RTG: A Recursive Realistic Graph Generator
Using Random Typing

Leman Akoglu and Christos Faloutsos

Carnegie Mellon University
School of Computer Science
{1lakoglu,christos}@cs.cmu.edu

Abstract. We propose a new, recursive model to generate realistic
graphs, evolving over time. Our model has the following properties:
it is (a) flexible, capable of generating the cross product of weighted/
unweighted, directed /undirected, uni/bipartite graphs; (b) realistic, giv-
ing graphs that obey eleven static and dynamic laws that real graphs
follow (we formally prove that for several of the (power) laws and we
estimate their exponents as a function of the model parameters); (c)
parsimonious, requiring only four parameters. (d) fast, being linear on
the number of edges; (e) simple, intuitively leading to the generation
of macroscopic patterns. We empirically show that our model mimics
two real-world graphs very well: Blognet (unipartite, undirected, un-
weighted) with 27K nodes and 125K edges; and Committee-to-Candidate
campaign donations (bipartite, directed, weighted) with 23K nodes and
880K edges. We also show how to handle time so that edge/weight ad-
ditions are bursty and self-similar.

1 Introduction

Study of complex graphs such as computer and biological networks, the link
structure of the WWW, the topology of the Internet, and recently with the
widespread use of the Internet, large social networks, has been a vital research
area. Many fascinating properties have been discovered, such as small and shrink-
ing diameter [2120], power-laws [BITTITOI2422/2829)20], and community struc-
tures [T2JI3I27]. As a result of such interesting patterns being discovered, and
for many other reasons which we will discuss next, how to find a model that
would produce synthetic but realistic graphs is a natural question to ask. There
are several applications and advantages of modeling real-world graphs:

— Simulation studies: if we want to run tests for, say a spam detection al-
gorithm, and want to observe how the algorithm behaves on graphs with
different sizes and structural properties, we can use graph generators to pro-
duce such graphs by changing the parameters. This is also true when it is
difficult to collect any kind of real data.

— Sampling/Extrapolation: we can generate a smaller graph for example for
visualization purposes or in case the original graph is too big to run tests

W. Buntine et al. (Eds.): ECML PKDD 2009, Part I, LNAI 5781, pp. 13-28,(2009.
© Springer-Verlag Berlin Heidelberg 2009

14 L. Akoglu and C. Faloutsos

on it; or conversely to generate a larger graph for instance to make future
prediction and answer what-if questions.

— Summarization/Compression: model parameters can be used to summarize
and compress a given graph as well as to measure similarity to other graphs.

— Motivation to understand pattern generating processes: graph generators give
intuition and shed light upon what kind of processes can (or cannot) yield the
emergence of certain patterns. Moreover, modeling addresses the question of
what patterns real networks exhibit that needs to be matched and provides
motivation to figure out such properties.

Graph generator models are surveyed in [4]. Ideally, we would like a graph gen-
erator that is:

1. stmple: it would be easy to understand and it would intuitively lead to the
emergence of macroscopic patterns.

2. realistic: it would produce graphs that obey all the discovered “laws” of
real-world graphs with appropriate values.

3. parsimonious: it would require only a few number of parameters.

4. flexible: it would be able to generate the cross product of weighted /unweighted,
directed /undirected and unipartite/bipartite graphs.

5. fast: the generation process would ideally take linear time with respect to
the number of edges in the output graph.

In this paper we propose RTG, for Random Typing Generator. Our model uses a
process of ‘random typing’, to generate source and destination node identifiers,
and it meets all the above requirements. In fact, we show that it can generate
graphs that obey all eleven patterns that real graphs typically exhibit.

Next, we provide a survey on related work. Section 3 describes our RTG
generator in detail. Section 4 provides experimental results and discussion. We
conclude in Section 5. Appendix gives proofs showing some of the power-laws
that the model generates.

2 Related Work

Graph patterns: Many interesting patterns that real graphs obey have been
found, which we give a detailed list of in the next section. Ideally, a generator
should be able to produce all of such properties.

Graph generators: The vast majority of earlier graph generators have focused
on modeling a small number of common properties, but fail to mimic others.
Such models include the Erdos & Renyi model [§], the preferential attachment
model [3] and numerous more, like the ‘small-world’, ‘winners don’t take all’,
“forest fire’ and ‘butterfly’ models [B126120022]. See [4] for a recent survey and
discussion. In general, these methods are limited in trying to model some static
graph property while neglecting others as well as dynamic properties or cannot
be generalized to produce weighted graphs.

RTG: A Recursive Realistic Graph Generator Using Random Typing 15

Random dot product graphs [I7I32] assign each vertex a random vector in some
d-dimensional space and an edge is put between two vertexes with probability equal
to the dot product of the endpoints. This model does not generate weighted graphs
and by definition only produces undirected graphs. It also seems to require the com-
putation of the dot product for each pair of nodes which takes quadratic time.

