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Abstract. In this study, we extend the framework of semiparametric
statistical inference introduced recently to reinforcement learning [1] to
online learning procedures for policy evaluation. This generalization en-
ables us to investigate statistical properties of value function estimators
both by batch and online procedures in a unified way in terms of estimat-
ing functions. Furthermore, we propose a novel online learning algorithm
with optimal estimating functions which achieve the minimum estima-
tion error. Our theoretical developments are confirmed using a simple
chain walk problem.

1 Introduction

Reinforcement learning is a class of machine learning based on reward-related
interactions with environments, and has successfully been applied to various
control problems [2]. In order to find out optimal strategies, it is important, in
particular in model-free approaches, to estimate the value function which denotes
goodness of the current policy, from a given sample trajectory. There are two
major ways in value function estimation. The temporal difference (TD) learn-
ing [2] updates the current estimator step-by-step whose step uses a relatively
small number of samples (online procedure). On the other hand, the least squares
temporal difference (LSTD) learning [3,4] obtains an estimator in one shot by
using all samples in the given trajectory (batch procedure). Other algorithms
proposed so far are also categorized into one of these two groups.

Recently, [1] introduced a novel framework of semiparametric statistical in-
ference to model-free policy evaluation. The semiparametric statistical models
include not only parameters of interest but also additional nuisance parameters
which may have infinite degrees of freedom [5,6,7]. For estimating the parame-
ters of interest in such models, estimating functions provide a well-established
toolbox: they give consistent estimators (M-estimators) without knowing the
nuisance parameters [5,8]. Applying this technique to Markov decision processes
(MDP), they discussed asymptotic properties of LSTD-like learning procedures
and proposed the generalized LSTD (gLSTD) based on the optimal estimating
function that achieved the minimum error. Although the framework by [1] has
potential to bring new insights to reinforcement learning, their theory could only
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deal with batch procedures and a bunch of online algorithms such as TD were
excluded.

In this article, we extend their semiparametric statistical techniques to be ap-
plicable to online learning procedures as to follow the existing analysis of online
learning [9]. This extension leads to a general class of online learning procedures
for model-free policy evaluation derived from estimating functions, which in-
cludes many popular algorithms [2,10] such as TD learning [2] and least squares
policy evaluation (LSPE) [11]. This generalization also allows us to examine
the convergence of statistical error and hence to see that online algorithms can
achieve the same asymptotic performance as their batch counterparts if a matrix
factor is properly tuned (Theorem 4). Based on this fact, we can accelerate TD
learning (Section 5.4). Furthermore, we can derive the optimal choice of the esti-
mating function and construct a novel online learning algorithm which achieves
the minimum estimation error asymptotically (Algorithm 1).

This article is organized as follows. In Section 2, a semiparametric setting of
Markov reward processes (MRPs) is presented. We explain the concept of estimat-
ing functions in Section 3, before going into those for MRPs in Section 4. Then,
in Section 5, we discuss online learning procedures derived from estimating func-
tions. Convergence theorems for such algorithms will be presented, followed by
a novel algorithm with the optimal estimating function. In Section 6, the perfor-
mance of the proposed algorithms are compared to a couple of well-established
algorithms using a simple chain walk problem.

2 Markov Reward Process

Following the literature of policy evaluation [12], we consider Markov Reward
Processes (MRPs) in this study. However, extension to Markov Decision Pro-
cesses (MDPs) is straightforward as long as focusing on policy evaluation (hence
the policy is fixed).

An MRP is defined by the initial state probability p(s0), the state transition
probability p(st+1|st) and the reward probability p(rt+1|st, st+1). The state vari-
able s is an element of a finite set S and the reward variable r ∈ R can be either
discrete or continuous, but a finite value.

The joint distribution of a sample trajectory ZT := {s0, s1, r1 · · · , sT , rT } of
the MRP is described as

p(ZT ) = p(s0)
T−1∏

t=0

p(rt+1|st, st+1)p(st+1|st). (1)

We also impose the following assumptions on MRPs.

Assumption 1. Under p(st+1|st), MRP has a unique invariant stationary
distribution μ(s).

