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Abstract. The exact, subpixel watershed algorithm delivers very accu-
rate watershed boundaries based on a spline interpolation, but is slow
and only works in 2D. On the other hand, there are very fast pixel wa-
tershed algorithms, but they produce errors not only in certain exotic
cases, but also in real-world images and even in the most simple sce-
narios. In this work, we examine closely the source of these errors and
propose a new algorithm that is fast, approximates the exact watersheds
(with pixel resolution), and can be extended to 3D.

1 Introduction

Watershed algorithms are among the most important approaches to image seg-
mentation. This is in large part due to the fact that they are based on a sound
mathematical definition of segmentation boundaries: watershed segmentations
are equivalent to Voronoi tessellations of a suitable boundary indicator function
(e.g. the image gradient magnitude) with respect to the topographic distance
[1]. That is, catchment basins (regions) are defined as the set of points which
are closer (in topographic distance) to a particular minimum than to any other
minimum, and watersheds form the boundaries between the basins.

The exact watershed algorithm [2I3] detects such boundaries with an accu-
racy that is only limited by adjustable numerical tolerances and the quality of
the input image. The results are very precise and achieve theoretically predicted
limits under realistic image acquisition models [4]. Unfortunately, the exact wa-
tershed algorithm is also rather time consuming, and its computational principle
is restricted to two dimensions.

In contrast, the popular pixel-based watershed algorithms are much faster,
and can be applied in any dimension, but these advantages come at the cost of
much lower accuracy: pixel-based algorithms only produce inter-pixel boundaries
or 8-connected pixel boundaries, i.e.they round boundary locations to certain
fixed coordinates defined by the grid. Furthermore, loss of accuracy is not only
observed in terms of geometry (i.e. displacement of boundaries from their true
position), but also in terms of topology: it is not uncommon that some catch-
ment basins are missing or are split into several regions. Furthermore, there are
systematic errors that lead to watersheds snapping into “preferred” directions.

In this paper, we are going to compare pixel-accurate results to the corre-
sponding exact watersheds and, for the first time, investigate systematically the
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errors caused by common watershed discretization schemes. This investigation
reveals a number of interesting findings:

— Correct detection of minima (i.e. catchment basin seeds) in discrete images
is much more difficult than commonly believed.

— Grid-based flowline discretization suffers from accumulated quantization er-
rors leading to systematic errors in the boundaries, i.e. “preferred directions”.

We propose a compromise between the exact and pixel-accurate algorithms,
which we call the fast flowline algorithm. While our new algorithm only com-
putes the assignment of each pixel to a catchment basin (instead of a subpixel-
accurate boundary), it does so by tracing the ezact, subpizel-accurate flowline
starting at each pixel center. In this way, the topological inconsistencies de-
scribed above can be avoided, and the approximation effect indeed reduces to
boundary rounding. This principle is applicable in higher dimensions as well,
and the boundary can be refined by adaptive subdivision (i.e.use of a finer grid
near the boundary) if desired. The algorithm’s speed is significantly increased by
early flowline termination. This optimization resembles the UNION-FIND variety
of the watershed transform, but instead of tracing flowlines only to an immediate
neighbor, we follow them for as long as is necessary for a correct decision about
basin assignment.

2 The Exact Watershed Transform

The exact watershed transform assumes that a continuous boundary indicator
image is given, i.e.an image that takes high values near boundaries and low
values within regions, and which is defined over a compact subset D of R2. The
latter assumption is not a significant restriction for image analysis, because band-
limited images of standard quality can be accurately interpolated to the real
domain, e.g. by spline interpolation. In addition, we assume that the boundary
indicator function fulfills a Morse condition in the domain of interest, i.e.all
points with zero gradient are isolated, so that the image has only extrema and
saddles, but no plateaus and horizontal ridges (this is a sufficient, but not a
necessary condition which we pose for convenience of exposition). In contrast
to discrete watersheds, where the plateau problem is central [I], it is not very
significant in interpolated images because band-limited functions can only violate
the Morse condition in degenerate cases. Moreover, since the space of Morse
functions is dense in the space of continuous functions, an infinitesimal change
of the pixel values (e.g. by adding noise with standard deviation of a fraction of
a gray level, and/or application of an infinite impulse response filter) would turn
a non-Morse function into a Morse function []

Due to the above assumptions, every point (with the exception of extrema
and saddles) is crossed by a unique flowline which runs along the local gradient

1 'We always imply that pixel values are stored in a floating point representation during
analysis.
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direction, and all flowlines converge to and diverge from a critical point. With
reflective boundary conditions, this even applies at the image border. The catch-
ment basin of a minimum is now the set of points whose flowlines converge at
this minimum, and watersheds are those points that do not belong to any catch-
ment basin. This definition is the basis for the flowline (or “tobogganing” [5])
type of watershed algorithms.

