the homology computation arise in re-
search for very large data sets. The classical approach to compute homology of
a chain complex with integer coefficients reduces to the calculation of the Smith
Normal Form (SNF) of the boundary matrices which are in general sparse [4,5].
Unfortunately, this approach has a very poor running-time and its direct im-
plementation yields exponential bounds. Uses and improvements of this method
can be found in works that appeared recently [6,7]. Another generic approach
is the method of reduction proposed in [8,5]. Several algorithms based on the
idea of reduction and that improve the time complexity for particular types of
data sets have been designed. For cubical sets embedded in R
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proposed a method [9] based on the computation of acyclic subspaces by using
lookup tables. For problems dealing with higher dimensions, Mrozek and Batko
developed an algorithm [10] based on the concept of coreduction which showed
interesting performance results on cubical sets. However problems in which data
is higher dimensional and not cubical are still difficult to handle. The classical
methods spend most of their time in updating the boundary homomorphisms
after each reduction step.

We propose a method that identifies reduction pairs and organizes them in a
structure that allows to efficiently update the boundary information in a single
step for a whole set of reductions. This reduces to the minimum the manipula-
tions of the data structures that store the boundary information. Starting at an
arbitrary cell A with a face a in its boundary, we identify successive adjacent
admissible pairs of reduction and build the longest possible sequence originating
at A. Several sequences can originate at the same cell, and each sequence can
be seen as a path in a directed acyclic graph, called a reduction DAG, where
nodes are reduction pairs and oriented edges denote an adjacency relation be-
tween the reduction pairs. Given a reduction DAG across a chain complex, we
achieve a global simplification of the complex by performing all the reductions
in the DAG at once. We will establish direct algebraic formulas that allow to
update the boundary of remaining cells. The net advantage of our approach is
that the boundaries are not explicitly updated after each reduction step. Instead,
this information is always preserved implicitly within the data structures and
processed globally for each reduction DAG allowing to reduce considerably the
computational time.

2 Chain Complexes and Homology

A finitely generated free chain complex (C, ∂) with coefficients in a ring R is a se-
quence of finitely generated free abelian groups {Cq}q∈Z

together with a sequence
of homomorphisms, called boundary maps or operators, {∂q : Cq → Cq−1}q∈Z

satisfying ∂q−1 ◦ ∂q = 0 for all q ∈ Z. Typically, Cq = 0 for q < 0. For each
p, the elements of Cp are called p-chains and the kernel of ∂p : Cp → Cp−1

is called the group of p-cycles and denoted Zp = {c ∈ Cp | ∂pc = 0}. The
image of ∂p+1, called the group of boundaries, is denoted by Bp = {c ∈ Cp |
∃ b ∈ Cp+1 such that ∂p+1b = c}. Bp is a subgroup of Zp because of the property
∂p◦∂p+1 = 0. The quotient groups Hp := Zp/Bp are the homology groups of the
chain complex C. The reduction of a chain complex is a procedure that consists
of removing successively pairs of generators from the bases of its chain groups
while preserving the homology of the original complex. At the algebraic level,
each removal of a pair of generators that form a reduction pair is equivalent
to a collection of projection maps {πd : Cd → Cd}d that send each generator of
the removed pair into 0. Moreover, it projects the other cells into the remain-
ing generators taking into account the modifications of their boundaries caused



Computing Homology: A Global Reduction Approach 315

by the removal of the pair. Let C′
d = πd(Cd) for each d. It is shown in [5]

that C′ is a chain complex and H∗(C′) ∼= H∗(C), that is, the homologies of C′

and C coincide. To calculate the homology of the original chain complex C, the
idea is to define a sequence of projections associated to the removal of pairs in
all dimensions and then compute the homology of the resulting chain complex
that is the image of the successive projections. A sequence of projections is
complete if no other projection can be added to the sequence. Such a sequence
always exits when the chain complex is finitely generated. Let (C, ∂) be the
original chain complex and (Cf , ∂f ) is the final chain complex obtained after
a complete sequence of projections. We already know that the two complexes
have the same homology, moreover it is easily observed that if ∂f = 0 then
H∗(C) ∼= H∗(Cf ) ∼= Cf , that is, the Betti number βd is given by the number of
d-cells remaining in the complex Cf .

