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Abstract. Collective classification refers to the classification of inter-
linked and relational objects described as nodes in a graph. The Itera-
tive Classification Algorithm (ICA) is a simple, efficient and widely used
method to solve this problem. It is representative of a family of methods
for which inference proceeds as an iterative process: at each step, nodes
of the graph are classified according to the current predicted labels of
their neighbors. We show that learning in this class of models suffers
from a training bias. We propose a new family of methods, called Simu-
lated ICA, which helps reducing this training bias by simulating inference
during learning. Several variants of the method are introduced. They are
both simple, efficient and scale well. Experiments performed on a series
of 7 datasets show that the proposed methods outperform representative
state-of-the-art algorithms while keeping a low complexity.

1 Introduction

A fundamental assumption that underlies most existing work in machine learn-
ing is that data is independently and identically distributed (i.i.d.). Web pages
classification, WebSpam detection, community identification in social networks
and peer-to-peer files analysis are typical applications where data is naturally
organized according to a graph structure. In these applications, the elements to
classify (Web pages or users of files for example) are interdependent: the label of
one element may have a direct influence on other labels in the graph. Problems
involving the classification of graph nodes are generally known as graph labeling
problems [5] or as collective classification problems [IT]. Due to the irrelevancy
of the i.i.d. assumption, new models have been proposed recently to perform
machine learning on such networked data.

Different variants of the graph labeling problem have been investigated. For
inductive graph labeling, training and test are performed in distinct steps. The
goal here is to learn classifiers able to label any node in new graphs or sub-
graphs. This is an extension of the classical supervised classification task to
interdependent data. Typical applications include email classification, region or
object labeling in images or sequence labeling. For transductive graph labeling,
node labeling is performed in a single step where both labeled and unlabeled
data are considered simultaneously. This corresponds to applications like Web-
Spam detection or social network analysis. Note that some problems like web
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Fig.1. Two examples of graph labeling problems. Left: categorization of scientific
articles related by citation links. Right: classification of Web pages into relevant and
non-relevant pages for a given query.

page classification may be handled under either the inductive or the transductive
settings. In this article, we focus on the inductive graph labeling problem and
we will use the name collective classification for this setting.

Graph labeling is often a hard problem and performing exact inference is
generally prohibitive. Practical algorithms then rely on approximate inference
methods. Many collective classification algorithms make use of local classifiers.
Inference then amounts at iteratively labeling nodes: each iteration takes into ac-
count labels predicted at preceding steps. Several such local classifier techniques
have been proposed [I6/I5]. Among them, the Iterative Classification Algorithm
(ICA) has received a growing interest in the past years. It has been shown to be
more robust and accurate than most alternative solutions, it is simple to under-
stand and scales well w.r.t. the size of data, making it possible to label graphs
containing thousands to millions of nodes.

Like most local collective classification methods, training and inference for
ICA are performed differently. For the former, a local classifier is trained clas-
sically, using as inputs some node characteristics and its correct neighboring
labels. Inference, on the opposite, is an iterative process, where the node labels
are repeatedly re-estimated, given the current estimated labels of neighbors.
Prediction errors on labels may then propagate during the iterations and the
classifier will then have difficulties to generalize correctly. This is mainly caused
by the bias between training — which assume perfect labels for neighboring nodes
— and inference — which may iterate over wrong labels. In this paper, we build
on this idea and introduce methods for reducing this training bias. The Sim-
ulated Iterative Classification (S1CA) models proposed here introduce different
ways to simulate the inference process during learning. The local classifier be-
ing trained on situations close to test ones, this will allow reducing the bias
of classical ICA. We present different variants of this S1CA algorithm. We also
introduce the SICA™ algorithm with pass-dependent classifiers, which relies on
the idea of using a different local classifier for each iteration of the algorithm.
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The underlying idea of this last model is similar to the one developed for the
Stacked Learning method [§], however it proceeds differently, replacing the cross
validation steps used for stacked learning by inference simulation. This family
of techniques provides computationally efficient algorithms which outperform
many other methods and which can be used for large scale graph labeling.

