Automatic Transformation of System
Models in Automotive Electronics

Ralph Gérgen', Jan-Hendrik Oetjens?, Jan Freuer?, and Wolfgang Nebel®

1 OFFIS Institute for Information Technology Oldenburg, Germany
Ralph.Goergen@offis.de
2 Robert Bosch GmbH Reutlingen, Germany
{Jan-Hendrik.0Oetjens, Jan.Freuer}@de.bosch. com
3 Carl von Ossietzky University Oldenburg, Germany
Wolfgang.Nebel@informatik.uni-oldenburg.de

Abstract. Evaluation and refinement of system models often require
modifications in the model that follow concrete rules. In this work, a
method for a flexible automation of such transformation steps will be
presented. It allows savings in development time and reduces the error
proneness. Therefore, a tool for rule based manipulation of VHDL de-
sign descriptions has been extended to enable its use with system models
in C++ and SystemC. An automotive electronics application, the inte-
gration of SystemC modules into a MATLAB/Simulink simulation by
automatic wrapper generation, will show its use in the design process.

Introduction

While electronic components in cars become more and more complex to op-
timize comfort, security, and environmental impact, the increasing pressure in
the automobile market permanently involves cost reductions. A further increase
of complexity comes with the special demands of automotive electronics, e.g.
reliability and robustness over long periods of time in a harmful environment re-
garding to vibrations, temperature changes, and electro-magnetic interference.
Design and verification of such systems are exceeding challenges that need sup-
port by appropriate methods and tools.

Often, the V-Model is the basis of hardware/software development processes.
After the specification, an abstract model is created to perform first analyses.
MATLAB/Simulink [I5] and SystemC [I4] are common in this context. Then, a
stepwise refinement follows until a final implementation is found. The way from a
system model to a final implementation requires lots of code transformations, ei-
ther as a step to a lower level of abstraction, or to realize several design decisions.
Some transformations need the creativity of a designer. Others follow concrete
rules, they rather laborious work and a possible source of needless errors.

A cooperation of Robert Bosch GmbH and OFFIS has developed a frame-
work for rule based design transformationd!. It includes an easy way to define

! This work has been partially founded by the German Bundesministerium fiir Bildung
und Forschung (BMBF) in the VISION project (01M3078D).

A. Rettberg et al. (Eds.): IESS 2009, IFIP AICT 310, pp. 226-237 2009.
© IFIP International Federation for Information Processing 2009



Automatic Transformation of System Models in Automotive Electronics 227

transformation rules and to apply them automatically to a design description in
the hardware description languages VHDL and VHDL-AMS [I3]. In this con-
tribution, an extension of the framework for C++ and SystemC is presented.
Hence, the designer is able to use the same tool at higher levels of abstraction
too. Furthermore, inter-language transformations become possible.

Section [Tl explains the underlying design flow. In Section 2] the transformation
framework is presented in detail. Section [3] deals with related work and shows
the problems in the present case. In Section @l the C+-+/SystemC frontend is
described, and in Section [l an automotive electronics example shows how the
new possibilities can be used in the design process. Finally, in Section [6 the
results are summed up and a short outlook on future work is given.

1 Transformations in a System Design Flow

Regarding to the V-Model (Figure[Dl), a system development process contains a
number of more or less complex changes in the system description. Step by step,
the final implementation develops from an abstract system specification. Some
refinement steps require creativity of a designer or specific knowledge about the
application. Automation of these steps is often impossible. Others offer very
little degrees of freedom or follow concrete rules because they are defined by re-
quirements or process standards or because they follow common laws. In general,
performing them automatically is less error-prone and saves time and costs. Lots
of these design steps can be realized with common tool chains but there are oth-
ers that are not covered by available tools. Each application domain, company,
or even particular designer knows individual design steps that are either too
specific to be provided by commercial tools or based on confidential knowledge.

The method presented here allows the automation of individual design steps
by creating a particular transformation rule. Whenever a design step is not
covered by the available tools, the designer can decide whether its automation

System System
Design System Test
Engineering
Architecture Integration
Design Test
be) Semiconductor
. Development
o2
2 Module Module
Design Test
Implementation

Fig.1. V-Model




228 R. Gorgen et al.

makes sense, depending on how often a transformation rule can be used and how
complex its implementation is by contrast with the manual transformation. An
important detail is that the design can be written out in a human readable and
recognizable form. Hence, it is possible to perform pursuing steps by hand or by
any other tool. The tool to create and apply the transformation rules is already
in use and successful in the lower regions of the V-Model (VHDL). Currently
existing applications are the insertion of clock gating cells to reduce power con-
sumption, code obfuscation, insertion of hamming codes into busses, and many
more. Now, it has been extended for its use at higher levels of abstraction.