Formally, a reduction pair and its associated collection of projection maps are
defined as follows.

Definition 1. Let C = {Cd, ∂d} be an abstract chain complex. A pair of genera-
tors (a, B) such that a ∈ Cm−1, B ∈ Cm and 〈∂B, a〉 = ±1 is called a reduction
pair. It induces a collection of group homomorphisms

πdc :=

⎧
⎪⎨

⎪⎩

c − 〈c, a〉
〈∂B, a〉∂B if d = m − 1,

c − 〈∂c, a〉
〈∂B, a〉B if d = m,

c otherwise,

where c ∈ Cd and 〈 · , · 〉 is the canonical bilinear form on chains.

3 Computation of Homology by Grouping Reductions

Forming RDAGs: For a fixed dimension and starting from an arbitrary cell,
we form the maximal possible directed acyclic graph (DAG) whose nodes are
reduction pairs and a directed edge between two pairs (a, B) and (c, D) means
that (a, B) is adjacent to (c, D) (see Section 3.1). A directed path in the DAG
corresponds to a reduction sequence. That type of reduction sequence affects
only adjacent cells to the path and leaves other cells unchanged. Information
about each reduction is carried out by the reduced cells. After performing the
whole set of reductions, we obtain the reduced complex by extracting the bound-
ary information from the data structures associated to the cells visited by
the reduction DAGs. We introduce the main concepts through an example.
The example details how the projections of cells are calculated given a
reduction sequence. This will show what information is exactly needed to be
kept about the original complex in order to be able to rebuild the reduced
complex.
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Fig. 1. Example of collapsing by using RDAGs

Example 1. Consider the complex given in Figure 1. The depicted sequence of
reduction pairs originating at the cell A is (b, B) , (c, C) and (d, D). The projec-
tion maps at the level of the 2-cells give the following

(b, B) : πb
2α = α − 〈∂α, b〉

〈∂B, b〉B = α − λbB

(c, C) : πc
2α = α − 〈∂α, c〉

〈∂C, c〉C = α − λcC

(d, D) : πd
2α = α − 〈∂α, d〉

〈∂D, d〉D = α − λdD

It follows that the projection map associated to the whole sequence is π2 =
πd

2 ◦πc
2 ◦πb

2. The 2-cell A is the only cell adjacent to the sequence while the 2-cell
E is not adjacent. Their respective projections with respect to the sequence are

π2A = πd
2 ◦ πc

2 (A − λbB) = A − λbB + λbλcC − λbλcλdD.

π2E = E′ = πd
2 ◦ πc

2

(

E − 〈∂E, b〉
〈∂B, b〉B

)

= πd
2 ◦ πc

2 (E − 0 · B) = . . . = E.

Each coefficient in the projection is called the coefficient of contribution of the
corresponding cell to the projection of A.

3.1 Projection Formulas for Grouped Reductions

We define how to organize the reductions and the complex using reduction DAGs.
A cell A1 is adjacent to the pair (a2, A2) if the cells A1 and A2 are of the same
dimension m and a2 is a cell with dimension m − 1 in the boundaries of both
A1 and A2. A pair (a1, A1) is adjacent to a pair (a2, A2) if A1 is adjacent to
(a2, A2). A reduction DAG is a directed acyclic graph whose nodes are reduction
pairs and a directed edge between two pairs (a1, A1) and (a2, A2) means that
(a1, A1) is adjacent to (a2, A2).

A path P from (a1, A1) to (an, An) in a reduction DAG G is a reduction
sequence (a1, A1) , . . . , (an, An) whose elements are nodes in G and (ai, Ai) is
adjacent to (ai+1, Ai+1), for i = 1...n − 1. A cell A is said to be adjacent to a
reduction sequence if it is adjacent to some pair of the sequence. A path from
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(a1, A1) to (an, An) in a reduction DAG G is said to originate at A0 if A0 is
adjacent to (a1, A1). A cell not appearing in any reduction DAG is called a
projected cell. The cells that appear in a reduction DAG are called reduced cells.

In the following theorem, we give a formula to calculate the projection of
a cell by considering the contribution of a single path and ignoring the input
from other paths and sub-paths. This formula is called “path projection” and is
proved using induction on the length of the sequence of reductions.