The contributions of this paper are twofold. Firstly, we propose a new col-
lective classification algorithm. Its inference procedure is similar to ICA. Its
learning procedure incorporates inference simulation avoiding the training bias
of ICA. The SicA model has the same low inference complexity than ICA but
provides higher performance. Several variants of the SICA method are introduced
and compared. Secondly, we present a set of experiments on seven graph labeling
datasets showing the efficiency of our approach.

The paper is structured as follows. Section [2] is an overview of related work.
Section [B] defines the graph labeling problem formally and describes ICA.
Section @ introduces our contribution: Simulated ICA. We demonstrate the ef-
ficiency of the proposed approach with several experiments and comparisons
with state-of-the-art models in Section Bl Finally, we conclude and discuss the
generality of the proposed approach in Section [6l

2 Related Work

Two main directions have been developed independently for learning to label
graphs.

The first one has been proposed for semi-supervised learning and is sometimes
called learning on data manifolds [20]. The graph here reflects the intrinsic struc-
ture of the data and describes local constraints among data points [I9]. Graph
labeling is formalized as the minimization of an objective function over both
labeled and unlabeled nodes. This objective function aims at finding a classifier
corresponding to a good balance between an error minimization term defined on
the labeled nodes and a local smoothness constraint which imposes close scores
for connected nodes. All these methods rely on transductive learning. Different
type of models have been developed along this idea:

— Models based on label propogation [21J2] only operate on the node labels
without considering any other node feature. The labels are propagated iter-
atively from the labeled nodes to the rest of the graph. The models mainly
differ by the regularization function they rely on.

— Models taking into account both the structure of the graph and the node
features. Belkin et al. [3] developed a general framework allowing the use
of both local node features and weighted links. Other models have been
proposed by Zhang et al. [I8] for web page classification. They have been
adapted by Abernethy et al. [I] for the WebSpam detection task.

The second direction sometimes called collective or relational classification di-
rectly attacks the problem of graph labeling. It makes use of different models like
ICA, Gibbs sampling, Relaxation Labeling and Loopy Belief Propagation (see
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[I6/15] for a review and a comparison of these methods). There are two main
groups of methods:

— Local classifier based methods make use of a local classifier for classifying a
node knowing both its content and the labels of its neighbors. For exam-
ple, the Iterative Classification model [16] iteratively uses the base classifier
during a fixed number of iterations. Gibbs sampling [9] aims at finding the
best set of labels, by sampling each node label iteratively according to the
probability distribution given by the local classifier.

— Global models try to optimize a global function over the graph. Since this is
NP-hard, these methods propose different approximation algorithms in order
to reduce the complexity of the optimization. The more popular methods are
Loopy Belief Propagation [I3] and Relaxation Labeling [10].

Note that methods of this second family are generally used in an inductive set-
ting. They also suffer from the same training label bias as ICA since training and
test operate differently. Finally, it is worth emphasizing Stacked Graphical Learn-
ing [8IT2], a collective classification method developed independently. It makes
use of a chain of classifiers, used iteratively to label the nodes. Each classifier
uses as input the output of the preceding one. The originality of this algorithm
comes from the way it learns the stacked classifiers using a cross-validation based
approach. In the context of graph labeling, this algorithm was successfully used
for WebSpam classification [6] or for layout document structuring [7].

Graph labeling problem is an instance of the more general framework of struc-
tured prediction or structured output classification [I7]. In principle, any general
structured prediction methods could be applicable to solve the graph labeling
problem. However they have a high computational complexity and are not used
for practical applications, especially on a large scale.

3 Supervised Graph Labeling

We use the following notations in the remainder of the paper. A directed graph
is a couple G = (X, FE) where X = (21,...,2n) is a set of nodes and E =
{(4,7)}ijen..Np2 is a set of directed edges. We denote (G,Y’) the labeled graph
G where Y = (y1,...,yn) is the set of labels, with y; the label corresponding
to node z;. Nodes in X are described through feature vectors z; € R? where d
is the number of features. We consider here the multiclass single-label problem:
labels belong to a predefined set of possible labels £ = (Iy, ...,{;,) where L is the
number of possible labeldl.