Assumption 2. For any time t, the state st and the reward rt are uniformly
bounded.
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Here, we introduce a statistical framework by confirming that the value function
estimation can be interpreted as the estimation of certain statistics of MRP (1).

Proposition 1. [10] Consider a conditional probability of {rt+1, st+1} given st,

p(rt+1, st+1|st) = p(rt+1|st, st+1)p(st+1|st).

Then, there is such a function V that

E [rt+1|st] = V (st) − γE[V (st+1)|st] (2)

holds for any state st. Here, E [·|s] denotes the conditional expectation for a given
state s. The function V that satisfies eq. (2) is unique and found to be a value
function;

V (s) := lim
T→∞

E

[
T∑

t=0

γtrt+1

∣∣∣∣∣ s0 = s

]
, (3)

where γ ∈ [0, 1) is a constant called the discount factor.

We assume throughout this article that the value function can be represented
by a certain parametric function, including a nonlinear function with respect to
the parameter.

Assumption 3. The value function given by eq. (3) is represented by a para-
metric function g(s,θ);

V (s) = g(s,θ),

where g : S → R, θ ∈ R
m is a parameter. Moreover, g(s,θ) is assumed to be

twice-differentiable with respect to θ, and g(s,θ) < ∞ for any s ∈ S and θ.

Under Assumption 3, p(rt+1|st) is partially parameterized by θ, through its
conditional mean

E[rt+1|st] = g(st,θ) − γE[g(st+1,θ)|st]. (4)

Our goal is to find out such a value of the parameter θ that the function g(s,θ)
satisfies eq. (4), that is, it coincides with the true value function.

In order to specify the probabilistic model (4) completely, we need usually ex-
tra parameters other than θ. Let ξ0 and ξs be such extra parameters that initial
distribution p(s0, ξ0) and transition distribution p(r, s|s;θ, ξs) are completely
identified, respectively. In such a case, the joint distribution of the trajectory ZT

is expressed as

p(ZT ;θ, ξ) = p(s0; ξ0)
T−1∏

t=0

p(rt+1, st+1|st;θ, ξs), (5)
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where ξ = (ξ0, ξs). Since there is no way to know the complexity of the target
system, we attempt to estimate the parameter θ without estimating the extra
ξ, which may have innumerable degrees of freedom. Statistical models which
contain such (possibly infinite-dimensional) nuisance parameters (ξ) in addi-
tion to the parameter of interest (θ) are said semiparametric [6]. We emphasize
that the nuisance parameters are necessary only for theoretical discussions. In
actual estimation of the parameters, same as in other model-free policy evalua-
tion algorithms, we neither define them concretely, nor estimate them. This can
be achieved by usage of estimating functions which is a well-established tech-
nique to obtain a consistent estimator of the parameter without estimating the
nuisance parameter [5,7]. The advantages of considering such semiparametric
models behind model-free approaches are:

(a) we can characterize all possible model-free algorithms,
(b) we can discuss asymptotic properties of the estimators in a unified way and

obtain the optimal one with the asymptotically minimum estimation error.

We will summarize the estimating function method in the next section.

3 Estimating Functions in Semiparametric Models

We begin with a short overview of the estimating function theory in the i.i.d.
case and then discuss the MRP case in the next section. We consider a general
semiparametric model p(x;θ, ξ), where θ is an m-dimensional parameter of in-
terest and ξ is a nuisance parameter which can have infinite degrees of freedom.
An m-dimensional vector function f is called an estimating function when it
satisfies the following conditions for any θ and ξ;

Eθ,ξ[f(x,θ)] = 0 (6)
det |A| �= 0, where A = Eθ,ξ [∂θf(x,θ)] (7)

Eθ,ξ

[||f(x,θ)||2] < ∞, (8)

where ∂θ = ∂/∂θ is the partial derivative with respect to θ, and det | · | and
|| · || denote the determinant and the Euclidean norm, respectively. Here Eθ,ξ[·]
means the expectation over x with p(x;θ, ξ) and we further remark that the
parameter θ in f(x,θ) and Eθ,ξ[·] must be the same.