Equivalently, one can base the watershed definition on the topographic dis-
tance [1] between two points  and y

() = min | [V/()|dz 1)

where f is the boundary indicator function, and the minimum is taken over all
paths C' connecting  and y. When x and y are on the same flowline, that
flowline is necessarily a path of smallest distance, and the topographic distance
reduces to d; (z,y) = | f(x) — f(y)|- In particular, when @ is a minimum point,
di (z,y) + f(x) = f(y) holds for all points y whose flowline converges to that
minimum.

Suppose for a moment that all minima of f have the same value fuin (when
this is not the case, one may change f in an infinitely small neighborhood around
each minimum to fulfill the condition). Let {x;} be the set of minima. Then we
can define the Voronoi tessellation of f with respect to its minima as

ri={yeD|Vji#i:di(2i,y) <di(z;,9)} (2)

where 7; denotes the Voronoi region (“catchment basin”) around minimum 4.
This is the same definition as for standard Voronoi tessellation, except that the
Euclidean distance has been replaced with the topographic distance. Watersheds
are now precisely the points in D whose distance to at least two minima is equal.
When the restriction that all minima have the same value is dropped, we get the
same tessellation as before by replacing ([2) with

ri ={y € D|Vj#i: di(zi,y) + flz:i) < di (x),y) + flz;)} (3)

This definition is the basis for the flooding variety of watershed algorithms [6].

Yet another way to define a watershed segmentation is via the watersheds
themselves: as Maxwell noted, watersheds are precisely the flowlines that con-
verge to saddle points of the boundary indicator. In the continuous domain, all
three definitions are equivalent. However, in practice, the last definition is the
best choice when geometric and topological accuracy is of major concern. This
so called the exact watershed algorithm [2/3] can be described as follows:

1. Use Newton-Raphson iterations to find all saddle points of f.

2. For every saddle s (optionally only for those that fulfill some application
specific predicate, such as sufficient edge strength), solve the inverse flowline
PDE 9 (1)

T

0 = Vi) @)
starting in the two directions of positive curvature until converging to a
maximum (e.g. using the second-order Runge-Kutta method).
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Fig. 1. Comparison of the results of the exact watershed algorithm (black, thin) with
the known ground truth (yellow, thick) of a Euclidean distance transform — mid-
dle: close-up of ROI — right: pixel-based results with same colors as in Fig. [3]

3. Connect all such flowline pairs into edges of a graph whose nodes consist of
maxima of f.

4. Determine the cyclic order of edges around nodes (taking their tangential
convergence into account) in order to reconstruct the graph’s faces (i.e.the
catchment basins) by contour traversal [3].

Experiments show that this algorithm produces very accurate watershed seg-
mentations that are close to the ground truth (if available), cf. Fig. [l

3 Error Analysis of Common Watershed Algorithms

Discrete watershed algorithms only determine an assignment of pixels (i.e. points
at integer coordinates) to catchment basins. Since there are only a finite number
of these points, algorithms of the flowline or flooding variety are most common.
Often, these algorithms are defined without reference to continuous watershed
definitions. In contrast, we interpret them as discretizations of the corresponding
continuous definitions in order to better understand their properties and differ-
ences. Discretization then boils down to two questions: i) which discrete approx-
imations of flowlines (or inverse flowlines for flooding) are used, and ii) how are
minima detected?

The latter is usually done by detecting minima in a 4- or 8-neighborhood;
however, this misses some real minima, and many false minima are detected.
For instance, Fig. 2] shows the minima detected on digital images generated
by sampling two test functions with known ground truth minima. Every false
minimum gives rise to a false catchment basin.