Theorem 1. Let P : (a1, A1) , . . . , (an, An) be a path originating at A0. The

path projection of A0 by the path P is given by πP (A0) = A0 +
n∑

i=1

ΓiAi, where

Γi = (−1)i
i∏

j=1

λj, and λj = 〈∂Aj−1, aj〉
〈∂Aj , aj〉 for 1 ≤ i, j ≤ n. Γi is called the coeffi-

cient of contribution of Ai in the path projection of A0.

Proof: The proof is easily done by induction on the length of the path. �

Now, we can write πPn (A0) = A0 +
n∑

i=1

ΓiAi

︸ ︷︷ ︸
ΨPn

. We denote by ΨPn the projection

chain of the cell A0 by the path Pn.

Corollary 1. Let P1, P2, . . . , Pk be disjoint non overlapping paths originating
at A0. The total projection of A0 by P1, . . . , Pk denoted by πP1,P2,...,Pk

(A0) =

A0 +
k∑

i=1

ΨPi where ΨPi is the projection chain of the cell A0 by the path Pi.

Corollary 2. Let T be a reduction tree originating at A0, then the projection of
A0 by T is equal to the sum of A0 and the projection chain of A0 by T .

Proof: Typically, the trees originating at A0 can occur as pure paths, in which
case the associated projections are given previously. Otherwise, we can find
paths that share a common ancestral branch that originates at A0. This is
seen as a bifurcation as shown in Figure 2. In this case, the ancestral branch
is a path B : (b1, B1) , . . . , (bnB , BnB ) which is extended by two paths C :
(c1, C1) , . . . , (cnC , CnC ) and D : (d1, D1) , . . . , (dnD , DnD). The combination of

Fig. 2. A path B bifurcates into two paths C and D
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the results in Theorem 1 and Corollary 1 can be used to show that the total
projection of A0 by T = (BC) , (BD) is given by

πT (A0) = A0 +
nB∑

i=1

ΓiBi + ΓnB

⎛

⎝
nC∑

j=1

αjCj +
nD∑

k=1

βkDk

⎞

⎠

The term
nB∑

i=1

ΓiBi + ΓnB

⎛

⎝
nC∑

j=1

αjCj +
nD∑

k=1

βkDk

⎞

⎠ = πT (A0)−A0 = ΨT (A0) is

called the projection chain of the tree. �

Theorem 2. Let A0 be a cell adjacent to a RDAG in a chain complex C. The
projection of A0 by the RDAG is equal to A0 to which we add the projection
chains of A0 by all the trees in the RDAG that originate at A0, that is

πRDAG (A0) = A0 +
∑

T∈TA0

ΨT (A0)

where TA0 is the collection of all reduction trees in the RDAG originating at A0.

Proof: The results proved for paths in corollaries 1 and 2 can be easily extended
for the case of trees to find the formula for the projection of A0.

Building a Simplified Complex: Using reduction DAGs to compute the ho-
mology of a chain complex is a recursive process. At each recursion level, the
algorithm simplifies the complex by constructing reduction DAGs on the com-
plex and saving the associated projections into appropriate data structures. This
is performed simultaneously for each dimension. This process eventually stops
when it is impossible to add another reduction pair to any reduction DAG. In
that case, the algorithm will build the associated simplified complex and con-
tinue the reduction process on the simplified complex. The simplified complex
is rebuilt from the projected cells only (reduced cells are not considered). The
boundaries of the cells are updated using global projection formulas that allow
to calculate the incidence numbers between cells of contiguous dimensions. Note
that the reduced cells are not completely removed from the structures since they
may be needed to recover homology generators expressed in terms of cells of the
original complex as we explain in subsection 3.2. Contrary to the classical case
where the boundary updating is done at each reduction step and may concern
cells that can be reduced at a later step, a major benefit of this new approach is
that the boundary updating is done only among the projected cells which often
constitute a small fraction of the number of cells in the original complex.