For example, in a document classification task, nodes x; may be documents
described with vectors of word frequencies, edges (i, j) may correspond to cita-
tion links and labels y; may be document categories.

We consider the inductive graph labeling problem. Given a training labeled
directed graph (G,Y), the aim is to learn a model that is able to label the nodes

! Depending on the communities, labels may also be called classes or categories in the
literature.
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Input: A labeled graph (G,Y)
Input: A multiclass learning algorithm A
Output: A base classifier P(y;|z;, N(x;))
foreach z; € X do

submit training example ((z;, N (z:)), yi) to A
end
return the classifier trained by A

Algorithm 1. ICA Learning algorithm

of any new graph G’. Note that this framework is rather general, since undirected
graph can be seen as particular cases of directed graph and since G may contain
multiple disconnected components, i.e. multiple different training graphs.

3.1 Iterative Classification

ICA is a graph labeling method based on iterative classification of graph nodes
given both their local features and the labels of neighboring nodes. Let A (z;)
be the set of labels of neighbors of x;. Typically, neighboring nodes are those
directly connected to x;, i.e:

N(zi) ={y; | (i,5) € E}YU{y; | (j,9) € E}

ICA relies on the assumption that the probability P(y; = l|z;, G) of a label can
be approximated by the local probability P(y;|z;, N(z;)), which only depends
on the associated content x; and on the set of neighboring labels. Note that,
since the number of neighboring labels N (z;) is variable and depends on node
x;, neighbors information needs to be encoded as a fixed-length vector to en-
able the use of usual classification techniques. This is detailed and illustrated in
Section

Learning. The learning procedure of ICA is given in Algorithm [II
P(y;|zi;, N(z;)) is estimated by a multiclass classifier. Possible multiclass base
classifiers include neural networks, decision trees, naive Bayes or support vector
machines. The base classifier is learned thanks to a learning algorithm A given
a labeled training graph (G,Y’). Learning the base classifier simply consists in
creating one classification example per node in the graph and then running A. In
these classification examples, inputs are pairs (z;,N'(z;)) and outputs are cor-
rect labels y; € L. Note that both batch learning algorithms and online learning
algorithms may be used in conjunction with ICA.

Inference. ICA performs inference in two steps, as illustrated in Algorithm 2
The first step, bootstrapping, predicts an initial label for all the nodes of the
graph. This step may either be performed by the base classifier — by removing
neighboring labels information — or by another classifier trained to predict labels
given the local features only. The second step is the iterative classification process
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Input: A unlabeled graph G = (V, E)
Input: A classifier P(y;|z:, N'(z:))
Output: The set of predicted labels Y
// Bootstrapping
foreach z; € X do

yi — argmax;c » P(y: = l|z:)
end
// Iterative Classification

repeat
Generate ordering O over nodes of G.

foreach i € O do
ys — argmax;c , P(ys = Uz, N (z4))
end
until all labels have stabilized or a threshold number of iterations have elapsed
return Y

Algorithm 2. ICA Inference algorithm

itself, which re-estimates the labels of each node several times, picking them in a
random order and using the base classifier. ICA inference may converge exactly;
if none of the labels change during an iteration, the algorithm stops. Otherwise,
inference is usually stopped after a given number of iterations.

The main advantage of ICA is that both training and inference have linear
complexities w.r.t. the number of nodes of the graphs. Furthermore, even if it
is not guaranteed to converge, ICA has shown to behave well in practice and to
give nice performance on a wide range of real-world problems [I5].