2 Transformation Framework

The transformation framework allows the flexible transformation of design de-
scriptions based on user-defined rules. Figure Plshows the general transformation
flow. At first, the design is read by a frontend and an XML based description
is generated. Then, this XML tree can be transformed using XSLT [I8]. When
all transformations are finished, the result tree can be written out in the orig-
inal description language. The tool is implemented in Java to allow its usage
on every common platform. Furthermore, it is prepared for the integration into
development environments, e. g. Eclipse [3].

Reading the Design Accordant with the flow mentioned above, firstly, it
is necessary to create an XML representation of the design. This is done by
a parser, which is generated with ANTLR [2], an open-source tool for parser
and lexer generation. Its input is an EBNF like syntax definition extended by
semantic attributes. The generated parser reads text in the particular language
and builds an abstract syntax tree. Besides syntax elements, comments and
formatting characters are included in that tree to allow its use in later processing
steps. A tree generated like that, supplemented with some semantic information,
and written out as XML is the basis of the actual transformations.

Transformation of the Design The transformation rules are implemented in
XSLT. This is a language to create style sheets that describe how to generate
an output document out of an XML input document. In substance, the trans-
formation rules consist of two elements, code identification and code generation.
The first determines which parts of the code should be transformed, the second
which changes should be done with those parts.

Transformations

Source Target

Fig. 2. Transformation Approach



Automatic Transformation of System Models in Automotive Electronics

~ N
Q - HTML XSL Templ. .
\/ /< <:| Grammar for Code i> Transform.
)) o Stylesheets
s L Doc. Generation
User G G
~
XML Schema
Grammar Definition
G
~ ~
(" ANTLR DTD )
Parser <] Grammar Grammar ﬁ> XSL
Generator Definiti e Processor
\ De nition Definition

Fig. 3. Grammar definition as central document

229

Output of the Transformed Source Text To write out the tree in its original
description language after the transformation, XSLT is used again. A style sheet
outputs the syntax tree elements as text. The original appearance of the code can
be restored by considering formatting characters and comments as well. Hence,

the designer is able to recognize the code and to continue to work with it.

Frontend Requirements

Some specific requirements result from the mentioned application scheme.

1. It must be able to create an XML tree.
2. In order to facilitate the implementation of transformation rules, the XML
syntax tree has to meet the formal syntax definition as stated in the partic-
ular language standards as near as possible.
3. Besides the syntactical elements, the XML tree must contain comments and
formatting characters. Their recovery has to be possible when transforming
the design back to source code to preserve its readability.
4. The frontend should be maintainable and easy to extend; many description
languages are permanently refined and the language standards are regularly
adapted to new challenges too.

Extensions to Support Various Languages

The maintainability of the transformation tool’s language support extensions
is guaranteed by the use of a single central document, the grammar definition
in form of an XML Schema (abr. XSD) [17]. As shown in Figure B any other
components of the environment are created out of it automatically. An ANTLR
grammar definition is built to generate the parser. The used XSLT processor
does not support XSD. Therefore, a grammar definition as a DTD is necessary
to validate the XML trees and therewith the syntactical correctness of the cor-
responding code. Furthermore, the XSD is translated to an HTML grammar
documentation to relieve the implementation of transformation rules. Finally,



230 R. Gorgen et al.

an XSLT template is generated for each element of the XSD. These templates
are used by the transformation rules for code generation to create new XML el-
ements and add them to the syntax tree. The use of XSLT templates generated
out of the XSD ensures that the generated code is XSD conform and therewith
syntactically correct. In conclusion, the main task for the integration of a new
language is the creation of this central XSD grammar definition.

3 Related Work

This section presents other approaches to transform design descriptions and to
parse C++ and SystemC and explains why they are inappropriate in our case.

Transforming Design Descriptions In industrial practice, it is common to
use scripting languages like sed ], AWK [I], and Perl [I6] to modify design
descriptions. They allow the definition of regular expressions to analyze the
source code and perform changes to it. Languages like VHDL and SystemC are
no regular languages and their analysis with such scripts is very limited. As a
consequence, there are only local and not too complex changes possible.