Suppose i.i.d. samples {x1, · · · ,xN} are generated from the model p(x;θ∗, ξ∗).
If there is an estimating function f(x,θ), we can obtain an estimator θ̂ which
has good asymptotic properties, by solving the following estimating equation;

N∑

i=1

f(xi, θ̂) = 0. (9)

A solution of the estimating equation (9) is called an M-estimator in statistics [5].
The M-estimator is consistent, that is, it converges to the true value regardless
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Fig. 1. An illustrative plot of 1/T
∑

t f(xt, θ) as a function of θ (the solid line).
Due to the effect of finite samples, the function is slightly apart from its expectation
Eθ∗,ξ∗ [f(x, θ)] (the dashed line) which takes 0 at θ = θ∗ because of the condition (6).
The condition (8) means that the expectation (the dashed line) has a non-zero slope
around θ∗, which ensures the local uniqueness of the zero crossing point. On the other
hand, the condition (7) guarantees that its standard deviation shown by the two dotted
lines shrinks in the order of 1/

√
T , thus we can expect to find asymptotically at least

one solution θ̂ of the estimating equation (9) near the true value θ∗. This situation
holds regardless of that the true nuisance parameter ξ∗ takes any possible value.

of the nuisance parameter ξ∗. Moreover, it is normally distributed, that is,
θ̂ ∼ N (θ∗, Av) when the sample size N approaches infinity. The matrix Av,
which is called the asymptotic variance, can be calculated by

Av := Av(θ̂) =
1
N

A−1
Eθ∗,ξ∗

[
f(x,θ∗)f(x,θ∗)�

]
(A�)−1,

where A = Eθ∗,ξ∗ [∂θf(x,θ∗)], and the symbol � denotes the matrix transpose.
Note that Av depends on (θ∗, ξ∗), but not on the samples {x1, · · · ,xN}. We
illustrate in Fig. 3 the left hand side of the estimating equation (9) in order to
explain the reason why an M-estimator has nice properties and the meaning of
conditions (6)-(8).

4 Estimating Functions in the MRP Model

The notion of estimating function has been extended to be applicable to Markov
time-series [13,14]. To make it applicable to MRPs, we need similar extension.
For convenience, we write the triplet at time t as zt := {st−1, st, rt}. and the
trajectory up to time t as Zt := {s0, s1, r1, . . . , st, rt}.

We consider an m-dimensional vector valued function of the form:

fT (ZT ,θ) =
T∑

i=1

ψt(Zt,θ),
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we attempt to estimate the parameter θ ∈ R
m for the given trajectory ZT . This

is similar to the left hand side of (9) in the i.i.d. case, but now each term ψt

depends also on the previous observations, that is, a function of the sequence up
to time t. If the sequence of the functions {ψt} satisfies the following properties
for any θ and ξ, function fT becomes an estimating function.

Eθ,ξs [ψt(Zt,θ)|Zt−1] = 0, ∀t (10)
det |A| �= 0, where A := Eθ,ξ [∂θfT (ZT ,θ)] (11)

Eθ,ξ

[
‖ψt(Zt,θ)‖2

]
< ∞, ∀t. (12)

Note that the estimating function fT (ZT ,θ) satisfies the martingale properties
because of the condition (10). Therefore, it is called a martingale estimating
function in literature [5]. Although time-series estimating functions can be de-
fined in a more general form, the above definition is enough for our theoretical
consideration.

4.1 Characterizing the Class of Estimating Functions

In this section, we characterize possible estimating functions in MRPs. Let εt+1

be the TD error, that is,

εt+1 := ε(zt+1,θ) := g(st,θ)− γg(st+1,θ) − rt+1.

From (4), its conditional expectation Eθ,ξs [εt+1|st] is equal to 0 for any state st.
Furthermore, this zero-mean property holds even when multiplied by any weight
function wt := wt(Zt) which depends only on the past observations, that is,

Eθ,ξs [wt(Zt)εt+1|st] = wt(Zt)Eθ,ξs [εt+1|st] = 0,

for any st. From this observation, we can obtain a class of estimating functions
fT (ZT ,θ) in MRPs.