A different family of models is utility-based, where agents try to optimize
a predefined utility function and the network structure takes shape from their
collective strategic behavior [I0[9/I8]. This class of models, however, is usually
hard to analyze.

Kronecker graph generators [I9] and their tensor followups [I] are successful
in the sense that they match several of the properties of real graphs and they
have proved useful for generating self-similar properties of graphs. However, they
have two disadvantages: The first is that they generate multinomial/lognormal
distributions for their degree and eigenvalue distribution, instead of a power-law
one. The second disadvantage is that it is not easy to grow the graph incremen-
tally: They have a fixed, predetermined number of nodes (say, N*, where N is
the number of nodes of the generator graph, and k is the number of iterations);
where adding more edges than expected does mot create additional nodes. In
contrast, in our model, nodes emerge naturally.

3 Proposed Model

We first give a concise list of the static and dynamic ‘laws’ that real graphs obey,
which a graph generator should be able to match.

LO1. Power-law degree distribution: the degree distribution should follow a
power-law in the form of f(d) o d?, with the exponent v < 0 [BIITIT6I24]
L02. Densification Power Law (DPL): the number of nodes N and the number
of edges E should follow a power-law in the form of E(t) o N(¢)®, with

a > 1, over time [20].

L03. Weight Power Law (WPL): the total weight of the edges W and the num-
ber of edges E should follow a power-law in the form of W (t) oc E(t)?, with
B > 1, over time [22].

L04. Snapshot Power Law (SPL): the total weight of the edges W,, attached to
each node and the number of such edges, that is, the degree d,, should follow
a power-law in the form of W,, oc d, with 6 > 1 [22].

L05. Triangle Power Law (TPL): the number of triangles A and the number of
nodes that participate in A number of triangles should follow a power-law
in the form of f(A) x A, with o < 0 [29).

L06. Eigenvalue Power Law (EPL): the eigenvalues of the adjacency matrix of
the graph should be power-law distributed [2§].

L07. Principal Eigenvalue Power Law (A1 PL): the largest eigenvalue A1 of the
adjacency matrix of the graph and the number of edges E should follow a
power-law in the form of \;(¢) oc E(t)°, with § < 0.5, over time [I].

L08. small and shrinking diameter: the (effective) diameter of the graph should
be small [2] with a possible spike at the ‘gelling point’ [22]. It should also
shrink over time [20].

16 L. Akoglu and C. Faloutsos

L09. constant size secondary and tertiary connected components: while the ‘giant
connected component’ keeps growing, the secondary and tertiary connected
components tend to remain constant in size with small oscillations [22].

L10. community structure: the graph should exhibit a modular structure, with
nodes forming groups, and possibly groups within groups [T2IT1327].

L11. bursty/self-similar edge/weight additions: Edge (weight) additions to the
graph over time should be self-similar and bursty rather than uniform with
possible spikes [7ITAUT522].

Zipf introduced probably the earliest power law [33], stating that, in many nat-
ural languages, the rank r and the frequency f, of vocabulary words follow a
power-law f,. o< 1/r. Mandelbrot [21] argued that Zipf‘s law is the result of opti-
mizing the average amount of information per unit transmission cost. Miller [23]
showed that a random process also leads to Zipf-like power laws. He suggested
the following experiment: “A monkey types randomly on a keyboard with k
characters and a space bar. A space is hit with probability ¢; all other charac-
ters are hit with equal probability, (1;‘1). A space is used to separate words”.
The distribution of the resulting words of this random typing process follow a
power-law. Conrad and Mitzenmacher [6] showed that this relation still holds
when the keys are hit with unequal probability.

Our model generalizes the above model of natural human behavior, using
‘random typing’. We build our model RTG (Random Typing Generator) in three
steps, incrementally. In the next two steps, we introduce the base version of the
proposed model to give an insight. However, as will become clear, it has two
shortcomings. In particular, the base model does not capture (1) homophily, the
tendency to associate and bond with similar others- people tend to be acquainted
with others similar in age, class, geographical area, etc. and (2) community
structure, the existence of groups of nodes that are more densely connected
internally than with the rest of the graph.

3.1 RTG-IE: RTG with Independent Equiprobable Keys

As in Miller’s experimental setting, we propose each unique word typed by the
monkey to represent a node in the output graph (one can think of each unique
word as the label of the corresponding node). To form links between nodes, we
mark the sequence of words as ‘source’ and ‘destination’, alternatingly. That is,
we divide the sequence of words into groups of two and link the first node to the
second node in each pair. If two nodes are already linked, the weight of the edge
is simply increased by 1. Therefore, if W words are typed, the total weight of the
output graph is W/2. See Figure [l for an example illustration. Intuitively, ran-
dom typing introduces new nodes to the graph as more words are typed, because
the possibility of generating longer words increases with increasing number of
words typed.

