
Efficient Parallel Transaction Level Simulation by
Exploiting Temporal Decoupling

Rauf Salimi Khaligh and Martin Radetzki

Embedded Systems Engineering Group
Institute of Computer Architecture and Computer Engineering (ITI)

Universität Stuttgart
Pfaffenwaldring 47, D-70569 Stuttgart, Germany

{salimi,radetzki}@informatik.uni-stuttgart.de

Abstract. In recent years, transaction level modeling (TLM) has en-
abled designers to simulate complex embedded systems and SoCs, orders
of magnitude faster than simulation at the RTL. The increasing com-
plexity of the systems on one hand, and availability of low cost parallel
processing resources on the other hand have motivated the development
of parallel simulation environments for TLMs. The existing simulation
environments used for parallel simulation of TLMs are intended for gen-
eral discrete event models and do not take advantage of the specific
properties of TLMs. The fine-grain synchronization and communication
between simulators in these environments can become a major imped-
iment to the efficiency of the simulation environment. In this work, we
exploit the properties of temporally decoupled TLMs to increase the
efficiency of parallel simulation. Our approach does not require a spe-
cial simulation kernel. We have implemented a parallel TLM simulation
framework based on the publicly available OSCI SystemC simulator. The
framework is based on the communication interfaces proposed in the re-
cent OSCI TLM 2 standard. Our experimental results show the reduced
synchronization overhead and improved simulation performance.

Keywords: Transaction-Level Modeling, Parallel Simulation, SystemC,
Temporal Decoupling.

1 Introduction

A transaction level model is a network of modules representing logical or phys-
ical entities. In TLM terminology, modules may be active or passive. Active
modules contain processes, the fundamental unit of behavior and concurrency.
Active modules perform computations and initiate communication (i.e. transac-
tions) with other modules. Passive modules on the other hand do not contain
processes and the functionality provided by them is executed by, and in the
context of the processes of the active modules. Several factors contribute to
the total time required for simulation of a given transaction level model: The
computation performed by processes, the communication between modules
(e.g. via interface method calls), the synchronization between processes (e.g.

A. Rettberg et al. (Eds.): IESS 2009, IFIP AICT 310, pp. 149–158, 2009.
c© IFIP International Federation for Information Processing 2009

150 R. Salimi Khaligh and M. Radetzki

wait()-notify()) and the synchronization of the processes with the simulation
time (e.g. wait(delay)).

For parallel simulation of a TLM on N simulators, the set of all modules in
the TLM is partitioned into disjoint sets, with each set being assigned to a single
simulator. The total amount of processor time consumed by the computations
in the modules can be considered the same in parallel and sequential simula-
tions. The amount of time consumed by inter-module communication depends
on whether the communicating modules are assigned to the same or different
simulators. Inter-simulator communication can be orders of magnitude slower
than communication between modules in the same simulator. The overhead of
inter-simulator communication can be reduced by analysis of inter-module com-
munication patterns and appropriate assignment of modules to simulators. For
example, by assignment of modules with high communication requirements to
the same simulator. This issue has not been in the scope of this work. We have
focused on the overhead incurred by the synchronization between the simulators
which is described in the following paragraphs.

Existing frameworks available for parallel simulation of TLMs are in intended
for simulation of general, discrete event models such as signal-based, RTL models
written in SystemC. In terminology of parallel discrete event simulation these
simulation frameworks are all conservative. That is, they guarantee that the
causality relationships are never violated. For example it is guaranteed that no
process will ever be notified of an event which belongs to the past. To ensure this,
the progress of individual simulators in simulation time must be synchronized
globally.

Let S1, . . . , SN be N simulators and T be the current global simulation time.
In summary, at T , in each simulator Si all processes sensitive to the events
belonging to T are executed. Each simulator then reports the time of its next
event ti to a global synchronization process and waits. After collecting all ti,
the synchronization process then determines the next global simulation time
T ′ = min{t1, . . . , tN}, such that the causality relationships are not violated
(conservatism). It then broadcasts T ′ as the next global simulation time to all
simulators and they proceed to T ′, executing any process sensitive to events at
T ′. This process is repeated until a global simulation termination condition is
satisfied. Especially in timed TLMs, this will require frequent communication
between the simulators and the resulting overhead will negatively affect the
efficiency of the simulation.