Lemma 1. Suppose that the random sequence ZT is generated from the distribu-
tion of the semiparametric model {p(ZT ;θ, ξ) |θ, ξ} defined by (5). If the matrix
Eθ,ξ

[∑T
t=1wt−1(Zt−1) {∂θε(zt,θ)}�

]
is nonsingular for any θ and ξ, then

fT (ZT ,θ) =
T∑

t=1

ψt(Zt,θ) :=
T∑

t=1

wt−1(Zt−1)ε(zt,θ) (13)

becomes an estimating function.

From Lemma 1, we can obtain an M-estimator θ̂ by solving the estimating
equation

T∑

t=1

ψt(Zt, θ̂) = 0. (14)
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In general, estimating equations can be nonlinear with respect to the parameter
θ. Therefore, in order to obtain a solution we need to employ iterative procedures,
for example, online learning procedures as will be discussed in Section 5. The
estimator derived from the estimating equation (14) has such an asymptotic
variance that described by the following lemma.

Lemma 2. Suppose that the random sequence {ZT } is generated from the dis-
tribution p(ZT ;θ∗, ξ∗) and wt is a function of {s0:t, r1:t} satisfying the condition
of Lemma 1. Then, the M-estimator derived from eq. (14) has the asymptotic
variance

Av = Av(θ̂) =
1
T

A−1Σ
(
A�)−1

,

where A = A(θ∗, ξ∗) = lim
t→∞ Eθ∗,ξ∗

[
wt−1 {∂θε(zt,θ

∗)}�
]
,

Σ = Σ(θ∗, ξ∗) = lim
t→∞ Eθ∗,ξ∗

[
(ε∗t )

2wt−1w
�
t−1

]
and ε∗t := ε(zt,θ

∗) denotes the
TD error with the optimal parameter θ∗.

Interestingly, the converse of Lemma 1 can also be shown; any martingale esti-
mating functions for MRP take the form (13).

Theorem 1. Any martingale estimating functions in the semiparametric model
{p(ZT ;θ, ξ) |θ, ξ} of MRP can be expressed as

fT (ZT ,θ) =
T∑

t=1

ψt(Zt,θ) =
T∑

t=1

wt−1(Zt−1)ε(zt,θ). (15)

Proof. Due to space limitation, we just sketch the proof here. From the martin-
gale property, for any t, we have

Eθ,ξs [ft+1(Zt+1,θ) − ft(Zt,θ)|st] = 0,

which should hold for any nuisance parameter ξ. It can be shown that the TD
error εt+1 is the unique one that satisfies Eθ,ξ [εt+1|st] = 0 for any st and ξ. This
implies ft+1(Zt+1,θ) − ft(Zt,θ) = wt(Zt)ε(zt+1,θ). By induction, we see that
fT (ZT ,θ) must have the form (15).

4.2 Optimal Estimating Function

Since Theorem 1 has specified the set of all martingale estimating functions, we
can now discuss the optimal estimating function among them which gives an
M-estimator with minimum asymptotic variance. Because of the same reason as
described in [1], it is suffice to consider the estimating function (15) with the
weight wt = wt(st) which depends only on the current state st. Furthermore,
by the calculus of variations, we can obtain the optimal estimating function as
stated by the following theorem.
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Theorem 2. When the random sequence ZT is generated from the distribution
p(ZT ;θ∗, ξ∗), the optimal estimating function is given by

f∗
T (ZT ,θ) =

T∑

t=1

ψ∗(zt,θ) :=
T∑

t=1

w∗
t−1(st−1)ε(zt,θ), (16)

where w∗
t (st) := Eθ∗,ξ∗

s
[ε(zt+1,θ

∗)2|st]−1
Eθ∗,ξ∗

s
[∂θε(zt+1,θ

∗)|st].

Note that the optimal weighting function w∗
t depends on the true parameter θ∗

(but unknown) and needs the expectation with respect to p(rt+1, st+1|st;θ∗, ξ∗s),
which is also unknown. Therefore, we need to substitute initial estimators for
them as we will explain later. It is noted, however, that there is no need to esti-
mate the nuisance parameter ξ itself and that consistency is always guaranteed,
even if the initial estimators are based on rough approximation.

The minimum asymptotic variance can be obtained from Lemma 2 and
Theorem 2.