In [I0], another XML based representation of VHDL designs and the way to
generate it is presented. Then, to the XML tree several transformations like the
generation of HTML documentations can be applied. It is useful for VHDL but
there is no support for any other language available.

Parsing C++ and SystemC One possible opportunity is the use of the fron-
tend of a standard C++ compiler. Some of them offer a way to output their
internal representation of the source code as XML trees [9]. That meets the
first requirement but not the others. Conformance to the standard is not given.
Only parts of the resulting trees correspond to the formal syntax definition on
one hand, the here examined frontends add some compiler specific elements to
the code on the other. Hence, requirement [2 is broken. But the crucial point is
that requirement [3] cannot be fulfilled, the retrieval of the original source files is
not possible. The problem arises from the two-stage strategy of common C+-+
frontends. At first, the source code is read by a preprocessor unit. Then, the pre-
processed text is given to the actual C++ parser. The preprocessing contains the
removal of comments as well as text replacements according to the preprocessor
directives. The XML output of the compiler frontends solely contains the so pre-
pared C++ code. Consequently, some information like the original file structure,
comments and formatting characters are not included in the result tree and thus
unrecoverable.

Furthermore, there are explicit SystemC parsers like KaSCPar [5] or Pinapa
[11]. KaSCPar performs two phases. The first creates a syntax tree. Within the
second, the generated tree is elaborated and supplemented with structural in-
formation. In contrast to C++ parsers, the KaSCPar frontend knows dedicated
tokens for some of the SystemC specific Keywords. This facilitates recognizing
SystemC constructs in the syntax tree but it complicates maintenance and adap-
tion to changes in the language standard. That conflicts with requirement [l The



Automatic Transformation of System Models in Automotive Electronics 231

open-source solution Pinapa also provides a SystemC frontend that supplements
the syntax tree with structural information in a second step. It uses a tree that
is similar to the internal representation of the GNU GCC. The tool does not
offer a possibility to output the tree in XML, and hence, requirement [I] is not
met. Both of the two parsers break requirement 8l Since they both use the GNU
GCC preprocessor, important information for the recovery of the source text is
missing in the result trees.

Thus, to the best of our knowledge, none of the existing approaches is able
to satisfy all of the key requirements identified in Section [ for our specific
application scenario.

4 C++4/SystemC Extension

The C++/SystemC frontend developed by us works in three phases. In the first
phase, a customized preprocessor is called, in the second the actual C++ parser.
In the third phase, the generated C++ syntax tree is transformed to a modified
syntax tree with XSLT. Figure [ pictures this procedure that will be explained
in detail in the following section. Due to the fact that the frontend is based on
a regular C++ frontend, it is easy to extend it for other C++ based languages
like SystemC-AMS [6] or OSSS [7]. One solely has to integrate the particular
header files.

To reduce the effort for the development of the C++ parser and preprocessor,
we modified existing implementations in ANTLR for our purpose. The prelimi-
naries originate from Youngki Ku (preprocessor) and David Wigg (C++ parser).
Their results are available for free at the ANTLR homepage [2].

Preprocessor

As described in Section[3] it is important in our application that code modifica-
tions done by the preprocessor are reconstructible to allow reassembling the code
in its original appearance. Therefore, comments and formatting characters are

Specif. Language Analysis
Header
Source
Pre- Annot. C++
[ C+ )_'> processor C++ ' > Parser

XML XML |
Yy v AST

Gener. ‘
[Stylesheet. > XSLT Hy XML '

Fig. 4. Frontend work-flow




232 R. Gorgen et al.

not removed by the preprocessor described here. But the preprocessor directives
are processed as usual. That means in substance expanding macros, integrating
include files and evaluation of conditional compilation directives. For this rea-
son, a preprocessor syntax tree is created and then the prepared C++ code is
generated out of it. In addition to these basic functionalities, every statement
concerning the preprocessor is annotated with a unique ID. Meta-tokens that
contain these IDs are inserted in the generated C++ code. They mark the parts
of the code that arise from the corresponding preprocessor action. As a result,
the output of the preprocessor is clearly associated with the original source code.

Finally, the preprocessor result and its syntax tree are passed to the down-
stream C-+-+ parser.

