
Dynamic Component Selection for SCA

Applications

Djamel Beläıd, Hamid Mukhtar, Alain Ozanne, and Samir Tata

Institut TELECOM, TELECOM & Management SudParis
9 rue Charles Fourier, 91011 Evry Cedex

France
{djamel.belaid,hamid.mukhtar,alain.ozanne,samir.tata}@it-sudparis.eu

Abstract. Service Oriented Computing (SOC) has gained maturity and
there have been various specifications and frameworks for realization
of SOC. One such specification is the Service Component Architecture
(SCA), which defines applications as assembly of heterogeneous compo-
nents. However, such assembly is defined once and remains static for
fixed components throughout the application life-cycle.

To address this problem, we have previously proposed an approach for
dynamic selection of components in SCA, based on functional semantic
matching and non-functional strategic matching using policy descriptions
in SCA. In this paper, we extend our existing approach by providing
further flexibility in component selection and present the architecture
and implementation of our system. An evaluation of the system is also
reported.

1 Introduction

In order to provide their services to a large variety of clients, enterprises often
manage various contracts with other service providers. One problem faced by
such enterprises is the emergence of new competing service providers, with bet-
ter, cost-effective solutions. Thus, it would be natural that enterprises change
partnerships in pursuit of better ones. However, in reality, it is much more dif-
ferent than that.

When inter-enterprise applications are developed on top of the existing Infor-
mation System, they are created for particular service providers. This results in
two major problems. First, if a change of any of the service provider is required, a
whole new application needs to developed, which is not always feasible. Second,
if only a part of the functionality of the application is required to be reused,
again a new application needs to be deployed. Such problems arise due to the
fact that most of the time the description of service provider is hard-coded in the
application logic instead of the service description itself. Thus, we can rightly call
such applications as service-provider-dependent rather than service-dependent.

To overcome such difficulties, Service-Oriented Computing (SOC) has emerged
recently. SOC is the computing paradigm that utilizes services as fundamen-
tal elements for developing applications/solutions. Services are self-describing,

C. Godart et al. (Eds.): I3E 2009, IFIP AICT 305, pp. 272–286, 2009.
c© IFIP International Federation for Information Processing 2009

Dynamic Component Selection for SCA Applications 273

platform-agnostic computational elements that support rapid, low-cost compo-
sition of distributed applications [1]. Services are offered by service providers
—organizations that procure the service implementations, supply their service
descriptions, and provide related technical and business support.

However, even after arrival of SOC based approaches, the aforementioned prob-
lems have not been solved completely. Although the applications have started to
become modularized in terms of services, they are still not decoupled from their
underlying platforms —the definition of services is still dependent on their im-
plementation. One particular approach for realizing SOC based applications, the
Service Component Architecture (SCA), avoids such obstacle by separating the
service definition from its implementation. However, as we will explore in this pa-
per, SCA is also limited by the fact that applications defined using SCA are static.
Once defined, services and their implementation remain intact afterwards. But in
an ideal situation, services can be provided by different providers differently and,
hence, will have different implementations. Should a provider changes, the new
implementation is to be reused with minimum of effort.

A Motivating Example

Consider a fictitious travel agency based in Paris. The agency provides services
such as flight, hotel and car booking as well as arranging for excursions in a
specific destination city. To offer its services, the agency relies on a number of
other specialized service providers in France. In fact, given the large number of
destinations and depending on the time of the year, different destinations are
served by different service providers at different time of the year. In order to keep
up with so many service providers, the IT personnel at the agency have set up
an application that combines the various services from different service providers
without letting the travel agent, who is using the application, knows how many
and which service providers he is dealing with when making a transaction. The
selection of a service provider for a particular service for a particular time period
is managed automatically by the application.

Now assume that our agency wants to open a new branch in Madrid. In or-
der to provide their services for various destinations in Spain, the travel agency
settles up new agreements with local service providers. Once all the new service
providers have been identified, they are registered into the system and the se-
lection of the proper agencies for each type of service is managed automatically,
according to the conditions of the agreements and requirements of the travel
agency. However, for certain destinations no service provider offers excursion
activities. Thanks to the development approach used by IT personnel of the
agency, the application will still be able to offer the rest of its services to the
travel agent, even though it is missing some of the services for those destina-
tions. This is possible because if the application finds that a service provider is
unreachable, it tries to find an alternative service provider. If it does not find any
service provider for some service, it continues offering the rest of the services.