In our approach, synchronization between simulators is performed only at
fixed, globally known points in the simulation time. This results in a simplified
synchronization algorithm which can be implemented using efficient collective
synchronization operations (e.g. barriers on SMP machines). We achieve this by
exploiting a special, strict form of temporal decoupling (allowing the processes to
run ahead of the simulation time). We will elaborate on this in the next sections.

This paper is organized as follows: In section 2 we give an overview of closely
related work. Section 3 summarizes the main ideas behind our approach. In
section 4 details of a SystemC-based and OSCI TLM 2 inspired implementation

Efficient Parallel Transaction Level Simulation 151

are presented. Section 5 shows the results of our experiments and section 6
summarizes the results and provides some direction for future work.

2 Related Work

Transaction level modeling [17, 4, 3, 9] is an already established and increas-
ingly popular, simulation-centric modeling paradigm for embedded systems and
systems-on-chip and is enabled by modeling languages such as SystemC [11],
SpecC [7] and SystemVerilog [1]. Except for some special cases such as cycle-
driven TLM simulators (e.g. [2]), currently most TLMs are simulated using se-
quential discrete event simulators (DES) such as the publicly available SystemC
simulator from OSCI. Some researchers see the performance of such general
simulation kernels insufficient for many applications. For example, some pro-
pose alternative simulation kernels (e.g. heterogeneous simulation kernel [18])
while others address this issue at the modeling level (e.g. adaptive models [12]).
In the recent OSCI TLM 2 standard [17] communication interfaces, modeling
guidelines and techniques such as temporal decoupling are proposed. The OSCI
TLM 2 standard targets sequential TLM simulation, and temporal decoupling
is recommended for reduction of the overhead of context switches caused by the
synchronization of the processes with the simulation time (wait(time)).

Currently most of the parallel simulation environments for transaction level
simulation are based on SystemC. These simulators are meant for general Sys-
temC models and hence deal with low level synchronization and communication
constructs such as signals and evaluate/update channels. One of the first works
in this area is [5], where simulation kernels are synchronized at the end of every
delta cycle to ensure causality and the evaluate/update channels are synchro-
nized at the end of every update phase to ensure correctness of the communi-
cation. This simulation environment requires a modified SystemC kernel. The
high overhead of this fine-grain synchronization and communication has been ad-
dressed by the authors in their recent work [6]. Another environment for parallel
SystemC simulation is introduced in [10]. The simulation time synchronization
in this environment is similar to [5, 6], with the difference that no specialized
simulation kernel is required. In [14], authors present a distributed SystemC
simulation environment for simulations involving geographically distributed in-
tellectual property. Their main focus has been on geographical distribution and
not on the simulation performance.

The current research in parallel simulation of TLMs is based on the well-
established parallel/distributed discrete event simulation (PDES/DDES)
concepts (e.g. [15, 8]). In addition to conservative PDES, there exist optimistic
approaches (e.g. TimeWarp [13]) where the causality conditions are allowed to be
violated. In case of a violation, the simulation must be rolled back in time to en-
sure correct results. Implementation complexity, and memory and performance
costs of such roll-back mechanisms for large system-level models have prohib-
ited their use in parallel TLM simulation. The idea of temporal decoupling can
be traced back to early works in optimistic PDES/DDES. In [19] conservative

152 R. Salimi Khaligh and M. Radetzki

PDES principles are used to increase the speed of transaction level simulation by
avoiding synchronization with the SystemC simulation time as much as possible.
The simulation itself however is purely sequential and is performed in a single
simulation process. The recent version of the commercial distributed simulation
environment Simics [20] claims to utilize temporal decoupling for simulation ac-
celeration. This environment is based on a proprietary simulation kernel and
a custom modeling language, with a possibility for integration with SystemC
models. However, at the time of this writing, the details of the simulation kernel
and SystemC integration are not published to the best of our knowledge.

3 Exploiting Temporal Decoupling for Efficient Parallel
Simulation

Similar to [5, 6, 14], we use an application and model dependent number of se-
quential discrete event simulator processes in parallel. Each simulator is assigned
a subset of the modules of a given TLM. The most significant difference of our
approach with existing approaches is the synchronization of processes with the
simulation time and synchronization of the simulators with each other.