4 Simulated ICA

When using ICA to infer the labels of a directed graph G, the base classifier is
used repeatedly to predict the label of a node given its content and neighboring
labels. Since it is very rare to reach perfect classification, the base classifier
of ICA often makes some prediction errors during inference. Since prediction
errors become inputs for later classification problems, ICA raises an important
bias between training and inference; in the former case, neighboring labels are
always correct, while they may be noisy in the latter case. This training/inference
bias is illustrated in Figure

The training/inference bias raised by ICA corresponds to a general problem
that appears as soon as predictions become inputs for later classification prob-
lems. In the context of collective classification, the authors of Stacked Learning
[8] identified the same training/inference bias. Both the Simulated ICA approach
detailed below and Stacked Learning are motivated by the same concern: learn-
ing with intermediary predictions that are adapted towards the natural bias of
the classifier.
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Fig. 2. Illustration of the learning/inference bias of ICA. Left: during training, only
perfect neighboring labels are considered. Right: during inference, several neighboring
labels may be wrong due to classification errors.

4.1 Learning Algorithm

In order to remove the learning/inference bias of ICA, the base classifier should
be trained on situations representative of what happens during inference. In
other words, the base classifier should be trained with corrupted neighboring
labels. Furthermore, these labels should be biased towards the natural bias of
inference: errors that are more frequent during inference should appear more
during learning. Simulated ICA (SICA) relies on a simple, but powerful, idea
to make training examples representative of inference behavior: simulation. We
propose to simulate inference during learning, in order to create the training
examples representative of the real use of the base classifier.

The general scheme of the Simulated ICA learning procedure is given by
Algorithm Bl Sica is an iterative learning algorithm which repeatedly runs ICA
inference, using labels which are sampled based on the currently learned classifier
P(y;|x;, N(z;)). This sampling operation can be performed in different ways,
which are detailed in Section 2l At each inference step, one training example is
submitted to the learning algorithm A, to train the base classifier for predicting
the correct label y; given the node x; and the current neighboring labels. The
key property of training examples in SICA is that they rely on currently predicted
neighboring labels instead of assuming perfectly labeled neighbors, as it is the
case of ICA.

Similarly to classical ICA, both batch and stochastic learning algorithms may
be used inside SICA. In our experiments, we used stochastic descent learning
algorithm to update the parameters of the base classifier.

4.2 Sampling Methods

When learning with SICA, the aim of simulation is to generate a maximum
number of situations that are representative of ICA’s inference behavior. Sica
therefore relies on a sampling operation, whose role is to select the labels y; used
during learning. We propose three sampling strategies:
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Input: A labeled graph (G,Y)
Input: A multiclass learning algorithm A
Output: A classifier P(y;|x;, N (z;))
repeat
// Bootstrapping
foreach z; € X do
yi — argmax;cp P(yi = l|z;)
end
// Iterative Classification
repeat
Generate ordering O over nodes of G.
foreach i € O do
sample y; given P(y; = l|z;, N ()
submit training example ((z;, N'(z:)),v:) to A
end
until iterative classification terminates

until learning has converged or a threshold number of iterations have elapsed
return the classifier trained by A

Algorithm 3. Simulated ICA Learning algorithm

— Sica-DET (Deterministic). The simplest way to perform sampling in
SICA consist in selecting the labels y; that are predicted by the current
classifier P(y;|z;, N'(x;)). Formally, the sampling operation used in SICA-
DET is defined as follows:

y; = argmax P(y; = l|z;, N (z;))
leL

— S1cA-UNI (Uniform Noise). In order to increase the range of generated in-
ference situations, one simple variant of SiCA called SicA-UNI, consists in
introducing stochasticity into the inference process by selecting labels ran-
domly with a small probability. Formally, the sampling operation used in
S1icA-UNI is defined as follows:

~_ Jarandom label [ € £ with probability e
vi= argmax;c » P(y; = l|z;, N(x;)) with probability 1 — e
where € € [0,1] is a parameter controlling the tradeoff between random
sampling and SICA-DET style sampling.