As the reader can observe, the above example requires several points: first,
the application, whose composition is defined in terms of services, should be

274 D. Beläıd et al.

deployable at different locations with different service providers. Second, an ap-
plication designer should be able to make its application work in a kind of de-
graded mode if some of the service providers required for its full functionalities
can not be found. Both of these points formed the basis of our previous approach
for service composition in SCA [2]. In this paper, we extend our prior approach
to add further flexibility in the composition process. Also, an evaluation of our
implemented system is provided in this paper.

The rest of this paper has been organized as following. First, in Sect. 2 we
describe the some related work done by others. In Sect. 3 we describe the Ser-
vice Component Architecture (SCA) upon which we build the rest of the paper.
Sect. 4 discusses the notion of abstract and concrete composition and how it can
be applied to SCA. Sect. 5 describes the architecture of our system, its imple-
mentation and usability while Sect. 6 provides its evaluation. Sect. 7 concludes
this paper along with description of the intended future work.

2 Related Work

The idea of describing application as an abstract composition of services, which
are resolved into service components dynamically, has been treated previously.
However, existing works mostly treat the process from the point of view of a user in
a pervasive environment. For example, in the COCOA approach [3], the objective
is to find concrete components for abstract services defined in a user task. Their so-
lution builds on semantic Web services (OWL-S) and offers flexibility by enabling
semantic matching of interfaces and ad hoc reconstruction of the user tasks con-
versation from services conversations. Furthermore, COCOA allows meeting QoS
requirements of user tasks. For this purpose, they have created COCOA-L, an ex-
tension of OWL-S, that allows the specification of both local and global QoS re-
quirements of user tasks. Compared to their approach, our approach also proposes
use of semantic matching but instead of being bound to a particular semantic de-
scription language such as OWL-S, we propose to use semantic annotations, which
are independent of description languages. Also, our approach is more relaxed by
providing the possibility to define the different levels of abstraction at different
phases of application life-cycle as will be described in the paper.

The Aura project [4] defines an architecture that realizes user tasks in a trans-
parent way. The user tasks defined in Aura are composed of abstract services to
be found in the environment. Gaia [5] is a distributed middleware infrastructure
that enables the dynamic deployment and execution of software applications.
In this middleware, an application is mapped to available resources of a spe-
cific active space. This mapping can user-assisted or automatic. Gaia supports
the dynamic reconfiguration of applications. For instance, it allows changing
the composition of an application dynamically upon a users request (e.g., the
user may specify a new device providing a component that should replace a
component currently used). Furthermore, Gaia supports the mobility of appli-
cations between active spaces by saving the state of the application. Both of the
previous platforms introduce advanced middleware to ease the development of

Dynamic Component Selection for SCA Applications 275

pervasive applications composed out of networked resources. However, they are
too restrictive when it comes to interoperability between different applications,
specifically when they are provided by different parties. Both approaches assume
framework-dependent XML-based descriptions for services and tasks. In other
words, both approaches assume that services and tasks of the environment are
aware of the semantics underlying the employed XML descriptions. However, in
it is not reasonable to assume that service developers will describe services with
identical terms worldwide. It is for this reason that we base our approach on
SCA (Service Component Architecture) which is an open standard, independent
of any particular implementation technology or communication protocol.

The subject of semantic service description has also been treated by various re-
search works. Semantic Annotations for WSDL (SAWSDL) [6] defines how to add
semantic annotations to various parts of a WSDL [7] document such as input and
output message structures, interfaces and operations. For this purpose, SAWSDL
defines a new specific namespace sawsdl and adds an extension attribute, named
modelReference, to specify the association between WSDL components and con-
cepts in some semantic model. The matching between a concept and WSDL
element is done by using a matching algorithm. One such matching algorithm is
proposed in [8]. Following the example of WSDL extension, we have extended SCA
to be able to carry out semantic matching for different SCA elements including ser-
vices, components, interfaces, and properties. As we will describe in the rest of this
paper, SCA applications can easily be described at various levels of abstraction and
provide a flexible way of extension for supporting semantic descriptions.