3.2 Calculating Generators

Let us consider the complex of a plane quotiented by its boundary as illus-
trated in Figure 3. This complex is homeomorphic to a 2-sphere and the 2-cell A
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Fig. 3. A Complex homeomorphic to a 2-sphere

represents the 2-generator A′ = A+λ1B+λ2C+λ3D. As illustrated in Figure 3,
after each reduction, the projection coefficients λi are saved into the projection
lists maintained in each reduced cell. Thus, to get the 2-generator associated
to the 2-cell A, one has to scan through each reduced 2-cell and extract the
projection coefficients associated to A. Projections correspond to generators but
they can be expressed with cells of the simplified complex at any level of the
recursion. However, in order for the generators to carry geometric meaning, it
makes sense only to express them with cells from the original complex. Due to
the recursive simplifications, a projected cell at a previous level of the recursion
may become a reduced cell at a later level of the recursion. We illustrate this
in Figure 4. In this example, there are two levels of recursion. The final simpli-

(a) (b) (c) (d)

Fig. 4. (a) Reduction 1 of the initial complex. (b) Reduction 2 of the simplified complex.
(c) Initial complex after returning from the second reduction. (d) Initial complex after
returning from the first reduction.

fied complex is shown in 4(b). At this step, the cell A represents a 2-generator
that is expressed as A′′ = A′ + λ5B

′. Returning from the last recursion, we
know that A′ = A + λ1C + λ2E and B′ = B + λ3D + λ4F . The cell A repre-
sents a projected cell at both recursion levels (4(b) and 4(c)) and requires no
special consideration. On the other hand, the cell B is a projected cell at the
first level of recursion but becomes a reduced cell at the second recursion level.
Consequently, returning from the second recursion level, we scan through each
2-cell and whenever B is encountered in one of the projection lists, it is replaced
by λ5A. This is shown in Figure 4(d). Finally, the generator is expressed by
A′′ = A + λ5B + λ1C + λ5λ3D + λ2E + λ5λ4F . In Figure 5 we show different
1-generators that we extracted from 3D models.
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(a) (b) (c) (d) (e) (f)

Fig. 5. (a,b,c) The 3D models of a chain, two kissing children and a Buddha. (d,e,f)
The calculated holes (one dimensional generators).

4 Data Structures and Algorithms

The first data structure represents a chain complex.

ChainComplex:
E : two dimensional array of cells organized by their respective dimension,

that is E[d][i] denotes the i-th d-cell.

In our implementation, the pointer to a cell is used to identify the cell. These
identifiers are saved in E. Only the pointers of the projected cells are copied into
the simplified complex.

Cell:
boundary/coboundary: list of faces/cofaces.
state: a flag taking one of the values in {NORMAL, REDUCED, PRO-

JECTED, VISITED}.
projCells: list to save the PROJECTED cells and their associated coeffi-

cients that project onto the given cell when it is REDUCED.
nbUpdates: approximates the number of updates to a projCells list when

the given cell is reduced by one of its cofaces.

Initially, all cells are set to the NORMAL state. REDUCED is assigned to the
cells in a reduction sequence and PROJECTED is assigned to the cells adjacent
to a reduction sequence. The VISITED flag is assigned to the d-cells that don’t
have any (d + 1) coface that can form an admissible reduction pair. The flag
helps to avoid testing more than once if the given d-cells have an admissible
reduction pair. The projCells list is used by the REDUCED cells to keep track
of the coefficients of contribution of every PROJECTED cell for which it con-
tributes. To build a sequence of reduction pairs, nbUpdates is used to select
reduction pairs that should minimize the amount of updates to the projCells
list. We now give the principal steps of the algorithm.


 HOM RDAG(ChainComplex K) returns the Betti numbers of a chain com-
plex K by using reduction DAGs.
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1. (Initialization) For all cells in K, set its state to NORMAL, empty proj-
Cells, set nbUpdates to the number of cofaces.

2. (Reduce cells) Proceed by decreasing order of dimension. Order the d-cells
by increasing value of nbUpdates. Following this order, start a reduction
DAG (call BuildRDAG()) from each cell whose state is NORMAL.
For dimension 0, change remaining NORMAL 0-cells to PROJECTED.

3. (Build the simplified complex ) Call BuildSimplifiedComplex (K). This method
extracts the boundary information from the data structures to build a sim-
plified complex K ′.
Continue to recursively simplify K ′ by calling HOM RDAG(K ′) until there
are no reduction pair left.
Test if all boundaries are trivial. If not, then continue the reduction process
with another method such as SNF.