The first function exhibits a cross-like arrangement of four valleys and is given
by 10(s(§g) —|—s(§)) + 164s(y)s(y) with u = sin Tx + cos gy, v = cos o —sin gy
and s(t) = 1 — ®27™_ The plot shows the window —8 < z,y < 8. Sampling at
integer coordinates results in an oversampling factor of 2.8 with regard to the
bandlimit of the function. There is only one minimum in the origin, which has
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: ground-truth minima;  : minima of spline-interpolated image (order 5)
+/%: minima in 4/8-neighborhood, respectively (ranges shown: z,y € [-8...8])

Fig. 2. Prototypical spurious results of discrete minima detection. The ground truth is
only reproduced by subpixel-accurate minima detection in a spline-interpolated image.

been correctly found by all methods. Due to the discretization, the pixel-accurate
methods detect 8 wrong minima, inside the slowly decreasing valleys.

The second function shows a spiral having two minima at (2.1904, —3.7276)
and (—2.1904, 3.7276), two maxima at (—2.1904, —3.7276) and (2.1904, 3.7276)
and a saddle point at the origin. There are two spiral-shaped catchment basins.
Here, the sampling preserves 99.98% of the energy of the function and is thus
effectively band-limited.

Furthermore, algorithms also differ in how they approximate flowlines with
respect to their location and direction:

1. True flowlines may be rounded to grid-based paths, usually connecting pixel
centers according to 4- or 8-connectivity or (at best) using adaptive support
points on grid lines. Pixel paths have the obvious speed advantage that each
path can be terminated after only one step (i.e. in a neighboring pixel) when
basins are constructed incrementally.

2. The flowline direction may locally be derived from different gradient approx-
imations (e.g. using a Gaussian or Sobel kernel) or even from simple forward
differences (i.e.looking for the smallest neighbor [5]).

black: ground truth (Minima + Voronoi graph)
magenta-+gray: UNION-FIND (8-neighborhood) + flowlines
red: UNION-FIND (4-neighborhood)

blue: Seeded Region Growing (8-connected watersheds)

Fig. 3. Systematic errors due to discrete flowline directions (cf. Fig. [J)



198 H. Meine, P. Stelldinger, and U. K&the

However, these discrete flowline approximations suffer from systematic errors,
as can be seen in Fig.[3l These errors become most apparent when watersheds
suddenly turn into a preferred direction (parallel to the principal axes or di-
agonals, depending on the neighborhood). This phenomenon often affects large
regions because once a pixel is assigned to the wrong basin, all approximate
flowlines converging to this pixel are wrongly assigned as well.

4 Subpixel Flowline Algorithms

As shown in the previous section, common grid-based flowline discretization
schemes lead to discretization errors. These can only be fixed by lifting the
restriction that flowline sampling points coincide with grid points. Interestingly,
an algorithm realizing this idea already exists, although its close relationship to
the watershed algorithm is not immediately obvious: the mean-shift algorithm.

4.1 Mean-Shift as a Watershed Algorithm

The mean-shift algorithm [7] is a popular segmentation algorithm whose results
are similar to watersheds, but with markedly less oversegmentation. We show in
the sequel that the latter is not a consequence of a different algorithmic approach,
but stems solely from the differences in the boundary indicator definition. In-
deed, one trivial difference is that mean-shift does not use a boundary indicator,
but a region indicator (i.e.a measure of homogeneity rather than edgeness). Ac-
cordingly, when searching for region centers (catchment basins), one looks for
local maxima of the region indicator instead of local minima of the boundary
indicator, as in the watershed algorithm. That is, one traces flowlines upwards
instead of downwards. But this difference is easily eliminated by inversion of the
indicator function.

A more interesting difference is found in the way the indicator function itself
is defined. In the watershed context, we simply assume that the values of the
indicator function are given at the grid points. The subpixel watershed algorithm
then interpolates these values into a smooth function over R? (in order for the
flowline differential equation () to be well-defined), whereas the pixel-based
watershed variants use nearest-neighbor interpolation or, equivalently, interpret
the grid as a 4- or 8-connected graph. In contrast, the indicator function of the
mean-shift algorithm is implicitly defined by a kernel density estimation in the
combined domain of the spatial coordinates and corresponding feature values.
In particular, the region probability of the point at @ is defined as