There has been some recent work related to the use of policies in SCA. One
such approach uses the SCA policy framework [9] for abstract and concrete re-
source specification [10] which is then used for matching abstract services with
their concrete component implementations. However, the approach is based on
syntactic matching of SCA artifacts. This approach, together with our current
approach, can be used as a component replacement strategy as described in
Sect. 5.2. Similarly, in [11] the authors define patterns and roles for applying ab-
stract policies in SCA to their concrete implementations. With an example ap-
plication they show how their approach can be applied for transactional policies.

3 Service Component Architecture

Service Component Architecture (SCA) [12] provides a programming model for
building applications and systems based on a Service Oriented Architecture
(SOA). The main idea behind SCA is to be able to build distributed applications,
which are independent of implementation technology and protocol. SCA extends
and complements prior approaches to implementing services, and builds on open
standards such as Web services. The basic unit of deployment of an SCA appli-
cation is composite. A composite is an assembly of heterogeneous components,
which implement particular business functionality. These components offer their
functionalities through service-oriented interfaces and may require functions of-
fered by other components, also through service-oriented interfaces.

276 D. Beläıd et al.

Fig. 1. A basic view of SCA meta model

SCA components can be implemented in Java, C++, COBOL, Web Services
or as BPEL processes. Independent of whatever technology is used, every com-
ponent relies on a common set of abstractions including services, references,
properties, and bindings. A service describes what a component provides, i.e.
its external interface. A reference specifies what a component needs from the
other components or applications of the outside world. Services and references
are matched and connected using wires or bindings. A component also defines
one or more properties. For example, a component might rely on a property to
tell it what part of the world it is running in, letting it customize its behavior ap-
propriately. Figure 1 shows the various SCA elements and their relationships in
the SCA meta-model. As shown, the SCA definition of a composite is recursive,
i.e., a composite can contain another composite and so on.

SCA allows dependency injection by relieving the developer from writing the
code to find the required references and do the appropriate binding [13]. The
bindings are taken care of by the SCA runtime and can be specified at the time
of deployment. The bindings specify how services and references communicate
with each other. Each binding defines a particular protocol that can be used to
communicate with a service as well as how to access them. Because bindings
separate how a component communicates from what it does, they let the com-
ponents business logic be largely divorced from the details of communication. A
single service or reference can have multiple bindings, allowing different remote
software to communicate with it in different ways.

Since SCA already has the notion of services and components and since it
allows dynamic binding of services to components, it is an ideal candidate for
realization of our proposed approach and, hence, in the rest of the paper we will
explain our approach using the SCA artifacts.

3.1 SCA Example Application

First, we show how we can represent our example application in SCA. This has
been done schematically in fig. 2(a). The listing below shows how the same SCA

Dynamic Component Selection for SCA Applications 277

application is defined in SCDL (Service Component Description Language), an
XML-based description of SCA applications.

<composite name="TravelPlanner">

<service name="TravelBookingService"

promote="TravelBookingComponent/TravelBookingService"/>

<component name="TravelBookingComponent">

<service name="TravelBookingService">

<interface/>

</service>

<implementation.bpel process="BookingProcess"/>

<reference name="PlaneBookingService"/>

<reference name="CarBookingService"/>

<reference name="HotelBookingService"/>

<reference name="ExcursionBookingService"/>

<implementation.bpel process="TravelBoooking.bpel"/>

</component>

<component name="ExcursionBookingComponent">

<service name="ExcursionBookingService">

<interface/>

</service>

<implementation.composite name="ExcursionBooking"/>

<!-- references to coach and restaurant booking components -->

</component>

<!--PlaneBooking, CarBooking and HotelBooking components definitions-->

<wire source="TravelBookingComponent/ExcursionBookingService"

target="ExcursionBookingComponent/ExcursionBookingService"/>

<!-- wires between other components of the TravelPlanner composite -->

</composite>

The application is described in the composite named TravelPlanner, which of-
fers a single service to the user that is provided by the TravelBooking compo-
nent. However, the TravelBooking component itself uses services provided by
other components namely PlaneBookingCompnent, CarBookingComponent and
HotelBookingComponent as well service provided by the ExcusionBooking com-
posite. Finally, the ExcursionBooking composite is also composed of one com-
ponent namely ExcursionBookingComponent. Note how the services provided by
one component are used as references by another component. For example, the
ExcursionBookingComponent references are connected to the services provided by
the CoachBookingComponent and the RestaurantBookingComponent components.