C++ Parser

The C++ parser receives the preprocessor output and converts it to a C+-+
syntax tree. Therewith, comments and formatting characters are included in
the tree. Since they do not have any syntactical meaning, no specific nodes are
generated for them. They are added to the following terminal as attributes.
The meta-tokens inserted by the preprocessor do not become nodes in the C++
syntax tree but attributes to terminals as well. Figure Bl shows schematically the
connections between input text, preprocessor syntax tree, preprocessor output
and C-++ syntax tree. Macro definitions and macro calls can be seen in the
preprocessor syntax tree. Each macro call is annotated with a unique ID and
a reference to the corresponding macro definition. In addition, the ID of the
macro call is inserted as a meta-token into the preprocessor output text. The
C++ parser can use this ID as a reference to the macro call to annotate it to
the terminals in the C++ syntax tree. Finally, the syntax trees of preprocessor
and C+-+ parser are written together into a single file as XML trees. Now, this
file contains all necessary information. The C++ syntax tree contains the actual
relevant code as well as comments and formatting characters, the preprocessor
tree contains the original source code. IDs and references describe the relations
between the two trees.

Transformation to Modified Syntax Tree

In the third phase, the generated XML file is processed with XSLT. Here, a
difference is made between the actual design and code parts that have been
added by the integration of external header files. This differentiation is crucial
because external code must not be modified on one hand and it does not need
to be written out on the other. Usually, these headers are system files or in
the case of SystemC part of the language definition. Those parts are allowed
to be removed because they do not contain any relevant information. A further
task in this phase is to undo the calls of those macros whose definitions are in
one of the external files. This step facilitates the recognition of specific parts
of the code because macros are often used as language elements, e. g. SC_MODULE
or SC_METHOD. This procedure automatically works with any other library like



Automatic Transformation of System Models in Automotive Electronics

Input

s

#define MACRO val

MACRO

Preprocessor-Output

-

Preprocessor-Parsetree

233

-
<define_directive
macro_id="1234">

<NAME text="MACRO"/>
<VALUE text="val"/>
</define_directive>
\

<macro_call
macro_ref="1234"
macro_call _id="5678">

<NAME text="MACRO"/>
<— </macro_call>
.

7*macro_call 5678%/
val

/*macro_call end 5678%*/ C++-Syntaxtree

4 A

L <expression>
<VALUE
text="val"
macro_call ref="5678"/>
</expression>

\

Fig. 5. IDs and references in the syntax tree

OSSS or SystemC-AMS as well. The result is a modified syntax tree and any
transformation can be applied to it.

Output of the Transformed Source Text

To get back to the original source text, XSLT is used again. The XML tree is
written to files as C+-+ code. The original formatting and directory structure is
reconstructed as far as possible. The preprocessor logs the beginnings and ends of
each file as well as include directives and file paths. With this, the reconstruction
of files and directory structure is unproblematic. The retransformation of macro
expansions and conditional compilation directives is more complex. If the code
that came out of such a directive has been changed by a transformation and new
or transformed code has been generated, the original code must not be written
out. As a consequence, the original formatting and the particular preprocessor
directive get lost. All parts of the code that has not been transformed are typed
out exactly like the preprocessor read it. For newly generated parts that do not
contain formatting information a standard formatting is used.

A special case of conditional compilation directives is the surrounding #ifndef
— #define — #endif which is used in header files to prevent multiple compila-
tions. When this instruction sequence cannot be reconstructed, a new one that
surrounds the content of the file is generated automatically.

Now, the transformation flow is complete. Design descriptions in C+-+, and
as a consequence in SystemC as well, can be read, transformed and typed out
again as source text, and the frontend meets all requirements stated in Section[Il



234 R. Gorgen et al.

5 Example: Generation of SystemC Wrapper Modules

In the following section, we want to show how the tool can be used in the de-
sign flow. The automatic generation of wrapper modules to connect SystemC
modules to a MATLAB/Simulink model is used as an example. Despite the sim-
plicity of the example, it involves a significant gain in efficiency. The automation
of this development step saves time and the error probability is reduced. The
generated wrappers are part of an extended testbench concept that is used for
the development of automotive electronic components. The following subsection
illustrates it in short, before the wrapper generation itself is explained.