In timed TLMs, timing information is annotated in the processes, for exam-
ple using a wait(time) statement which synchronizes the process with the global
simulation time. In sequential DES frameworks, this will result in a process con-
text switch and has a negative effect on the simulation performance. Temporal
decoupling is a technique recommended by the recent OSCI TLM 2 standard
to reduce the effects of these context switches. In temporally decoupled models,
processes have a local time which is allowed to “run ahead” of the global sim-
ulation time for a maximum amount of time called a quantum, after which the
process must synchronize with the global simulation time. In the form proposed
by OSCI TLM 2 and implemented in the accompanying library, the deviation
between the local time of the process and the global simulation time can become
larger than the quantum as the synchronization is left to the processes and no
enforcing mechanism exists. This can be seen in the following pseudocode which
shows timing annotation portions of a temporally decoupled process:

. . .
tl = tl + d1

. . .
tl = tl + d2

if tl > q then
wait(tl)

end if
. . .

Here tl represents the local time offset, q the time quantum and d1 and d2 arbitrary
time intervals. The local time offset can be incremented beyond a quantum bound-
ary without synchronizingwith the simulation time. At some point, the process de-
cides to check the local offset and synchronize with the simulation time (wait(tl)).
Upon this synchronization, the local time offset becomes zero and the simulation

Efficient Parallel Transaction Level Simulation 153

time may or may not be on the quantum boundary. Our version of temporal de-
coupling is more strict in the sense that we enforce the processes to synchronize
with the global simulation time exactly on quantum boundaries. That is, the local
time offset of a process is never allowed to get larger than a quantum. For this, a
specialized wait function is required which is to be used by all processes for timing
annotations. The body of this function, which we call decoupled_wait is shown
below. Here tl is the local time offset of the process, q is the quantum, nq is the
number of complete quanta to elapse and oq is the remainder offset.

function decoupled_wait(d)
begin
nq = � (tl+d)

q
�

oq = (tl + d) − nq × q
if nq > 0 then

wait(nq × q)
tl = 0

end if
tl = tl + oq

end

Using this function, the timing annotations shown in the previous example will
require the following two calls:

. . .
decoupled_wait(d1)
. . .
decoupled_wait(d2)
. . .

Assuming that all processes in the model use this function for timing annotation,
progress of simulation time in each simulator will be in multiples of the quantum
q at all times. This can be exploited to simplify the synchronization of the
simulators compared to existing methods (section 2).

There is no need for a central simulation synchronization process. Similarly,
collection of local times from individual simulators and broadcasting back their
minimum is not necessary. Figure 1 shows how the simulators can be synchro-
nized using collective barrier synchronization. Each simulator executes the pro-
cesses assigned to it for the duration of a quantum and then waits on a barrier
shared by all simulators. After all simulators have reached the barrier, they either
proceed to the next quantum boundary or terminate.

T=0 run processes up to (T + quantum)

T = next quantum boundary

wait on barrier

no

[simulation complete?]

yes

Fig. 1. Simulation progress in each sequential simulator

154 R. Salimi Khaligh and M. Radetzki

4 Implementation

As a proof of concept we have developed a parallel TLM simulation framework
based on the ideas presented in section 3. The framework is intended for SystemC
models and follows the communication interfaces introduced in the OSCI TLM
2 standard [17].

The framework provides a root module class sc_dist_module from which all
modules in a TLM must be derived. This class has an attribute which identifies
the simulator to which the module is assigned. This attribute is set upon con-
struction and is specified as a constructor argument. This is used to simplify the
task of assigning modules to simulators, and to avoid having different program
sources for different simulators. The OSCI TLM 2 standard and the accompa-
nying library are intended for sequential simulation and are not directly usable
for parallel simulation. For example, the communication between OSCI TLM 2
modules is performed using transport methods which carry a payload, timing
and phase information. To enable communication between modules in different
simulation processes we have implemented a simple protocol based on a com-
mercial Message Passing Interface (MPI [16]) implementation. The framework
provides stub modules which handle the translation between the transport calls
and MPI calls. For example, to communicate with a remote target T1 (i.e. target
residing in another simulator process), initiator I1 calls the transport methods
of the initiator-side stub of that target (ISS). This stub translates each transport
call to a series of point-to-point MPI communication calls, which are received in
the target simulator. Based on the information received in the target simulator,
a target-side stub of the initiator (TSS) calls the transport method of the actual
target (T1). The return values are transported back to ISS and finally to the
initiator I1. Instantiation and interconnection of stubs are completely hidden
from the user by a binder component, which handles the details in elaboration
time whenever initiator and target sockets are bound.