P (zx is region) = P (x is region [N (x)) = é Z P (x is region |y, f (y))
yeN ()

where N (x) denotes some neighborhood of @, C' is a normalization constant,
and f (y) is the feature vector at point y (e.g. its RGB color). The probability
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Fig.4. Example image and illustration of P (x is boundary) = 1 — P (x is region),
i.e. the boundary indicator implicitly used by the mean-shift algorithm (parameters

used: o, 1 =2, opop = 30)

spatia rgb

P (x is region |y, f (y)) is expanded as a product of spatial similarity (“nearness”)
between x and y, and feature similarity between the values at « and y:

P (2 is region |y, f (y)) = P (lz — y) P (| (=) — f(y)]) ()

In other words, x is considered part of a region when its neighboring points have
similar feature vectors, which is clearly a measure of feature homogeneity. In the
framework of kernel density estimation, the probabilities in (Bl) are expressed by
means of kernel functions which give high values when their argument (i.e. the
distance in the spatial or feature domain) is small. A popular kernel choice is
- 2da—22
constant depending on o and the dimension of the space where d is defined. In ef-
fect, the spatial probability defines a Gaussian window around x, and the feature
probability measures the degree of similarity between x and the points in this
windowld. The width of the spatial kernel is usually set to a few pixel distances,
whereas the width of the feature kernel equals the noise standard deviation in
the data. It should be noted that the coordinate « is not restricted to lie on the
grid, even if all points in A/ (x) must be on the grid. Therefore, P (x is region)
is defined over all of R?, similarly to the spline-interpolated boundary indicator
we are using in the exact watershed algorithm. In fact, spline interpolation is a
special case of kernel-based interpolation, where the kernel is a cardinal spline
function instead of a Gaussian.

The similarity between watersheds and mean-shift is not readily visible be-
cause the kernel density estimates P (z is region) are never explicitly computed
in the algorithm, for reasons of efficiency. However, there is no theoretical ob-
stacle for doing so, and Fig. [ (right) shows an example for an inverted region
indicator. This image very much resembles the typical boundary indicators that
are used in watershed algorithms.

the Gaussian kernel Py (d) = C(lo) exp( where C (o) is a normalization

% In practice, one truncates the spatial-domain Gaussian P (|z — y|) at some maximal
distance dp in order to avoid infinite window sizes.
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Instead of computing P (x is region), the mean-shift algorithm directly com-
putes an incremental flowline. Let z = (z  f(z))' denote a point in the com-
bined domain, i.e.the coordinate vector and feature vector stacked on top of
each other, and z(*) such a vector at time step ¢t. Then the flowline is computed
via iterationﬁﬁ

ZZ’EN(z(‘)) z' VP (2 is region |2')

Z(t+1) = Z(t)
Zz’eN(zm) P (z® is region |2’)

(6)

These iterations converge toward a local maximum of the probability, and all
points & whose flowlines converge at the same maximum are considered as one
region. This procedure immediately turns into a flowline-type watershed algo-
rithm when the probability is inverted and flowlines are traced downwards to
minima. Equation (@) is simply a first order approximation of the flowline equa-
tion (@) with f(x) replaced by P (z is region |A (2)). Since 2®) is not restricted
to the grid for ¢ > 0, the mean-shift procedure provides more accurate flow-
line approximations than purely grid-based algorithms. Still, it is not quite as
accurate as the Runge-Kutta flowline tracing employed in the exact watershed
algorithm, because it lacks adaptive step length control. This means that mean-
shift iterations occasionally converge to a maximum far from the original point.

4.2 The Fast Flowline Algorithm
Our new watershed algorithm is based on three considerations:

1. Since the computation of exact watersheds is expensive, we only determine
an assignment of pixels to catchment basins, i.e. an inter-pixel boundary like
in pixel-based watershed algorithms. (Boundary accuracy can be improved
by refining the grid, possibly only near boundaries.)

2. As in the mean-shift algorithm, we compute flowlines and their points of
convergence with subpixel accuracy using the flowline equation (H).

3. Since the computation of complete flowlines for all pixels would be even more
expensive than the computation of exact watersheds, we introduce an early
stopping criterion that provides correct region assignments after only a few
tracing steps.