Due to its simple structure, this model is very easy to implement and is indeed
mathematically tractable. If W words are typed on a keyboard with k£ keys and

RTG: A Recursive Realistic Graph Generator Using Random Typing 17
P
a b S T ab a 1
ypli ypl\q T2 bba ab 1
a b S a~ b S T3 b ab 1
AN N L L !

ababbaabbabababa

ANB space

Fig. 1. Illustration of the RTG-IE. Upper left: how words are (recursively) generated
on a keyboard with two equiprobable keys, ‘a’ and ‘b’, and a space bar; lower left:
a keyboard is used to randomly type words, separated by the space character; upper
right: how words are organized in pairs to create source and destination nodes in the
graph over time; lower right: the output graph; each node label corresponds to a unique
word, while labels on edges denote weights

a space bar, the probability p of hitting a key being the same for all keys and
the probability of hitting the space bar being denoted as ¢g=(1 — kp):

Lemma 1. The expected number of nodes N in the output graph G of the RTG-
IE model s
N oc W leawk,

Proof: In the Appendix. O

Lemma 2. The expected number of edges E in the output graph G of the RTG-
IE model s

q—logpk

E ~ W9k o (14 dlogW), for ¢ = > 0.

—logp
Proof: In the Appendix. O

Lemma 3. The in(out)-degree d,, of a node in the output graph G of the RTG-
IE model is power law related to its total in(out)-weight W, that is,

W, o d 1o9xp
with expected exponent —logip > 1.

Proof: In the Appendix. O

Even though most of the properties listed at the beginning of this section are
matched, there are two problems with this model: (1) the degree distribution
follows a power-law only for small degrees and then shows multinomial charac-
teristics (See Figure[d), and (2) it does not generate homophily and community
structure, because it is possible for every node to get connected to every other
node, rather than to ‘similar’ nodes in the graph.

18 L. Akoglu and C. Faloutsos

|
g4 - Foasem: €—
‘A |
o " | <
€ B g
S e 2" —
=} P, 8
! . —
| i ' =
-f:. ki = e " i . e
in-degree rank

[+ -1 9554x + (42063 =]

count
count

e T B e c——

in-degree rank

Fig. 2. Top row: Results of RTG-IE (k =5, p = 0.16, W = 1M). The problem with
this model is that in(out)-degrees form multinomial clusters (left). This is because
nodes with labels of the same length are expected to have the same degree. This can
be observed on the rank-frequency plot (right) where we see many words with the
same frequency. Notice the ‘staircase effect’. Bottom row: Results of RTG-1U (k = 5,
p = [0.03,0.05,0.1,0.22,0.30], W = 1M). Unequal probabilities introduce smoothing
on the frequency of words that are of the same length (right). As a result, the degree
distribution follows a power-law with expected heavy tails (left).

3.2 RTG-IU: RTG with Independent Un-Equiprobable Keys

We can spread the degrees so that nodes with the same-length but otherwise
distinct labels would have different degrees by making keys have unequal prob-
abilities. This procedure introduces smoothing in the distribution of degrees,
which remedies the first problem introduced by the RTG-IE model. In addition,
thanks to [6], we are still guaranteed to obtain the desired power-law character-
istics as before. See Figure

3.3 RTG: Random Typing Graphs

What the previous model fails to capture is the homophily and community struc-
ture. In a real network, we would expect nodes to get connected to similar nodes
(homophily), and form groups and possibly groups within groups (modular struc-
ture). In our model, for example on a keyboard with two keys ‘a’ and ‘b’, we
would like nodes with many ‘a’s in their labels to be connected to similar nodes,
as opposed to nodes labeled with many ‘b’s. However, in both RTG-IE and

RTG: A Recursive Realistic Graph Generator Using Random Typing 19

2, .
N, a b 1S b 1 s R P b s
NG ! |
: - |laa*-as| prob(a'.z;) =b) E
! P, - prob(a*,b*) L
a a*-a* la*-b* |a*-S a [==l an b 2% a | B Ens) PaPsB 1 PoAR | 1P,
: b i
1 aS-aa*} aS-ab’jas-as _ '
- [P ——mad o iy S SSSSSES SIS N S g
! : - B R
b b*-a* !b*b* |b*-S b b*-a* !b*-b* |b*-S b kil e | 78 °
. : o
o ! - o 1 - prob(s,s) =
s| s ‘s | s isippEE| s| dnb AP | ol A
| ;
1 1 | 1 T | T .
Pa Py q
(a) first level (b) recursion (c) communities

Fig. 3. The RT'G model: random typing on a 2-d keyboard, generating edges (source-
destination pairs). See Algorithm[Il (a) an example 2-d keyboard (nine keys), hitting a
key generates the row(column) character for source(destination), shaded keys terminate
source and/or destination words. (b) illustrates recursive nature. (c¢) the imbalance
factor 3 favors diagonal keys and leads to homophily.