The root module class sc_dist_module also provides the decoupled_wait func-
tionality discussed in section 3 in form of an overridden wait function. Addition-
ally, it handles the local time offset of the processes. Another motivation for hav-
ing the root module class was simplifying the migration of existing OSCI TLM
2 models to our parallel simulation framework. Ideally, the migration would re-
quire modifying a model to inherit from sc_dist_module instead of sc_module.
The communication between the simulators required for synchronization is also
implemented using MPI, based on collective barrier synchronization.

It should be pointed out that in our framework we use the standard OSCI
SystemC simulation kernel and library without modification. In each simulator
process, a single SystemC simulation kernel is run, which is controlled according
to the simulation progress control presented in section 3. The simulation progress
control is implemented as a loop in the user-level sc_main() function, and is
based on the documented, user-level functions of the OSCI SystemC kernel [11].
For example to proceed in simulation time for a quantum Q, sc_start(Q) is
called from the simulation control loop.

Efficient Parallel Transaction Level Simulation 155

5 Experimental Results

To evaluate our framework and the proposed parallel simulation approach we
have performed several experiments. It should be noted that application and
model-dependent factors can greatly affect the degree of speedup achieved when
using parallel simulation. The communication pattern between modules assigned
to different simulators and the degree of concurrency of computations in the
modules are two examples. These application and model specific issues have not
been in the scope of this work.

All following experiments were performed on a Linux-based, quad-core Intel
SMP simulation host. In the first experiment, we compared the performance of
the barrier-based synchronization of the simulators which we proposed in section
3, with the performance of synchronization based on the collection of local times
and broadcast of the next global time (section 1). Each simulator was assigned
a single active module, which only performed wait(t) in a loop. The experiment
was performed with 2, 3 and 4 simulators on 2, 3 and 4 cores respectively,
with each core running a single simulator. The reduction in the synchronization
overhead using our proposed synchronization algorithm was approximately 52%
for 2 simulators and 35% for 3 and 4 simulators.

In the second experiment our objective was to determine the maximum achiev-
able speedup in our framework when using 2, 3 and 4 cores. We simulated

 0.1

 1

 10

 1 10 100 1000

sp
ee

d-
up

 o
ve

r
se

qu
en

tia
l s

im
ul

at
io

n

units of computation per communication

4 cores
3 cores
2 cores

Fig. 2. Achievable speedup under ideal conditions

156 R. Salimi Khaligh and M. Radetzki

 0

 5

 10

 15

 20

 25

 0 100 200 300 400 500 600 700 800 900 1000

si
m

ul
at

io
n

tim
e

(s
ec

)

computation load

quantum = 1 ns
quantum = 2 ns

quantum = 10 ns

Fig. 3. Effect of temporal decoupling

perfectly parallelizable models with theoretical speed-up limits of 2, 3 and 4 re-
spectively. Each model consisted of a number of identical active modules, which
repeatedly performed computations and communicated the result to a passive
module. Each such computation and communication sequence was annotated by
a (decoupled-)wait() function. To account for the worst case, all simulations were
performed with the smallest possible time quantum. The models were simulated
with different computation to communication ratios and the results are shown
in figure 2. Here, each unit of computation load corresponds to computation
requiring roughly 5 microseconds on our simulation host.

The third set of experiments were performed to measure the effectiveness
of temporal decoupling. Figure 3 shows the effect of temporal decoupling on
the simulation speed of a perfectly parallelizable model consisting of 2 active
modules and a single passive module, simulated on 3 cores. The quantum
size was varied between the 1 nanosecond (the minimum possible) and 10
nanoseconds.

6 Conclusion

We have shown that by taking advantage of a certain form of temporal decou-
pling we are able to reduce the overhead of synchronization between simulators,
resulting in a more efficient parallel simulation for a subclass of transaction

Efficient Parallel Transaction Level Simulation 157

level models. With a suitable quantum size and with increasing computation-
to-communication and synchronization ratio, the theoretical maximum speedup
of N can be approached in a simulation on N cores. The current version of the
framework can be easily modified to run on clusters of SMP hosts. Optimiza-
tion of the framework for clusters, automatic analysis of the models for efficient
module-simulator assignment and simulation frameworks for massively parallel
MPSoCs and NoC-based systems are our planned future work in this direction.