The only missing ingredient of the new algorithm is the early stopping criterion.
The underlying idea is very simple: stop flowline tracing as soon as the flowline
crosses a grid line whose end-points are already assigned to the same catchment
basin. In order for this criterion to lead to early stopping, we have to process the
pixels in a clever order: pixels close to minima must be investigated first, so that
areas of already assigned pixels spread around each minimum. This is exactly
the same idea as in the usual region-growing algorithm, with one important
exception: in our approach, the initial seeds need not be true minima of the

3 Notice that P (z is region [N (x)) = P (z is region |V (2)) since f(x) is a determin-
istic function of x. The introduction of z just serves notational convenience.
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boundary indicator, because seeds only serve to speed up flowline computations.
Early flowline termination will simply succeed more often when the initial seeds
are close to true minima. But the choice of seeds (be it good or poor) will have
no influence on the actual region assignments, because those assignments only
depend on the point of convergence of the flowlines.

Given a boundary indicator function f, we define the fast flowline algorithm
as follows:

1. Find minima of f (e.g.in a 4-neighborhood) and put them into a priority

queue which assigns highest priority to the point with minimal f(x).

2. While the queue is not empty:

(a) Pop the next point from the queue and trace its flowline by Runge-
Kutta iterations with adaptive step size control according to the flowline
equation

oz (t)
ot
Stop the iteration if either

==V /f(z ()

i. @ (t — oo) converges at a minimum. When this minimum was already
labeled, assign this label to the starting point « (0). Otherwise, create
a new label and use that for both « (0) and the minimum.

ii. If the path defined by « (t) crosses a grid line (i.e.the connection
between two neighboring pixels) whose end points have already been
assigned to the same label. Assign this label to x (0).

(b) Put the neighbors of the just labelled point into the queue.

Notice that early termination will fail (i.e. will assign the starting point to the
wrong region) if the flowline makes a sharp turn after the termination point and
crosses the grid line again in opposite direction. Fortunately, the smoothness of
real boundary indicators ensures that such errors occur very rarely.

4.3 Experimental Results

In order to aid the comparison of the performance of different watershed algo-
rithms, we decided to use two sets of test images: first, we computed Gaussian
gradient magnitude images (with o € {1,1.5,2,3}) from a set of images with
various real-world image analysis tasks. Here, the ground truth is unknown, and
we use the exact watershed transform (with a spline interpolation of order 5) as
the gold standard to compare against. Second, we generated images containing
the Euclidean distance transform of randomly placed, isolated minimum points
(cf. Fig. [l on page [[36) with varying density, on integer and sub-pixel positions.
For the latter images, we could compute the correct catchment basins (i.e. the
Voronoi tessellation w.r.t. the minima) for error analysis.

For every label image generated with one of the watershed algorithm variants,
we performed a pixel-wise comparison of the labels with the reference image
(after an optimal mapping of the labels using the stable marriage algorithm).
The following table summarizes the results of more than 2000 single experiments:
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real-world images distance transforms
mean err. std.dev. mean err. std.dev.

subpixel watersheds (gold standard) 0.23%  0.24%
Seeded Region Growing 12.8% 2.2% 1.25% 0.93%
UNION-FIND (4-neighborhood) 15.7%  3.9% 1.6% 1.0%
UNION-FIND (8-neighborhood) 10.3%  3.0% 1.8% 0.9%
flowline watersheds 0.25%  0.5% 0.18% 0.22%
fast flowline watersheds 0.28% 0.23% 0.19% 0.23%

5 Conclusions

Our experimental results show that subpixel-accurate algorithms do not suffer
from the systematic errors of common grid-based watershed implementations:
their errors are roughly an order of magnitude lower. However, they are also
an order of magnitude slower (the “flowline watersheds” algorithm without early
flowline termination even two orders of magnitude). Our current implementation
of the fast flowline algorithm does not perform much faster than the subpixel
watershed algorithm, but there is substantial potential for optimization, mainly
because the time consuming detection of critical points is avoided completely.

A major advantage of the fast flowline algorithm is that it can be applied to
3D and higher dimensions, whereas the exact watershed algorithm is restricted to
2D. Our algorithm is therefore the first 3D watershed algorithm that avoids the
systematic errors of grid-based approaches. Furthermore, our algorithm allows
to further increase the segmentation accuracy by adaptive grid subdivision near
boundaries. Our future work will explore these directions. At the same time, we
will search for a faster (but equally accurate) alternative to the Runge-Kutta
method for flowlines tracing.
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