RTG-IU it is possible for every node to connect to every other node. In fact, this
yields a tightly connected core of nodes with rather short labels.

Our proposal to fix this is to envision a two-dimensional keyboard that gener-
ates source and destination labels in one shot, as shown in Figure[3l The previous
model generates a word for source, and, completely independently, another word
for destination. In the example with two keys, we can envision this process as
picking one of the nine keys in Figure B(a), using the independence assumption:
the probability for each key is the product of the probability of the correspond-
ing row times the probability of the corresponding column: p; for letter [, and
q for space (‘S’). After a key is selected, its row character is appended to the
source label, and the column character to the destination label. This process
repeats recursively as in Figure Bl(b), until the space character is hit on the first
dimension in which case the source label is terminated and also on the second
dimension in which case the destination label is terminated.

In order to model homophily and communities, rather than assigning cross-
product probabilities to keys on the 2-d keyboard, we introduce an imbalance
factor 3, which will decrease the chance of a-to-b edges, and increase the chance
for a-to-a and b-to-b edges, as shown in Figure[3(c). Thus, for the example that
we have, the formulas for the probabilities of the nine keys become:

prob(a,b) = prob(b, a) = pupsB , prob(a,a) = pa — (prob(a,b) + prob(a, 5)),
prob(S,a) = prob(a, S) = qpaB , prob(b, b) = py — (prob(b, a) + prob(b, 5)),
prob(S,b) = prob(b, S) = qpuB , prob(S, 5) = q — (prob(S, a) + prob(s,b)).

By boosting the probabilities of the diagonal keys and down-rating the proba-
bilities of the off-diagonal keys, we are guaranteed that nodes with similar labels
will have higher chance to get connected. The pseudo-code of generating edges
as described above is shown in Algorithm [Tl

Next, before showing the experimental results of RTG, we take a detour
to describe how we handle time so that edge/weight additions are bursty and

20 L. Akoglu and C. Faloutsos

self-similar. We also discuss the generalizations of the model in order to produce
all types of uni/bipartite, (un)weighted, and (un)directed graphs.

Algorithm 1. RTG
Input: k, ¢, W, 8
Output: edge-list L for output graph G
1: Initialize (k4 1)-by-(k 4 1) matrix P with cross-product probabilities
// in order to ensure homophily and community structure
Multiply off-diagonal probabilities by 8, 0 < 8 < 1
Boost diagonal probabilities s.t. sum of row(column) probabilities remain the same.
Initialize edge list L
for 1 to W do
L1, L2 « SelectNodeLabels(P)
Append L1, L2 to L
9: end for

11: function SelectNodeLabels (P) : L1, L2

12: Initialize L1 and L2 to empty string

13: while not terminated L1 and not terminated L2 do
14: Draw ¢,j with probability P(i,j)

15: if i <k, j <k then

16: Append character ‘i’ to L1 and ‘j’ to L2 if not terminated
17: elseif i <k, j=k+ 1 then

18: Append character ‘i’ to L1 if not terminated

19: Terminate L2

20: elseif i=k+ 1, j < k then

21: Append character ‘j’ to L2 if not terminated

22: Terminate L1

23: else

24: Terminate L1 and L2

25: end if

26: end while
27: Return L1 and L2
28: end function

3.4 Burstiness and Self-Similarity

Most real-world traffic as well as edge/weight additions to real-world graphs have
been found to be self-similar and bursty [7IT4/I5/22]. Therefore, in this section we
give a brief overview of how to aggregate time so that edge and weight additions,
that is AE and AW, are bursty and self-similar.

Notice that when we link two nodes at each step, we add 1 to the total weight
W. So, if every step is represented as a single time-tick, the weight additions are
uniform. However, to generate bursty traffic, we need to have a bias factor b> 0.5,
such that b-fraction of the additions happen in one half and the remaining in the
other half. We will use the b-model [30], which generates such self-similar and
bursty traffic. Specifically, starting with a uniform interval, we will recursively

RTG: A Recursive Realistic Graph Generator Using Random Typing 21

subdivide weight additions to each half, quarter, and so on, according to the
bias b. To create randomness, at each step we will randomly swap the order of
fractions b and (1 —b).

Among many methods that measure self-similarity we use the entropy plot [30],
which plots the entropy H (r) versus the resolution r. The resolution is the scale,
that is, at resolution r, we divide our time interval into 2" equal sub-intervals, com-
pute AE in each sub-interval k(k = 1...2"), normalize into fractions py = AEE ,
and compute the Shannon entropy H (r) of the sequence py. If the plot H(r) is lin-
ear, the corresponding time sequence is said to be self-similar, and the slope of the
plot is defined as the fractal dimension fy of the time sequence. Notice that a uni-
form A distribution yields f4=1; a lower value of f; corresponds to a more bursty
time sequence, with a single burst having the lowest f;=0: the fractal dimension
of a point.