— SicA-ProB (Probabilistic). Instead of using uniform noise, a more natural
alternative consists in sampling labels from the P(y;|z;, N'(x;)) distribution:

y; = sample [ € L from P(y; = l|x;, N (z;))

The advantages of SICA-PROB and SicA-UNI over SICA-DET are twofold. Firstly,
stochasticity enables to generate a wider range of inference situations and thus
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creates more training examples for the base classifier. This may thus lead to more
robust classifiers, especially when using few training nodes. Secondly, stochastic-
ity may contribute to make training conditions closer to test conditions. In this
sense, simulating the inference procedure with additional noise is an alternative
to the cross-validation approach of Stacked Learning. In both cases, the aim is
to learn with intermediary predictions that correctly reflect the behavior of the
model on testing data. Stacked Learning creates the intermediary predictions
by cross-validation, while we propose to directly modify the predicted labels on
training data. We show in Section [l that SICA-PROB and S1CA-UNI frequently
outperform Stacked Learning experimentally.

4.3 One Classifier Per Pass

ICA operates in several passes, where each node of the graph is re-estimated
during one pass. Since the problem of first estimating the labels may slightly
differ from the problem of re-estimating the labels at the second pass or at the
third pass, the current pass number may have a direct influence on the base
classifier. Instead of learning a unique classifier P(y;|z;, N'(x;)), SICA can be
modified to take the current pass number, ¢, into account, by learning a classifier
P(yilzi, N (i), 1).

Sica-DET, SicA-UNI and SICA-PROB can be modified by learning one distinct
classifier per pass. This leads to three new variants of SICA that are denoted
SICAT-DET, S1CAT-UNI and SICAT-PROB in the remainder of this paper. As
an example, our experiments use SICA with 5 maximum inference passes, which
leads to a set of 5 slightly different classifiers, each one specialized for a given
inference pass. Concretely, using one classifier per pass makes it possible to
learn finer inference-dependent behavior. This idea is similar to stacking: in
both SicA™ and Stacked Learning, there is one classifier per inference pass and
each of these classifiers is trained to compensate the errors of previous classifiers.

SicA and SICA™T both perform learning and inference in the same way. The
only difference concerns the number of parameters which is multiplied by the
number of inference passes by using one disctinct classifier per pass.

5 Experiments

In this section, we describe experimental comparisons between Simulated ICA
and various state-of-the-art models for inductive graph labeling.

5.1 Datasets

We performed experiments on four datasets of webpages and on three datasets
of scientific articles, whose characteristics are summarized in Table [l In the
former datasets, nodes correspond to webpages, links represent web hyperlinks
and the aim is to predict the category of each webpage. In the latter datasets,
nodes are scientific articles, links are citation links and the aim is to predict the
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Table 1. This table shows different charasteristics (numbers of nodes, links, features
and classes) of the seven different datasets used in our experiments. The four first
datasets are small scale graphs from WEBKB, the two following ones are medium scale
graphs and the last one is our large scale dataset.

Dataset Nodes Links Features Classes
Small scale — WEBKB
CORNELL 195 304 1703 5
TEXAS 187 328 1703 5
WASHINGTON 230 446 1703 5
WISCONSIN 265 530 1703 5
Medium scale
CITESEER 3312 4715 3703 6
CORA-1I 2708 5429 1433 7
Large scale
CORA-II 36954 136024 11816 11

category of each article. All nodes are described by feature vectors, with features
that correspond to the most frequent words and that indicate whether or not
the associated words appear. CORA-II was introduced by A. McCallum and was
preprocessed by keeping only the words appearing in at least 10 documents?.
The other datasets were preprocessed by Getoor et al.

5.2 Experimental Setup

State-of-the-art models. In order to evaluate Simulated ICA, we have im-
plemented three state-of-the-art graph labeling models: Iterative Classification
(Ica), Gibbs Sampling (Gs) and Stacked Learning. Our implementation of
Stacked Learning uses 5-fold cross-validation during learning to create the inter-
mediary predictions. STACK?2 is the simplest Stacked Learning model, where the
labels are first estimated based on the content only and are then re-estimated
by taking both the initial predictions and the content into account. STACK3
is a Stacked Learning model with three stacks: labels are first estimated using
STACK2 and are then re-estimated with a classifier that uses both the content and
the predictions of STACK2. Similarly, STACK4 and STACKS are Stacked Learning
models that respectively rely on STACK3 and STACK4 to provide intermediary
predictions.