The TravelPlanner application describes all the services required by the travel
agent for a successful trip planning of a client. As mentioned previously, the
selection of components implementing these services is made dynamically based

278 D. Beläıd et al.

Fig. 2. The TravelPlanner application (a) SCA representation (b) representation as
composite tree

on the availability of service provider. However, since the procedure for booking
a travel or an excursion is known, such a procedure is already provided in the
description of the TravelPlanner composite. Let us assume that this process has
been described in BPEL. Our goal is, thus, to find the components that match
the references required by the TravelBookingComponent and ExcursionBooking-
Component.

4 Abstract and Concrete Composition

As mentioned in the motivating example, an application composition can be
described abstractly so that its concretization can be carried out dynamically
depending upon the context in which it is used. In general, we say that a com-
position is abstract when its description lacks some of the information that de-
fines the composition implementation. Such a composition describes the services
participating in the composition, but does not tell about how the services are
implemented.1

When this concept is applied to SCA, we say that an application described
in SCA is abstract if its description does not contain complete implementation
definition. However, since an SCA composite is defined recursively, we need to
distinguish between various levels of abstraction depending on whether all or
part of a composite is abstract. This notion can be better explained by using
the composition trees.

1 We assume the availability of the technical resources required for instantiating and
running such a composition, and hence do not treat such aspects.

Dynamic Component Selection for SCA Applications 279

4.1 SCA Applications as Composition Trees

The implementation of an SCA composite may be provided by one or more
components. However, these components may themselves be defined in terms of
other components and so on. This property can be explained easily by a tree
structure, where the root is the application itself (i.e., the outermost composite)
and its children represent the composites and components enclosed by it. With
this tree structure, we observe that the inner nodes of the tree represent the
composites and the leaves represent the components. The components, i.e., the
leaves of the tree may be found at any level below the root depending on the
application composition structure.

Figure 2(b) shows the tree representation of the example SCA application of
fig. 2(a). Note that while a composite knows about its contents enclosed by it, it
does not have any information about the contents of the composites enclosed by
it. For example, in fig. 2(b), the root node (at level 0) knows if its children (at
level 1) have known implementations or not, but it does not have this information
about the nodes at level 2. To know them, we need to query the composite at
level 1.

Bearing such a tree structure in mind, we distinguish between various levels
of abstraction for an SCA application:

1) If any of the subcomponents of a composite have no defined implementation,
then the composite is shallow abstract, e.g., the composite ExcursionBooking
at level 1 of the tree in fig. 2(b) is shallow abstract.

2) By recursive definition, if any of the composite enclosed by the root compos-
ite is shallow abstract, the composite is called deep abstract. However, it is
shallow abstract if only the implementation of one of its subcomponents is
not defined. For example, the TravelPlanner composite is deep abstract be-
cause it encloses the ExcursionBooking composite, which is shallow abstract.

3) If all the subcomponents of a composite have known implementations, then
the composite is shallow concrete.

4) By recursive definition, if all of the composites enclosed by the root composite
are shallow concrete, the root composite is deep concrete.

Figure 3 shows these various levels of abstraction diagrammatically.
Our aim is to build a concrete composition tree, which is semantically equiva-

lent to a given (shallow or deep) abstract composition tree. Its fundamental prin-
ciple is to replace the abstract components of a composition tree by semantically
equivalent concrete ones. We assume that a number of concrete components are
available in some repository, which is accessible to us and we need to make a
selection out of them.

4.2 Transformation of Tree

Our aim is to transform the input abstract application into an equivalent con-
crete one. This transformation process consists of three intermediate stages:

280 D. Beläıd et al.

Fig. 3. The different levels of abstraction for SCA applications

1) First, the application is transformed into a composition tree structure as
described previously. From the composition tree, a sub-tree is selected that
keeps only those branches whose leaves are abstract components. In other
words, if some components have well-defined implementations, they are not
considered for processing.

2) While walking down the abstract tree, for each component node, we look
in the repository for a concrete component, which is semantically equivalent
to the abstract one and replace the description of the abstract one by the
concrete one.