Extended Testbench Concept

In support of verification by simulation, an extended testbench concept has been
developed at Robert Bosch GmbH [8]. It is shown in Figure[dl Its main purpose
is to use the same testbench modules at multiple levels of abstraction and in
several simulation environments. The design under verification may be present
as MATLAB/Simulink, SystemC, or VHDL model. The same testbench modules
can be used in all of the three cases. We want to have a closer look at the coupling
of a MATLAB/Simulink simulation with SystemC testbench modules now. Us-
ing MATLAB/Simulink and SystemC at the same time causes problems because
the two simulation environments are based on two different simulation concepts.
MATLAB/Simulink uses continuous simulation, SystemC discrete event simula-
tion. It is required to synchronize the two environments in an appropriate way.
Furthermore they use different data types so that conversions are necessary for
data exchange. The data type conversion as well as the synchronization is done
by a SystemC wrapper that encloses the actual testbench module. This wrapper
is composed of two parts. Firstly, the wrapper module must be derived from an
abstract wrapper class. It must provide one port for each port of the testbench
module. Secondly, a so called createModule method must be implemented to bind

Specification
( .§ystemC J, S/tmulz\nk v .}‘ystemC ]
TBM DigitalHDigital TBM Testcase l

v I/‘IDL \ 4 SystemC@
Digital TBM Testcase l

§ystemC

I Analog |
| Develop. l

- Porti
: Further v RZ;;:g
1 Development ’
| —> Data

Fig. 6. Extended Testbench Concept



Automatic Transformation of System Models in Automotive Electronics 235

the ports. This method also registers the ports because the wrapper must know
the number of ports and whether they are input or output ports.

Automatic Wrapper Generation

Now, the SystemC wrappers should be generated automatically by a transfor-
mation rule. At first, the frontend must read the testbench module and transfer
it to an XML syntax tree. Then, the required parts are inserted. That is, the tool
generates subtrees that correspond to the wrapper module and the createModule
method. For each port of the testbench module the actual port declaration in
the wrapper module and its binding and register statements in the createModule
method are generated. Then, these subtrees are inserted into the syntax tree at
the appropriate positions. Finally, the extended syntax can be written out as
C++ code and the testbench module is ready to use it in a MATLAB/Simulink
simulation. Since an example implementation of a wrapper was available in our
case, the first step was to set up a transformation rule that generates exactly this
source code. That is very easy because the transformation tool offers a feature
to read a piece of source code and automatically create a rule that generates the
same code in form of a syntax tree, which can be inserted in a design then. In
this rule, those parts where the port declaration, binding, and register statements
are generated had to be surrounded by loop statements to generate the required
elements for all ports of any module. Furthermore, the static port names had to
be changed to dynamic ones picked out of the testbench module.

Evaluation of the Results

By means of the transformation tool, its C-++ /SystemC extension, and the trans-
formation rule, we are able to surround any SystemC testbench module with a
wrapper to integrate it in a MATLAB/Simulink simulation. This can be done
fully automated and many times faster as well as less error-prone than its manual
implementation. Table [l compares the durations for the manual and automatic
wrapper generation to test of a sensor evaluation circuit used in an automotive
controller IC. When the manual wrapper generation is used, the implementation
of the wrappers can start immediately. Otherwise, it is necessary to implement
the code for one wrapper at first. Then, the creation of the transformation rule
can start as depicted above. After that, the generation of further wrappers is

Table 1. Comparison of wrapper generation

Task manual automatic
Implementation 1st wrapper 1h 1h
Transformation rule - 2h
Implementation 2nd wrapper 1h -
Generation 2nd wrapper - ~0h

Total 2h



236 R. Gorgen et al.

4 I
A .-
N
81 3(\0?"’
= 61 .-
8 .
= 4 PPt automatic
&5 .-
5 L
=~ T T T T T T T T T :
2 4 6 8
L Number of created wrappers

Fig. 7. Time needed for creation of the wrappers

possible in only a few seconds. The times used here had been worked out with a
concrete example. Of course, the exact values heavily depend on the particular
testbench module and designer. But, it is obvious that the automatic generation
takes longer when only few wrappers are needed. However, the transformation
rule must be implemented only once and can be used again and again. As shown
in Figure[l the time needed for the generation of several wrappers rises very little
whereas the effort for the manual method increases much more. Since generally
several testbench modules are used in one project, and with it, several wrappers
are needed, and additionally, the same transformation rule can be used in more
than one project, the automation of this design step is a good opportunity to
improve the development process in terms of design effort and quality.

Besides transformations of SystemC models, the newly added grammar defi-
nition allows inter language transformations. An application that uses this func-
tionality is a VHDL-to-SystemC translation that already has been published [12].
Additionally, this example shows the potential of our approach.