Baselines. We have also compared Simulated ICA with two baselines named
Content-Only (Co) and Optimistic (OPT). The former is a classifier ignoring
the graph structure and taking only the content of nodes into account during
classification. The latter is a classifier which assumes the availability of perfect
neighboring labels for each node, during both training and inference. Note that

2 CORA-II is available at http://www.cs.umass.edu/~mccallum/code-data.html
3 Datasets available at http://www.cs.umd.edu/~sen/1bc-proj/LBC.html} see [14]
for more details.
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Fig. 3. A feature function to jointly describe content of nodes and neighboring labels.
Feature vectors contain three parts. The first one describes the content of the node
and the other two describe the labels of the node neighbors. For each label, there is a
feature which counts the number of predecessor (resp. successors) with this label.

due to this dependency, the OPT baseline is not a “true model” able to generalize
to new unlabeled graphs.

Base classifier. In order to make the comparison fair, we used the same base
classifier, the same learning algorithm and the same tuning procedure for all
models. The base classifiers are L2-regularized maximum-entropy classifiers [4]
learned with stochastic gradient descent. For each model, we tried ten different
regularizer values and kept the best-performing ones.

In order to take simultaneously the content of nodes and their neighboring
labels, the base classifiers rely on a feature function that jointly maps contents
and associated neighboring labels to scalar vectors. The feature function used in
our experiments is illustrated in Figure 3

Data splitting. In order to evaluate the generalization abilities of the models,
we have split each dataset into one training graph and one testing graph. As
[16], we have used a random sampling strategy: both the training and the testing
graphs are random subsets of the whole graphs. When splitting graphs randomly,
it is often the case that some links connect train nodes to test nodes. The simplest
way to deal with these train-test links is simply to ignore them; this approach
is called Test Links Only. Since many links may be discarded with the Test
Links Only approach, we have also adopted the alternative approach proposed
by [14] called Complete Links in which no link is suppressed and in which we
assume, during inference, to know the correct labels of training nodes connected
to testing nodes. For the purpose of comparison with [I4], we used 10-folds cross-
validation with the Complete Links strategy. Note that, if we used 10-folds with
Test Links Only, 90% of the links involving testing nodes would be discarded.
In order to make the average number of links connected to testing nodes and to
training nodes equal, we used Test Links Only with two-fold cross-validation.
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Table 2. This table shows the accuracy of different models on CORA-I, CITESEER and
the four WEBKB databases. The graphs were split randomly into two folds by using
Test Links Only strategy. We used 50% of the dataset as a training set and took the
mean test accuracy over ten runs.

Small scale — WEBKB Medium scale
CORNELL TEXAS WASHINGTON WISCONSIN CORA-I CITESEER

Co 71.79 82.14 80.52 85.21 74.73 71.73

Ica 72.91 82.46 81.22 84.76 78.69 73.14

Gs 73.02 82.67 81.04 84.98 78.67 72.8

STACK2 73.02 82.35 81.74 84.38 78.85 73.25
STACK3 73.02 82.46 81.13 84.76 79.73 73.34
STACK4 73.02 82.67 81.3 84.83 79.53 73.25
STACKS 72.91 82.35 81.13 84.76 79.81 73.22
SicA-DET 73.53 82.24 81.83 85.21 78.77 72.92
SicA-UNI 74.24 83.21 82.35 85.36 79.29 73.21
SicA-PROB 74.04 83.42 82.43 85.74 79.32 73.47
Sicat-DET 71.48 80.32 80 83.32 79.18 73.59
Sicat-UNI 72.71 82.35 81.13 84.45 79.59 73.70
Sicat-ProB 73.42 82.35 81.91 85.06 80.01 74.02
OpT 72.5 82.78 82.17 84.46 83.16 76.18

5.3 Results

In our experiments, the parameters was the same as these in [16] for the baselines
(Co, OpT, Ica, Gs and STACK): the maximum number of training iterations
was set to 100, for Iterative Classification we used a maximum of 100 inference
passes and for Gibbs Sampling we performed 1000 samples of each node label.
For the SicA inference, we used a maximum of 5 passes. Moreover, we fixed the
uniform noise percentage in SicA-UNI and SicAT-UNI to 10%.