3.5 Generalizations

We can easily generalize RT'G to model all type of graphs. To generate undirected
graphs, we can simply assume edges from source to destination to be undirected
as the formation of source and destination labels is the same and symmetric.
For unweighted graphs, we can simply ignore duplicate edges, that is, edges
that connect already linked nodes. Finally, for bipartite graphs, we can use two
different sets of keys such that on the 2-d keyboard, source dimension contains
keys from the first set, and the destination dimension from the other set. This
assures source and destination labels to be completely different, as desired.

4 Experimental Results

The question we wish to answer here is how RTG is able to model real-world
graphs. The datasets we used are:

Blognet: a social network of blogs based on citations (undirected, unipartite and
unweighted with N=27,726; E=126,227; over 80 time ticks).

Com2Cand: the U.S. electoral campaign donations network from organizations
to candidates (directed, bipartite and weighted with N=23 191; E=877,721;
and W=4,383,105, 580 over 29 time ticks). Weights on edges indicate donated
dollar amounts.

In Figures [and [B] we show the related patterns for Blognet and Com2Cand
as well as synthetic results, respectively. In order to model these networks, we
ran experiments for different parameter values k, ¢, W, and 3. Here, we show the
closest results that RT'G generated, though fitting the parameters is a challenging
future direction. We observe that RT'G is able to match the long wish-list of static
and dynamic properties we presented earlier for the two real graphs.

In order to evaluate community structure, we use the modularity measure
n [25]. Figure [Bf(left) shows that modularity increases with smaller imbalance
factor 5. Without any imbalance, =1, modularity is as low as 0.35, which
indicates that no significant modularity exists. In Figure [(right), we also show

22
\
[
1| ™=
.,! el
N
1—‘ ;
(a) diameter
.f/‘ I
(e) DPL
’ '\;
! |I Wty e e T VLY
i r’
I

|
e

(a) LO8 diameter

- 1Iu:v:0)!-l!“i>='r/

,-/

(1]

(e) LO2 DPL

L. Akoglu and C. Faloutsos

——Cc1

fl===gc2
= CCY
f
b £ » " - 3 -
-

(b) components

size (N[}

—— 0 50N + (040738) = y

(f) entropy AE

——CCY
——CC2
w|——CGC3|

size IO

(b) LO9 components (c) LO1 degree distr.

-
—=—DBEDEDx + (D F1142) =y

ertropy

resotion

(f) L11 entropy AE

I |

et

< -1 804 + (3 0480 = y)

- 1 B14x + (44381} = y i A 19TiR+ (26288 = 7]
i X
A
(c) degrees (d) TPL
-+ 0A4GTHEx + (D5ZITT) =y 0.41506x + [2 0831) = y

AT+ (208K y

soge

g

(d) LO5 TPL

- 04558 + .0 15X34) = y . sEAxe 163074y

IE| sk

(g) LO7 \,PL (h) LO6 EPL

Fig.4. Top two rows: properties of Blognet: (a) small and shrinking diameter; (b)
largest 3 connected components; (c) degree distribution; (d) triangles A vs number
of nodes with A triangles; (e) densification; (f) bursty edge additions; (g) largest 3
eigenvalues wrt F; (h) rank spectrum of the adjacency matrix. Bottom two rows:
results of RTG. Notice the similar qualitative behavior for all eight laws.

the running time of RTG wrt the number of duplicate edges (that is, number of
iterations). Notice the linear growth with increasing W.

5 Conclusion

We have designed a generator that meets all the five desirable properties in the

introduction. Particularly, our model is

RTG: A Recursive Realistic Graph Generator Using Random Typing 23
. A E it Gy e
i | g |'. 1 d M
H] 5| & 2 £, et
| 8 \
|| l| e i r1 /
| i : i =
(a) diameter (b) components (c) degree distr. (d) SPL
['536'9'""0?337:"}/ .: + DBEIIK + [011256) = y " 053002 + (0407 = y
i i i P,
& P E. e \"m
: o
o i)
(e) D(W)PL (f) entropy AW(E) (g) MPL (h) EPL
P PSP Egg_‘g o T3S T Ty)
g £ 5 i I
E" 1 d % ¥ o "o
i spetiinpgoes -
(a) LO8 diameter (b) LO9 components (c) LO1 degree distr. (d) Lo4 SPL

05003 + (1 B52Ty =y

o —— 1 BA5Tdx (O1ETT =y * DA4IX3 e (DIHNG) =y
,'/ [
P i - s
m Tessition g e
(e) LO2, LO3 D(W)PL (f) L11 entropy AW(E) (g) LO7 A PL (h) LO6 EPL

Fig. 5. Top two rows: properties of Com2Cand; as opposed to Blognet, Com2Cand is
weighted. So, different from above we show: (d) node weight vs in(inset: out)degree; (e)
total weight vs number of edges(inset); (f) bursty weight additions(inset); Bottom two
rows: results of RT'G. Notice the similar qualitative behavior for all nine laws.