6 Conclusion and Outlook

This contribution presented an extension for a tool for design transformations.
Apart from its use with design descriptions in VHDL, it can be applied to C+-+
and SystemC. As a result, the developer can use a tool he already knows in
the context of VHDL as well at higher levels of abstraction. He is able to read
descriptions in C++ and SystemC, transform them, and output them again.
In substance, the extension comnsists of a C++ preprocessor and parser. They
are based on existing implementations available for free. As a result, the effort
for the adaption to our needs was very small. An example has shown how the
new possibilities can be used in a design process. In order to do so, an automatic
generation of SystemC wrappers has been implemented. It allows the integration
of SystemC modules into a MATLAB/Simulink simulation. With the automation
of that step, it is possible to achieve results faster and less error-prone.

In the future, we plan to use the tool for more complex transformations,
e. g. optimization of design descriptions in SystemC. Additionally, we want to
integrate Verilog as a further design language.



Automatic Transformation of System Models in Automotive Electronics 237

References

11.

12.

13.

14.

15.
16.

17.

18.

. Aho, A.V., Kernighan, B.W., Weinberger, P.J.: The AWK Programming Language.

Addison Wesley, Reading (1988)

. ANTLR. ANother Tool for Language Recognition (2009),

http://www.antlr.org

. Eclipse Foundation (2009), http://www.eclipse.org
. Free Software Foundation. ses, a stream editor (1999),

http://www.gnu.org/software/sed/manual/sed.html

. FZI Karlsruhe. KaSCPar - Karlsruher SystemC Parser Suite (2006),

http://www.fzi.de/sim/kascpar.html

. Grimm, C., Barnasconi, M., Vachoux, A., Einwich, K.: An Introduction to Mod-

eling Embedded Analog/Mixed-Signal Systems using SystemC AMS Extensions.
Whitepaper, Open SystemC Initiative (2008)

. Grabbe, C., Griittner, K., Kleen, H., Schubert, T.: OSSS - A Library for Synthesis-

able System Level Models in SystemC (2007), http://www.system-synthesis.org

. Hylla, K., Oetjens, J.-H., Nebel, W.: Using SystemC for an extended

MATLAB/Simulink verification flow. In: FDL 2008: Proceedings of the Forum
on Specification and Design Languages (2008)

. Kitware. GCC-XML - XML output for GCC (2007), http://www.gccxml.org
. Karayiannis, T., Mades, J., Windisch, A., Schneider, T., Ecker, W.: Using XML in

VHDL Analysis and Simulation. In: Proceedings of the Forum on Design Languages
(FDL) (September 2000)

Moy, M.: Pinapa: An open-source SystemC front-end (2005),
http://greensocs.sourceforge.net/pinapa/

Oetjens, J.-H., Gorgen, R., Gerlach, J., Nebel, W.: An Automated Flow for Integra-
tion Hardware IP into the Automotive Systemc Engeneering Process. In: DATE
2009: Proceedings of the conference on Design, automation and test in Europe
(2009)

Oetjens, J.-H., Gerlach, J., Rosenstiel, W.: Flexible specification and application
of rule-based transformations in an automotive design flow. In: DATE 2006: Pro-
ceedings of the conference on Design, automation and test in Europe (2006)
OSCI. IEEE Std. 1666, SystemC Language Reference Manual (2005),
http://www.systemc.org

The Mathworks Inc. (2009), http://www.mathworks. com

Wall, L., Christiansen, T., Orwant, J. (eds.): Programming Perl. O'Reilly Media,
Inc., Sebastopol (2000)

World Wide Web Consortium. XML Schema 1.0 (2004),
http://www.w3.org/XML/Schema

World Wide Web Consortium. XSL Transformtions (XSLT) Version 2.0 (2007),
http://www.w3.org/TR/xs1t20


http://www.antlr.org
http://www.eclipse.org
http://www.gnu.org/software/sed/manual/sed.html
http://www.fzi.de/sim/kascpar.html
http://www.system-synthesis.org
http://www.gccxml.org
http://greensocs.sourceforge.net/pinapa/
http://www.systemc.org
http://www.mathworks.com
http://www.w3.org/XML/Schema
http://www.w3.org/TR/xslt20

	Automatic Transformation of SystemModels in Automotive Electronics
	Transformations in a System Design Flow
	Transformation Framework
	Related Work
	C++/SystemC Extension
	Example: Generation of SystemC Wrapper Modules
	Conclusion and Outlook



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