4. (Return the Betti numbers) Assign the number of PROJECTED d-cells to
βd.


 BuildRDAG(Cell c) builds a reduction DAG from cell c.

1. (Initialization) Save c.nbUpdates into nbUpdatesLimit for later use.
2. (Find a reduction pair) Find a coface B of c such that B is NORMAL or

VISITED. If a coface B is found, then call PairCells(c,B), otherwise set c
to VISITED and exit BuildRDAG().

3. (Expand the reduction DAG) Expand the reduction DAG (repeat step 2)
from all NORMAL faces of B that have nbUpdates ≤ nbUpdatesLimit.
Proceed in a breadth first search approach.


 PairCells(Cell c, Cell B) adds the reduction pair (c, B) to the sequence and
updates the data structures accordingly.

1. (Update projCells) For all cofaces C of c different than B, if C is RE-
DUCED, then add λc ∗ C.projCells to B.projCells. Otherwise, set C to
PROJECTED and add λc ∗ C to B.projCells, where λc = − 〈∂C, c〉

〈∂B, c〉 .
2. (Update the nbUpdates variable) For all faces a of B different than c, add

|B.projCells|−1 to c.nbUpdates. For all faces of c, remove one to nbUp-
dates.


 BuildSimplifiedComplex (Complex K) extracts the boundary and coboundary
information from the data structures to build a simplified complex K ′.

1. (Update boundary) Proceed by increasing order of dimension. Let c be a
PROJECTED d-cell of K. For all cofaces C of c, iterate through C.projCells.
Let B be a (d + 1)-cell in C.projCells and λB its associated coefficient. Add
λB 〈∂C, c〉 c to B.boundary and update c.coboundary accordingly.
Finally, remove all REDUCED cells remaining in the boundary and
coboundary of PROJECTED cells. Copy the pointers of all PROJECTED
cells into K ′.E.
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5 Experimental Results and Discussion

We experimented with datasets from d-balls, d-spheres, tori, Bing’s houses, 3D
medical scans or randomly generated d-complexes. Each dataset contains many
files of complexes of various data sizes. The size of a complex is measured as the
number of cells plus the number of links (entries in boundary lists). A test is
an execution of the algorithm on a file of a specified data set. We performed 30
tests for each file and computed the average, maximum and standard deviation
of the time used for calculating the homology, the generators and sorting. We
measured the sorting time because it has a time complexity of Θ (n · log n) and
we wanted to verify that sorting would not monopolize the computation time.
Also, we saved statistics on the number of recursions to see its influence on the
global performance. We grouped and summarized the results per dataset. Ta-
ble 1 shows the comparison between the performance of the RDAGs algorithm
and the classical reduction method on different datasets. We can observe a sig-
nificant improvement of the new method. The results suggest subquadratic time
complexity for the RDAGs algorithm which is what we measured in Table 2.

Table 1. Reduction DAGs algorithm versus the classical reduction method

Dataset Data Size Times Faster

3-Ball 115905 195.4

4-Ball 27841 147.3

2-Sphere 517145 65.0

3-Sphere 134777 182.5

Torus 418608 36.0

Heart 545492 50.5

3-Complex 265322 410.0

5-Complex 431186 458.8

8-Complex 330285 185.9

The second column (N) gives the number of files within the dataset. The
third and fourth columns show the parameters α and β that best-fit the equation
“time ≈ β·data sizeα”, where time is expressed in seconds. We obtained the best-
fits from the times measured on the individual files of each dataset. In the last
four columns, we present the times in milliseconds that we get from the best-
fit equation for different data sizes. Those times approximate the real times
measured in real experiments. In Table 2 we report the approximative time that
our algorithm uses to calculate homology on various datasets.