3) During the second stage, we may find more than one component or no match-
ing components at all for an abstract service. We need to determine a strategy
for deciding on what to do in such a case.

In the second stage of transformation process, semantic matching is used
for matching. However, the SCA specifications [12] do not specify any mecha-
nism for matching of services and their implementations (components). Thus,
we propose a mechanism for semantic description of services and components
for matching purposes.

4.3 Semantic Description

To be able to reason about the functional properties of SCA artifacts, we add
semantic descriptions to them, as described in the second stage of the transfor-
mation process.

SA-SCA:Semantic Annotations for SCA. We propose Semantic Annotations for
SCA (SA-SCA), which suggests how to add semantic annotations to various
SCA artifacts like composite, services, components, interfaces, and properties.
This extension is similar to the concept of annotations in SAWSDL [6] and is

Dynamic Component Selection for SCA Applications 281

in accordance with the SCA extensibility mechanism [12]. Our proposed SA-
SCA defines a new namespace called sasca and adds an extension attribute
called modelReference so that relationships between SCA artifacts and concepts
in another semantic model are handled. This choice is motivated by the fact
that applications developers can use any ontology language to annotate services
rather than be bound to one particular approach. The listing below shows the
description of our abstract CoachBookingComponent component:

<component name="CoachBookingComponent"

sasca:modelReference="http://tp.org/booking.owl#CoachBooking">

<service name="CoachBookingService">

<interface.java interface="com.example.coachBookingServiceItf"/>

</service>

</component>

Note that the component description now has a reference to an OWL ontology,
which contains the definition of the CoachBooking concept. When this abstract
component is matched with concrete components, it will be ensured that both of
them refer to the same CoachBooking concept. Only if they match, the concrete
component description can be used. For example, the coach booking service
provided by an agency in Madrid is implemented in Java and described in the
following listing:
<component name="MadridCoachBookingComponent"

sasca:modelReference="http://tp.org/booking.owl#CoachBooking">

<service name="MadridCoachBookingService">

<interface.java interface="com.example.coachBookingServiceItf"/>

</service>

<implementation.java name="spaincoach.madrid.booking.CoachBookingServiceImpl"/>

</component>

Since the modelreference attribute in both the abstract and concrete descriptions
refer to the same CoachBooking concept, they will match.

It is then important to notice that we provide the possibility for both a shal-
low and a deep transformation of the composite: in the first case, the composite
description is brought to a shallow concrete state, while in the second case a
deep concrete tree is created. Considering the TravelPlanner composite, its shal-
low transformation will replace the CarBookingComponent, HotelBookingCompo-
nent, and PlaneBookingComponent components with concrete ones, and its deep
transformation will, in addition to these, replace the CoachBookingComponent
and RestaurantBookingComponent components. This possibility is interesting in
the case of a distributed composition. An application composer can process a
shallow transformation on a composite located on its hosting computer, and del-
egate the transformation of the distant subcomposites to the composers located
on those hosts.

5 System Architecture and Implementation

So far, we have discussed our approach for abstract and concrete composition. In
this section, first we describe the architecture describing the entities involved in

282 D. Beläıd et al.

Fig. 4. The Semantic Trader architecture

realizing the abstract-to-concrete composition in Sect. 5.1 and then we provide
the details of our implementation, developed as a proof of concept, in Sect. 5.2.

5.1 Architectural Components

Figure 4 describes the architecture of our proposed system. The Composer is the
entity in charge of the transformation of the abstract composition description.
In order to do so, it uses NodeFilter for selection of nodes in the abstract tree
and a particular ReplacementStrategy for replacement of abstract components
by concrete ones. Hence, the Composer walks through the abstract tree and
when the NodeFilter accepts the current node, the description in the abstract
composition is replaced with the one returned by the ReplacementStrategy.

In order to determine what to put in place of an abstract component de-
scription, the ReplacementStrategy uses the SemanticTrader which returns the
description of a component semantically equivalent but concrete to a given ab-
stract component description.

The SemanticTrader can do this because it specializes the Trader which pro-
vides an extensive access to the Registry that contains the concrete components
descriptions. A SemanticMatcher is used to compare the abstract component
with the concrete ones returned by the Registry.