Comparisons with state-of-the-art models. We compared the six variants
of S1cA described in Section ] with the baselines described previously on the
small and medium scale datasets. Firstly, we have split each dataset into two
halves by using the Test Links Only strategy. Each experiment was performed
10 times with different random splits and we report the mean test accuracies
in Table Bl As expected, SICA models outperform ICA on all datasets. More
interestingly, our models also outperform Gibbs Sampling and Stacked Learning
in nearly all cases. In particular, the SICA-UNI and S1CA-PROB models that rely
on stochasticity outperform Stacked Learning on five datasets out of six, whereas
this tendency is less clear for SICA-DET. As discussed in Section 4, adding a
perturbation to the predicted labels proves to be a good alternative to the heavy
cross-validation based prediction process adopted by Stacked Learning. Among
the two perturbation approaches, SICA-PROB most-of-time reaches better results
than S1cA-UNI. A deeper comparison of these sampling approaches in given
below. Using one classifier per pass (SicAT-DET, SicA*-UNI and SicA*-PROB)
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Table 3. This table shows the accuracy of different models on COrRA-I, CITESEER and
the four WEBKB databases. Here, the graphs were split randomly into ten folds by
using Complete Links strategy. Then, we did a 10-folds cross-validation and took the
mean test accuracy.

Small scale — WEBKB Medium scale

CORNELL TEXAS WASHINGTON WISCONSIN CORA-I CITESEER
Co 79.5 86.64 84.35 89.4 77.43 72.98
Ica 79.47 87.22 85.65 89.79 88.52 77.63
Gs 80.5 87.22 85.22 89.79 88.18 77.47
STACK2 78.92 89.91 87.39 89.42 88.07 76.72
STACK3 78.42 88.27 88.26 89.03 88.18 77.35
STACK4 78.97 88.3 86.96 89.8 88.4 77.23
STACKH 78.45 88.83 87.83 89.42 88.4 77.08
SicA-DET 81.55 87.75 85.65 89.79 88.37 76.27
Sica-UNI 81.55 88.27 85.65 89.79 88.26 76.48
SicA-PROB 81.53 87.75 86.52 90.16 88.37 76.33
Sicat-DET 79.5 86.7 84.78 89.42 88.74 77.75
S10AT-UNI 80.03 86.70 86.52 89.42 88.63 77.93
Sicat-ProB 81.05 87.22 85.65 89.79 88.66 78.02
opT 79.97 87.75 86.09 89.77 88.85 78.08

improves over the basic versions of SICA on the two medium scale datasets (+
0.69% on Cora-I and + 0.55% on CITESEER). On the small datasets, using
one classifier per pass slightly deteriorates the results. We believe that this is
due to estimation problems related to the large number of parameters on these
approaches.

The second set of experiments aims at comparing our results to those of [16].
Here, each dataset was split into ten folds by using the Complete Links strategy.
Table [ gives the 10-fold cross-validation accuracies (90% training nodes and
10% testing nodes) for all models and all datasets. As previously, our models
most-of-the-time outperform IcA and Gs. On small datasets, Stacked Learning
is competitive with our models. However, these results should be taken with
a grain of salt, since, when using 90% training nodes with Complete Links, a
large majority of testing-node neighbors are in the training set. Consequently,
the various methods that take wrong labels into account during learning (Sica
and Stacked Learning) have a more limited interest in this case.