7000

6000)

5000

4000

modularity
time (s)

3000
2000

1000]

01 0z 03 04 05 08 07 08 03 1 02 04 08 08 1 12 14 16 18

B w e

Fig. 6. Left: modularity score vs. imbalance factor 3, modularity increases with de-
creasing (. For f=1, the score is very low indicating no significant modularity. Right:
computation time vs. W, time grows linearly with increasing number of iterations W.

24 L. Akoglu and C. Faloutsos

1. simple and intuitive, yet it generates the emergent, macroscopic patterns
that we see in real graphs.

2. realistic, generating graphs that obey all eleven properties that real graphs
obey - no other generator has been shown to achieve that.

3. parsimonious, requiring only a handful of parameters.

4. flexible, capable of generating weighted/unweighted, directed/undirected,
and unipartite/bipartite graphs, and any combination of the above.

5. fast, being linear on the number of iterations (on a par with the number of
duplicate edges in the output graph).

Moreover, we showed how well RT'G can mimic some large, real graphs. We have
also proven that an early version of RTG generates several of the desired (power)
laws, formulated in terms of model parameters.

Acknowledgments. This material is based upon work supported by the Na-
tional Science Foundation under Grants No. IIS-0705359, 11S-0705215 and IIS-
0808661, also by the iCAST project sponsored by the National Science Coun-
cil, Taiwan, under Grants No. NSC97-2745-P-001-001 and by the Ministry of
Economic Affairs, Taiwan, under Grants No. 97-EC-17-A-02-R7-0823 and un-
der the auspices of the U.S. Department of Energy by University of California
Lawrence Livermore National Laboratory under contract DE-AC52-07TNA27344
(LLNL-CONF-404625), subcontracts B579447, B580840. Any opinions, findings,
and conclusions or recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of any of the funding parties.

References

1. Akoglu, L., McGlohon, M., Faloutsos, C.: Rtm: Laws and a recursive generator for
weighted time-evolving graphs. In: ICDM (2008)

2. Albert, R., Jeong, H., Barabasi, A.-L.: Diameter of the World Wide Web. Na-
ture 401, 130-131 (1999)

3. Barabasi, A.L., Albert, R.: Emergence of scaling in random networks. Sci-
ence 286(5439), 509-512 (1999)

4. Chakrabarti, D., Faloutsos, C.: Graph mining: Laws, generators, and algorithms.
ACM Comput. Surv. 38(1) (2006)

5. Chakrabarti, D., Zhan, Y., Faloutsos, C.: R-MAT: A recursive model for graph
mining. In: STAM Int. Conf. on Data Mining (April 2004)

6. Conrad, B., Mitzenmacher, M.: Power laws for monkeys typing randomly: the case
of unequal probabilities. IEEE Transactions on Information Theory 50(7), 1403—
1414 (2004)

7. Crovella, M., Bestavros, A.: Self-similarity in world wide web traffic, evidence and
possible causes. Sigmetrics, 160-169 (1996)

8. Erdos, P., Renyi, A.: On the evolution of random graphs. Publ. Math. Inst. Hun-
gary. Acad. Sci. 5, 17-61 (1960)

9. Even-Bar, E., Kearns, M., Suri, S.: A network formation game for bipartite ex-
change economies. In: SODA (2007)

10. Fabrikant, A., Luthra, A., Maneva, E.N., Papadimitriou, C.H., Shenker, S.: On a
network creation game. In: PODC (2003)

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.
25.

26.

27.

28.

29.

30.

31.

RTG: A Recursive Realistic Graph Generator Using Random Typing 25

Faloutsos, M., Faloutsos, P., Faloutsos, C.: On power-law relationships of the in-
ternet topology. In: SIGCOMM, August-September 1999, pp. 251-262 (1999)
Flake, G.W., Lawrence, S., Giles, C.L., Coetzee, F.M.: Self-organization and iden-
tification of web communities. IEEE Computer 35, 66-71 (2002)

Girvan, M., Newman, M.E.J.: Community structure in social and biological net-
works. PNAS 99, 7821 (2002)

Gomez, M.E., Santonja, V.: Self-similarity in i/o workload: Analysis and modeling.
In: WWC (1998)

Gribble, S.D., Manku, G.S., Roselli, D., Brewer, E.A., Gibson, T.J., Miller, E.L.:
Self-similarity in file systems. In: SIGMETRICS 1998 (1998)