Corollary 1. The minimum asymptotic variance is given by

Av[θ̂] =
1
T

Q−1,

where Q = lim
t→∞ Eθ∗,ξ∗ [∂θψ

∗(zt,θ
∗)] = lim

t→∞ Eθ∗,ξ∗
[
ψ∗(zt,θ

∗)ψ∗(zt,θ
∗)�

]
.

We remark that the positive definite matrix Q measures information of the opti-
mal estimating function. In general, the information associated with this matrix
Q is smaller than Fisher information, since we trade efficiency for robustness
against the nuisance parameter [7].

5 Learning Algorithms

This section describes the learning algorithm of the parameter θ. In reinforce-
ment learning, online learning is often preferred to batch learning because of its
computational efficiency and adaptability to even time-variant situations. Esti-
mating functions provide not only batch algorithms via estimating equations,
but also online ones as follows. An online estimator of θ at time t is denoted as
θ̂t. Suppose that the sequence {ψ1(Z1,θ), . . . ,ψT (ZT ,θ)} forms a martingale
estimating function for MRP. Then, an online update rule can be given by

θ̂t = θ̂t−1 − ηtψt(Zt, θ̂t−1), (17)

where ηt denotes a nonnegative scalar stepsize. In fact, there exist other online
update rules derived from the same estimating function
ft(Zt,θ) =

∑t
i=1 ψi(Zi,θ) as,

θ̂t = θ̂t−1 − ηtR(θ̂t−1)ψt(Zt, θ̂t−1), (18)
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where R(θ) denotes an m × m nonsingular matrix depending only on θ [15].
These variations come from the fact that R(θ)

∑t
i=1 ψi(Zi,θ) gives the same

roots as its original for any R(θ). This equivalence guarantees that both learning
procedures, (17) and (18), have the same stable point, while their dynamics
may be different; that is, even if the plain algorithm (17) is unstable, it can be
stabilized by introducing an appropriate R(θ) as (18).

In the next two sections, we will discuss convergence of the online learning
algorithm (18).

5.1 Convergence to the True Value

Here, we give sufficient conditions to guarantee the convergence of the online
learning (18) to the true parameter θ∗. For the sake of simplicity, we focus on
the final convergence phase: θ̂t are confined in a neighborhood of θ∗. Now we
introduce the following conditions for the convergence.

Condition 1
(a) For any t, (θ̂t − θ∗)�R(θ̂t)Eθ∗,ξ∗

s

[
ψt+1(Zt+1, θ̂t)

∣∣∣ st

]
is nonnegative .

(b) For any t, there exist such nonnegative constants c1 and c2 that
‖R(θ̂t)Eθ∗,ξ∗

s
[ψt+1(Zt+1, θ̂t)|st]‖2 ≤ c1 + c2‖θ̂t − θ∗‖.

Then, the following theorem guarantees the (local) convergence of θ̂t to θ∗.

Theorem 3. Suppose that Condition 1 holds. If the stepsizes {ηt} are all posi-
tive and satisfy

∑∞
t=1 ηt = ∞ and

∑∞
t=1 η2

t < ∞, then the online algorithm (18)
converges to the true parameter θ∗ almost surely.

Proof. The proof is given in Appendix A.

Theorem 3 ensures that an online algorithm of the form (18) is consistent, if we
can find such a matrix R(θ) that satisfies Condition 1.

5.2 Convergence Rate

In general, the convergence rate of an online algorithm is slow when compared
to a batch algorithm that tries to obtain the solution of the estimating equation
using all available samples. However, if we choose an appropriate matrix R(θ)
and adjust the stepsizes {ηt} appropriately, then it is possible to achieve the
same convergence rate with the batch algorithm [9]. First, we characterize the
learning process of the batch algorithm.

Lemma 3. Let θ̃t and θ̃t−1 be solutions of the estimating equations
1/t

∑t
i=1 ψi(Zi, θ̃t) = 0 and 1/(t−1)

∑t−1
i=1 ψi(Zi, θ̃t−1) = 0, respectively. Then,

we have
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θ̃t = θ̃t−1 − 1
t
R̂−1

t (θ̃t−1)ψt(Zt, θ̃t−1) + O
(

1
t2

)
, (19)

where R̂−1
t (θ̃t−1) = {1/t

∑t
i=1 ∂θψi(Zi, θ̃t−1)}−1.