Impact of the uniform noise percentage. Next, we evaluated the impact
of uniform noise percentage on S1CA-UNI. Figure @l compares the three sampling
methods on our two medium scale datasets. With a reasonable noise percentage
(below 40%), the accuracy of SICA-UNI is between that of SICA-DET and that
of SICA-PROB. Once more, this confirms the contribution of stochasticity in the
simulation process of SICA.

In most cases, SICA-PROB outperforms SicA-UNI. SiCA-PROB has another
key advantage over the latter: it does not rely on additional hyper-parameter,
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Fig. 4. Accuracy for varying percentage of uniform noise in S1cA-UNI on CITESEER
(on the left) and CORA-I (on the right)

Table 4. Test accuracies and training/inference time on CORA-II. The first two
columns give the mean test accuracy of the models with the Test Links Only and
Complete Links splitting strategies. The last two columns show approximate training
time and inference time. The results for STACK5 are incomplete due to the excessive
time requirement of this method (since we average our results over 10 runs and try
10 different regularizer values, the experiment would need more than three months to
complete).

Test Links Only  Complete Links  Training time Inference time

Co 49 49 2 min 300 ms
Ica 51.9 58.05 6 min 20 s

Gs 44.43 55.42 6 min 10 min
STACK2 54.46 56.28 13 min 1s
STACK3 56.07 57.99 1h 1.5s
STACK4 56.67 58.52 45h 2s
STACKS - - 20 h 25s
Sica-DET 56.02 58.52 5 min 4s
SicAa-UNI 56.20 59.57 3 min 4s
S1CcA-PROB 56.3 59.14 3 min 48
Sicat-DET 55.5 58.87 5 min 4s
Sicat-UNI 56.25 59.56 3 min 4s
S1cAT-PROB 56.2 58.91 2 min 4s

OpT 66.40 67.71 3.5 min 600 ms

which makes its tuning much easier. With a too high noise percentage, informa-
tion in neighboring labels becomes irrelevant and thus accuracy drops down to
the one of a Content-Only classifier.

Large scale. In order to show that our model can deal with large-scale graphs,
we performed a set of experiments on the CORA-II database. For each model,
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we performed 10 runs with 20% training nodes and 80% training nodes selected
randomly. The mean test accuracies are reported in Table @l The first two
columns give scores respectively for Test Links Only and Complete Links. The
last two columns give the CPU time needed to train a single model and the time
needed to fully label the test grap}ﬂ Experiments were performed on standard
3.2 Ghz computer.

Our approaches clearly outperform IcA and Gs on CORA-II (up to +3% im-
provement) and behave similarly to Stacked Learning with a much lower training
time. Indeed, since each stack involves making 5 folds and learning a model on
each sub-fold recursively, STACK models have a training time which is exponen-
tial w.r.t. the number of stacks. Instead, all our models — that use 5 inference
passes — were learned in a few minutes.

6 Conclusion

In this paper, we have introduced the Simulated Iterative Classification Algo-
rithm (SiCcA), a new learning algorithm for ICA. The core idea of SICA is to
simulate ICA’s inference during learning. We argued that simulation is a sim-
ple and efficient way to create training examples that are representative of real
inference situations. We have shown that the proposed approach outperforms
state-of-the-art models (Iterative Classification, Gibbs Sampling and Stacked
Learning) on a wide range of datasets. Furthermore, we have shown that the
model scales well, which makes it possible to label graphs containing thousands
to millions of nodes.

Our future work will primarily focus on generalizing the idea of simulation
during learning to semi-supervised graph labeling problems. We believe that
one promising approach is to develop (fast and scalable) incremental inference
algorithms, that takes both the labeled and the unlabeled nodes into account,
and to learn them using simulation.

One key characteristic of ICA is that it relies on a classifier whose inputs de-
pend on its previous predictions. Although this paper is focused on supervised
graph labeling problems, we believe that the proposed idea of simulating infer-
ence during learning is relevant to a wider class of problems where predictions
become inputs for later classification problems. In order to tackle error propaga-
tion problems in such algorithms involving classifier chains, simulation is a key
solution, which appears to be both simple and efficient.
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