Kleinberg, J.M., Kumar, R., Raghavan, P., Rajagopalan, S., Tomkins, A.S.: The
Web as a graph: Measurements, models and methods. In: Asano, T., Imai, H., Lee,
D.T., Nakano, S.-i., Tokuyama, T. (eds.) COCOON 1999. LNCS, vol. 1627, pp.
1-17. Springer, Heidelberg (1999)

Scheinerman, E., Kraetzl, M., Nickel, C.: Random dot product graphs: a model for
social networks (Preliminary Manuscript) (2005)

Laoutaris, N., Poplawski, L.J., Rajaraman, R., Sundaram, R., Teng, S.-H.:
Bounded budget connection (bbc) games or how to make friends and influence
people, on a budget. In: PODC (2008)

Leskovec, J., Chakrabarti, D., Kleinberg, J.M., Faloutsos, C.: Realistic, mathemat-
ically tractable graph generation and evolution, using kronecker multiplication. In:
Jorge, A.M., Torgo, L., Brazdil, P.B., Camacho, R., Gama, J. (eds.) PKDD 2005.
LNCS (LNAI), vol. 3721, pp. 133-145. Springer, Heidelberg (2005)

Leskovec, J., Kleinberg, J., Faloutsos, C.: Graphs over time: densification laws,
shrinking diameters and possible explanations. In: ACM SIGKDD (2005)
Mandelbrot, B.: An informational theory of the statistical structure of language.
Communication Theory (1953)

McGlohon, M., Akoglu, L., Faloutsos, C.: Weighted graphs and disconnected com-
ponents: Patterns and a generator. In: ACM SIGKDD, Las Vegas (August 2008)
Miller, G.A.: Some effects of intermittent silence. American Journal of Psychol-
ogy 70, 311-314 (1957)

Newman, M.E.J.: Power laws, Pareto distributions and Zipf’s law (December 2004)
Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in net-
works. Physical Review E 69, 026113 (2004)

Pennock, D.M., Flake, G.W., Lawrence, S., Glover, E.J., Giles, C.L.: Winners don’t
take all: Characterizing the competition for links on the web. Proceedings of the
National Academy of Sciences, 5207-5211 (2002)

Schwartz, M.F., Wood, D.C.M.: Discovering shared interests among people using
graph analysis of global electronic mail traffic. Communications of the ACM 36,
78-89 (1992)

Siganos, G., Faloutsos, M., Faloutsos, P., Faloutsos, C.: Power laws and the AS-
level internet topology (2003)

Tsourakakis, C.E.: Fast counting of triangles in large real networks without count-
ing: Algorithms and laws. In: ICDM (2008)

Wang, M., Madhyastha, T., Chan, N.H., Papadimitriou, S., Faloutsos, C.: Data
mining meets performance evaluation: Fast algorithms for modeling bursty traffic.
In: ICDE, pp. 507-516 (2002)

Watts, D.J., Strogatz, S.H.: Collective dynamics of ’small-world’ networks. Na-
ture 393(6684), 440-442 (1998)

26 L. Akoglu and C. Faloutsos

32. Young, S.J., Scheinerman, E.R.: Random dot product graph models for social net-
works. In: Bonato, A., Chung, F.R.K. (eds.) WAW 2007. LNCS, vol. 4863, pp.
138-149. Springer, Heidelberg (2007)

33. Zipf, G.K.: Selective Studies and the Principle of Relative Frequency in Language.
Harvard University Press (1932)

Appendix

Consider the following setting: W words are typed on a keyboard with k keys
and a space bar, the probability of hitting a key p being the same for all keys and
probability of hitting the space bar being denoted as ¢g=(1 — kp), in the output

graph G of the RTG-IE model:
Lemma 1. The expected number of nodes N 1is

N oc Wlogrk,

Proof. Given the number of words W, we want to find the expected number of
nodes N that the RTG-IE graph consists of. This question can be reformulated
as follows: ”Given W words typed by a monkey on a keyboard with k keys and
a space bar, what is the size of the vocabulary V?” The number of unique words
V is basically equal to the number of nodes N in the output graph.

Let w denote a single word generated by the defined random process. Then,
w can recursively be written as follows: “w : ¢;w|S”, where ¢; is the character
that corresponds to key i, 1 < i < k, and S is the space character. So, V as a

function of model parameters can be formulated as:

VW) =V(e1,Wp)+V(c2, Wp) + ...+ V(ck, Wp) + V(S)
L1-(1-¢%

=k+xV(Wp)+V(S)= kxV(Wp) + { 0, (1—q)V

where ¢ denotes the probability of hitting the space bar, i.e. ¢ = 1 — kp. Given
the fact that T is often large, and (1 — ¢) < 1, it is almost always the case that
w=>, is generated; but since this adds only a constant factor, we can ignore it
in the rest of the computation. That is,

VW)= ks V(Wp) =k (k+V(Wp?) =k"* V(1)

where n = log,(1/W) = —log,W. By definition, when W=1, that is, in case
only one word is generated, the vocabulary size is 1, i.e. V(1)=1. Therefore,