In Table 2, we observe that α ≈ 1.16 and β ≈ 5E−8 for d-balls and d-spheres
without regard of the dimension. Except for few values, α is relatively constant
while β gradually decreases as the dimension increases. We explain this by the
fact that the ratio of exterior face reductions versus interior face reductions
increases with the dimension. We observe that the approximation times and the
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Table 2. Approximated performance with respect to dataset, data size and dimension

Equation Time (msec) Vs Data Size
Dataset N β α 104 105 106 107

2-Ball 15 9.05E-8 1.11 2.49 32.11 413.66 5329.04

3-Ball 11 4.63E-8 1.15 1.84 26.04 367.77 5194.95

4-Ball 11 4.26E-8 1.14 1.55 21.35 294.72 4068.27

5-Ball 9 5.66E-8 1.12 1.71 22.53 297.04 3915.76

6-Ball 5 3.56E-8 1.15 1.42 20.02 282.78 3994.39

2-Sphere 17 5.77E-8 1.18 3.03 45.83 693.71 10499.67

3-Sphere 16 2.79E-8 1.22 2.12 35.12 582.91 9673.96

4-Sphere 10 3.38E-8 1.17 1.62 23.93 353.93 5235.00

5-Sphere 9 5.52E-8 1.14 2.00 27.67 381.89 5271.56

6-Sphere 5 3.30E-8 1.17 1.58 23.36 345.55 5111.09

7-Sphere 3 1.31E-8 1.24 1.19 20.76 360.80 6270.05

Torus 5 1.48E-7 1.07 2.82 33.13 389.28 4573.64

Bing’s House 5 2.18E-7 1.04 3.15 34.55 378.84 4153.90

Heart 6 6.84E-8 1.13 2.26 30.55 412.15 5559.76

Brain 6 3.13E-8 1.20 1.97 31.30 496.07 7862.20

2-Complex 9 6.78E-8 1.24 6.18 107.46 1867.37 32451.12

3-Complex 9 7.89E-9 1.36 2.17 49.78 1140.45 26126.25

4-Complex 9 2.82E-9 1.45 1.78 50.15 1413.35 39833.56

5-Complex 9 4.95E-9 1.38 1.64 39.32 943.20 22625.87

6-Complex 9 3.04E-9 1.41 1.33 34.11 876.75 22535.83

7-Complex 9 2.42E-8 1.23 2.01 34.18 580.52 9858.60

8-Complex 9 2.26E-9 1.43 1.19 31.92 859.23 23126.42

Table 3. (a) Betti numbers of the files in the heart and brain datasets. (b) Number of
reduction calls per dataset.

File Name Number of Generators

heart192 (11, 9, 0)

heart160 (4, 15, 2)

heart128 (39, 12, 6)

heart96 (30, 107, 19)

heart64 (38, 228, 104)

heart32 (111, 220, 208)

brain192 (11, 0, 0)

brain160 (109, 1, 0)

brain128 (230, 25, 0)

brain96 (255, 153, 4)

brain64 (134, 407, 21)

brain32 (41, 524, 252)

Reduction Calls
Dataset N Avg Max SD

Torus 5 1.71 2.20 0.46

Heart 6 3.62 4.33 0.33

Brain 6 3.18 3.33 0.20

2-Complex 9 2.76 3.33 0.34

3-Complex 9 2.68 3 0.27

4-Complex 9 2.94 3.56 0.35

5-Complex 9 2.51 2.78 0.19

6-Complex 9 2.55 2.89 0.21

7-Complex 9 2.89 3.22 0.24

8-Complex 9 2.61 3 0.28

All others N/A 1 1 0

(a) (b)
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parameters α and β for the heart and brain datasets, remain in the same order
as those of d-balls and d-spheres despite their high Betti numbers as shown in
Table 3(a).

For these two datasets, the high Betti numbers were not a relevant factor for
the performance of the algorithm. We think it is because they contain a high
ratio of exterior face reductions, which cost near to nothing. If we compare with
the random d-complexes then the topology is an important factor. Indeed, as
the data size increased we observed bigger differences in the time performance.
Another interesting aspect of the algorithm is the number of recursions which is
expressed as the number of reduction calls in Table 3(b).

6 Conclusion

Our experimentations show that this algorithm performs significantly faster than
the classical reduction method. In addition, for all the datasets that we tested,
which cover a wide range of types of data, its global performance indicated a
subquadratic time complexity. Moreover, it allows to calculate the homology gen-
erators at a small additional time cost. Interestingly enough, in all the datasets
we dealt with, the algorithm needed only to construct few intermediate com-
plexes to obtain the homology of the original complex.
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