5.2 Implementation

Currently, our implementation provides two different possibilities for use as a
ReplacementStrategy. These strategies actually provide the possibility of re-
placement of either complete or partial description of abstract component by
the concrete one:

– the ImplementationOnlyReplacementStrategy keep the complete description
of the abstract component but add to it the implementation field in the
description of the concrete component. This strategy is meant to be used
when SCA wires refer explicitly to the component and interface names of
the abstract component, which are then needed to be kept intact.

Dynamic Component Selection for SCA Applications 283

– The FullReplacementStrategy replaces the complete description of the ab-
stract component with the complete concrete component. This strategy can
be used when SCA wires to the replaced component are automatically gen-
erated. It is then possible to import the complete description of the concrete
replacement component into the outer composite.

Our implementation also provides three NodeFilters: one that accepts only an
abstract component, another that accepts only abstract composite, and the third
one that accepts both. So it is possible to apply a specific replacement strategy
to each type of abstract components. For example, the FullReplacementStrategy
can be used for replacing a full abstract composite, as the concrete replacement
composite may promote its subcomponents interfaces.

The Registry can also have various implementations depending on the way the
available concrete components are serialized. Currently we provide a database
implementation. The DatabaseRegistry uses a MySQL base in which components
are stored in a simple table that contains for each component: its name, its
XML description, its unique key determined on its registration request, and its
provider id.

As we are looking forward to giving a public access to the Composer, the
Registry also maintains the list of its authorized users. Indeed each operation
on the trader, i.e., component request or publication, requires a user key. There
are three kinds of users, each with different rights:

– the customer can request components from the trader,
– the provider can register components but also request them,
– the administrator can register new users, customer or provider.

Usability of Our Approach. By using a service component-oriented model
and by dynamically selecting components using semantic description, our ap-
proach can be used for service and component bindings both at design time and
at runtime. At design time, when the application designer defines the abstract
composition, he can select and reuse the concrete components from the compo-
nent repository —if they are available— and do the bindings at design time, i.e.,
an early binding is provided. However, if not all components can be found at
design time, the designer can leave the choice to the container, which can carry
out late binding depending on the available concrete components. This leads to
greater flexibility.

6 Evaluation

In order to benchmark our approach we generated various sets of primitive SCA
components counting from 100 to 600 elements. We semantically annotated their
services and references with concepts taken from the Rosetta ontology (which
has 63 classes and 30 subclass relations)2. We took care to have a uniform
2 Rosetta is available at

http://www.w3.org/2002/ws/sawsdl/spec/ontology/rosetta.owl

284 D. Beläıd et al.

Fig. 5. The time for turning abstract primitive components into concrete ones

Fig. 6. The cost of the abstract tree building and exploration

distribution of components with respect to the number of semantic annotations
they contain. The tests have been done on a 1.86 GHz Pentium M with 1 Gb
RAM.

First, we look at how the time to turn an abstract primitive component into a
concrete one grows. In order to do so, we took a set of 10 abstract components,
holding from 5 to 15 semantic annotations. We measured how long it took to find
their concrete equivalents in sets of concrete components varying from 100 to 600
components. What we noticed is that for small number of annotations, the time
required to turn an abstract component into a concrete one grows linearly and
slowly with the size of the registry. But the slope becomes abrupt for components
holding large number of annotations, as shown in figure 5.

Then we look at the impact of the abstract tree building and exploration for
the transformation of a deep abstract composite into a deep concrete one. To do
so, we took a composite component of ten levels depth. We placed an abstract

Dynamic Component Selection for SCA Applications 285

primitive component to its deepest level and measured the time required for the
transformation of the composite. Then we repeat the operation with the abstract
component on the other levels of the composite, the result is shown in the figure 6.
The additional cost of the building and exploration of the abstract tree is at most
0.25 second, to be compared to the 6.5 seconds took by the matching process. So
we shall optimize this latter part of our tool in the future.

7 Conclusions and Future Work

We have presented an approach for dynamic composition of applications whose
composition is described in terms of the services provided/required by the ap-
plication; however, these services are bound to implementations either at design
time or dynamically at the time of execution of the application depending on
the availability of concrete components in the current context. The service im-
plementations might be distributed and provided by different service providers
whose selection is influenced by a particular replacement strategy. The selection
of a particular implementation is made on the basis of a matching algorithm.
We have discussed an implementation of our system, whose evaluation is also
provided.