V(W) =N oc k™ = koo™ — ook,
O
The above proof shown using recursion is in agreement with the early re-
sult of Miller [23], who showed that in the monkey-typing experiment with k
equiprobable keys (with probability p) and a space bar (with probability q), the
rank-frequency distribution of words follow a power law. In particular,

flr) p—1Hlogr(1—q)—1 _ ,logkp

RTG: A Recursive Realistic Graph Generator Using Random Typing 27

- 1.2131x + (-0.40331) =y

rark
v 10° 10

10° 10" 10 10" 10"
E = W% (1+c’logW)

Fig. 7. (a) Rank vs count of vocabulary words typed randomly on a keyboard with k
equiprobable keys (with probability p) and a space bar (with probability q), follow a
power law with exponent o = logrp. Approximately, the area under the curve gives
the total number of words typed. (b) The relationship between number of edges E and
total weight W behaves like a power-law (k=2, p=0.4).

In this case, the number of ranks corresponds to the number of unique words,
that is, the vocabulary size V. And, the sum of the counts of occurrences of all
words in the vocabulary should give W, the number of words typed. The total
count can be approximated by the area under the curve on the rank-count plot.
See Figure[Ml(a). Next, we give a second proof of Lemma 1 using Miller’s result.

Proof. Let a = logip and C(r) denote the number of times that the word with
rank 7 is typed. Then, C(r) = cr®, where C(r)min = C(V) = ¢V and the
constant ¢ = C(V)V~“. Then we can write W as

\4 |4 Ta—l—l \%4
w=cCcWVv)v—« Y| =CWV)V® Ydr | =C(V)V ¢
v (L) =e0) [i) =conv (707
1 1
= Ve - ~ VT
cv) (—a -1 (—a- l)V—a—1> ¢
where ¢ = 391)17 where oo < —1 and C(V) is very small (usually 1). Therefore,

V=NxW a=Wlogmk

Lemma 2. The expected number of edges E is

qflogpk

E ~ W™lewk o (14 logW), for ¢ = > 0.

—logp

Proof. Given the number of words W, we want to find the expected number of
edges F that the RTG-IE graph consists of. The number of edges E is the same
as the unique number of pairs of words. We can think of a pair of words as a
single word e, the generation of which is stopped after the second hit to the space

28 L. Akoglu and C. Faloutsos
bar. So, e always contains a single space character. Recursively, “e : ¢;e|Sw”,
where “w : c;w|S”. So, E can be formulated as:

E(W) =k« E(Wp) +V(Wq) (1)

— (1 — g)\Wa
ViWg) = kxV(Wqp) + { (1): %1 _(;)Wg) (2)

From Lemma 1, Equ.(2) can be approximately written as V(Wq) = (W¢q) o9k,
Then, Equ.(1) becomes E(W) = k x E(Wp) + cW®, where ¢ = ¢~ !°9%F and
a = —logpk. Given that E(W=1)=1, we can solve the recursion as follows:

E(W) &k * (k x E(Wp®) + c(Wp)®) + cW®
= kx (k* (k* V(Wp®) + c(Wp*)*) + c(Wp)*) + cW®
=k" V() + k" kc(Wp™ ™) + B 2 5 c(Wp™ 3> ...+ W
=k« V(1) + W ((kp™)" t + (kp*)" 2 +...+ 1)

where n = log,(1/W) = —log,W. Since kp® = kp~l°%F =1,

—logl
EW)xk"sV(1)4+n s W=k wW ¢ —;)oggvg[)/ Wlegnk —yy—logek (14 ' 1ogWW)

o qflogpk' 0

where /' = ¢ =
—logp —logp

O
The above function of E in terms of W and other model parameters looks like
a power-law for a wide range of W. See Figure [b).

Lemma 3. The in/out-degree d,, of a node is power law related to its total
in/out-weight W, that is,
W, o dT—LlngP

with expected exponent —logip > 1.

Proof. We will show that W,, o d;;'°9P for out-edges, and a similar argument
holds for in-edges. Given that the experiment is repeated W times, let W,, denote
the number of times a unique word is typed as a source. Each such unique word
corresponds to a node in the final graph and W, is basically its out-weight, since
the node appears as a source node. Then, the out-degree d,, of a node is simply
the number of unique words typed as a destination. From Lemma 1,

W, o< d,;1°9%P for — logyp > 1.

	RTG: A Recursive Realistic Graph Generator Using Random Typing
	Introduction
	Related Work
	Proposed Model
	RTG-IE: RTG with Independent Equiprobable Keys
	RTG-IU: RTG with Independent Un-Equiprobable Keys
	RTG: Random Typing Graphs
	Burstiness and Self-Similarity
	Generalizations

	Experimental Results
	Conclusion
	References
	Appendix

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