References

[1] Accellera Organization, Inc. SystemVerilog 3.1a Language Reference Manual (May
2004)

[2] ARM Limited. Cycle-Accurate Simulation Interface (CASI) Specification, version
1.1.0 (June 2006)

[3] Burton, M., Aldisy, J., Guenzel, R., Klingauf, W.: Transaction Level Modelling: A
Reflection on What TLM is and How TLMs May be Classified. In: Proceedings of
the Forum on Specification and Design Languages (FDL 2007) (September 2007)

[4] Cai, L., Gajski, D.: Transaction Level Modeling: An Overview. In: Proceedings of
the 1st IEEE/ACM/IFIP International Conference on Hardware/Software Code-
sign and System Synthesis (CODES+ISSS 2003) (October 2003)

[5] Chopard, B., Combes, P., Zory, J.: A Conservative Approach to SystemC Par-
allelization. In: Proceedings of the International Conference on Computational
Science (ICCS 2006) (May 2006)

[6] Combes, P., Caron, E., Desprez, F., Chopard, B., Zory, J.: Relaxing Synchroniza-
tion in a Parallel SystemC Kernel. In: Proceedings of the International Symposium
on Parallel and Distributed Processing with Applications (ISPA 2008) (December
2008)

[7] Doemer, R., Gerstlauer, A., Gajski, D.: The SpecC Language Reference Manual,
Version 2.0. SpecC Technology Open Consortium (December 2002),
http://www.specc.org

[8] Fujimoto, R.M.: Parallel and distributed simulation. In: Proceedings of the 31st
Winter simulation conference, WSC 1999 (1999)

[9] Ghenassia, F.: Transaction-Level Modeling with SystemC: TLM Concepts and
Applications for Embedded Systems. Springer-Verlag New York, Inc., Heidelberg
(2006)

[10] Huang, K., Bacivarov, I., Hugelshofer, F., Thiele, L.: Scalably distributed Sys-
temC simulation for embedded applications. In: Proceedings of the International
Symposium on Industrial Embedded Systems (SIES 2008) (June 2008)

[11] IEEE Computer Society. Standard SystemC Language Reference Manual, Stan-
dard 1666-2005 (March 2006)

[12] Salimi Khaligh, R., Radetzki, M.: Adaptive Interconnect Models for Transaction-
Level Simulation. In: LNEE 36, Languages for Embedded Systems and their Ap-
plications (2009)

[13] Lin, Y.-B., Lazowska, E.D.: A study of time warp rollback mechanisms. ACM
Transactions on Modeling and Computer Simulation, TOMACS (1991)

[14] Meftali, S., Dziri, A., Charest, L., Marquet, P., Deskeyser, J.: SOAP Based Dis-
tributed Simulation Environment for SoC Design. In: Proceedings of the Forum
on Specification and Design Languages (FDL 2005) (September 2005)

http://www.specc.org

158 R. Salimi Khaligh and M. Radetzki

[15] Misra, J.: Distributed Discrete-Event Simulation. Computing Surveys (March
1986)

[16] MPI Forum. MPI: A Message-Passing Interface Standard,
http://www.mpi-forum.org/

[17] Open SystemC Initiative (OSCI) TLM Working Group. Transaction Level Mod-
eling Standard 2 (OSCI TLM 2) (June 2008), http://www.systemc.org

[18] Patel, H.D., Shukla, S.K.: Towards a Heterogeneous Simulation Kernel for Sys-
tem Level Models: A SystemC Kernel for Synchronous Data Flow Models. In:
Proceedings of the 14th ACM Great Lakes symposium onVLSI (GLSVLSI 2004)
(April 2004)

[19] Viaud, E., Pêcheux, F., Greiner, A.: An Efficient TLM/T Modeling and Simula-
tion Environment Based on Conservative Parallel Discrete Event Principles. In:
Proceedings of the Conference on Design, Automation and Test in Europe (DATE
2006) (March 2006)

[20] Virtutech. Virtutech Simics, http://www.virtutech.com/

http://www.mpi-forum.org/
http://www.systemc.org
http://www.virtutech.com/

	Efficient Parallel Transaction Level Simulation by Exploiting Temporal Decoupling
	Introduction
	Related Work
	Exploiting Temporal Decoupling for Efficient Parallel Simulation
	Implementation
	Experimental Results
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