The applications we consider are described in SCA. To resolve an abstract
component, our system looks for the corresponding concrete component. How-
ever, it is possible that the implementation of an abstract component may not
be provided by any available concrete components; rather we may find more
than one component providing the same functionality required by the abstract
component. Similarly, if a composition tree requires to resolve several abstract
components and instead of providing various concrete components, our system
will provide a single concrete composite, which provides the same functional-
ity; this might be either due to unavailability of some of the required concrete
components or due to performance reasons.

Currently, we consider only applications whose composition in terms of ser-
vices is defined statically. In the future, we are looking forward to having such
applications created automatically in the pervasive environments in terms of the
services available in the environment.

References

1. Papazoglou, M.P.: Service-oriented computing: concepts, characteristics and direc-
tions. In: Proceedings of the Fourth International Conference on Web Information
Systems Engineering, WISE 2003, December 2003, pp. 3–12 (2003)

2. Beläıd, D., Mukhtar, H., Ozanne, A.: Service Composition Based on Functional
and Non-functional Descriptions in SCA. In: Proceedings of The 1st International
Workshop on Advanced Techniques for Web Services, AT4WS 2009, Milan, Italy
(2009)

3. Ben Mokhtar, S., Georgantas, N., Issarny, V.: COCOA: Conversation-based ser-
vice composition in pervasive computing environments with qos support. J. Syst.
Softw. 80(12), 1941–1955 (2007)

286 D. Beläıd et al.

4. Sousa, J., Garlan, D.: Aura: an Architectural Framework for User Mobility in
Ubiquitous Vomputing Environments. In: WICSA 3: Proceedings of the IFIP 17th
World Computer Congress - TC2 Stream / 3rd IEEE/IFIP Conference on Soft-
ware Architecture, Deventer, The Netherlands, pp. 29–43. Kluwer, B.V., Dordrecht
(2002)

5. Román, M., Campbell, R.H.: A middleware-based application framework for active
space applications. In: Endler, M., Schmidt, D.C. (eds.) Middleware 2003. LNCS,
vol. 2672, pp. 433–454. Springer, Heidelberg (2003)

6. Akkiraju, R., Sapkota, B.: Semantic annotations for WSDL. Technical report, W3C
(September 2006), http://www.w3.org/TR/sawsdl-guide/

7. WSDL 2.0 Home Page: Web Services Description Language (2006),
http://www.w3.org/TR/wsdl20/

8. Ould Ahmed M’Bareck, N., Tata, S.: How to consider requester’s preferences to
enhance web service discovery? In: Second International Conference on Internet
and Web Applications and Services, ICIW 2007, May 2007, pp. 59–59 (2007)

9. Open SOA Collaboration: SCA Policy Framework v1.00 specifications (2007),
http://www.osoa.org/

10. Mukhtar, H., Beläıd, D., Bernard, G.: A policy-based approach for resource specifi-
cation in small devices. In: UBICOMM 2008: The Second International Conference
on Mobile Ubiquitous Computing, Systems, Services and Technologies. IEEE, Los
Alamitos (2008)

11. Satoh, F., Mukhi, N.K., Nakamura, Y., Hirose, S.: Pattern-based Policy
Configuration for SOA Applications. In: IEEE International Conference on Services
Computing, SCC 2008, July 2008, vol. 1, pp. 13–20 (2008)

12. Open SOA Collaboration: Service Component Architecture (SCA): SCA Assembly
Model v1.00 specifications (2007), http://www.osoa.org/

13. Chappel, D.: Introducing Service Component Architecture. White paper (July
2007), http://www.osoa.org

http://www.w3.org/TR/sawsdl-guide/
http://www.w3.org/TR/wsdl20/
http://www.osoa.org/
http://www.osoa.org/
http://www.osoa.org

	Dynamic Component Selection for SCA Applications
	Introduction
	Related Work
	Service Component Architecture
	SCA Example Application

	Abstract and Concrete Composition
	SCA Applications as Composition Trees
	Transformation of Tree
	Semantic Description

	System Architecture and Implementation
	Architectural Components
	Implementation

	Evaluation
	Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