Note that (19) defines the sequence of θ̃t as a recursive stochastic process that
is essentially same as the online learning (18) for the same R. In other words,
Lemma 3 implies that online algorithms can converge with the same convergence
rate as batch counterparts by an appropriate choice of the matrix R. Finally,
the following theorem addresses the convergence rate of the (stochastic) learning
process such as (19).

Theorem 4. Consider the following learning process

θ̂t = θ̂t−1 − 1
t
R̂−1

t ψt(Zt, θ̂t−1) + O
(

1
t2

)
, (20)

where R̂t = {1/t
∑t

i=1 ∂θψi(Zi, θ̂i−1)}.
Assume that:

(a) R̂−1
t can be written as R̂−1

t = Eθ∗,ξ∗
s
[R̂−1

t |st−1] + o
(
t−1

)
.

(b) For any t, R̂t is a nonsingular matrix.

If the learning process (20) converges to the true parameter almost surely, then
the convergence rate is given as

Eθ∗,ξ∗
[
‖θ̂t − θ∗‖2

]
=

1
t
Tr

[
A−1Σ(A−1)�

]
+ o

(
1
t

)
, (21)

where A = lim
t→∞ Eθ∗,ξ∗ [wt−1{∂θε(zt,θ

∗)}�] and

Σ = lim
t→∞ Eθ∗,ξ∗

[
ε(zt,θ

∗)2wt−1w
�
t−1

]
.

Theorem 4 applies to both the online and batch sequences. Note that this con-
vergence rate (21) is neither affected by the third term of (20) nor by small
variations on the matrix R̂−1

t .

5.3 Implementation of Online Algorithm with Optimal Estimating
Function

We now construct an optimal online learning which yields the minimum estima-
tion error. Roughly speaking, this is given by the optimal estimating function
in Theorem 2 with the best (i.e., with the fastest convergence) choice of the
nonsingular matrix in Theorem 4;

θ̂t = θ̂t−1 − 1
t
Q̂−1

t ψ∗(zt, θ̂t−1), (22)
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where Q̂−1
t = {1/t

∑t
i=1 ∂θψ

∗(zi, θ̂i−1)}−1 and ψ∗(zt,θ) is defined by eq. (16). If
the learning equation (22) satisfies Condition 1 and Theorem 4, then it converges
to the true parameter with the minimum estimation error, (1/t)Q−1.

However, the learning rule (22) still contains unknown parameters and quan-
tities, so is impractical. For practical implementation, it is necessary to evaluate
Eθ∗,ξ∗

s
[ε(zt+1,θ

∗)2|st] and Eθ∗,ξ∗
s
[∂θε(zt+1,θ

∗)|st] appearing in the optimal es-
timating function. Therefore, we apply the online function approximation for
them. Let ζ(st,αt) and ϕ(st,βt) be the approximations of Eθ∗,ξ∗

s
[ε(zt+1,θt)2|st]

and Eθ∗,ξ∗
s
[∂θε(zt+1,θt)|st], respectively:

ζ(st,αt) ≈ Eθ∗,ξ∗
s
[ε(zt+1, θ̂t)2|st]

ϕ(st,βt) ≈ Eθ∗,ξ∗
s
[∂θε(zt+1, θ̂t)|st],

where αt and βt are adjustable parameters. αt and βt are adjusted in an online
manner;

α̂t = α̂t−1 − ηα
t ∂αζ(st−1, α̂t−1)

(
ζ(st−1, α̂t−1) − ε(zt, θ̂t−1)2

)

β̂t = β̂t−1 − ηβ
t ∂βϕ(st−1, β̂t−1)

(
ϕ(st−1, β̂t−1) − ∂θε(zt, θ̂t−1)

)
,

where ηα
t and ηβ

t are stepsizes. By using these parameterized functions, we can
replace ψ∗

t (zt, θ̂t−1) and Q̂−1
t by

ψ∗
t (zt, θ̂t−1) = ζ(st−1, α̂t−1)−1ϕ(st−1, β̂t−1)ε(zt, θ̂t)

Q̂−1
t =

(
1
t

t∑

i=1

ζ(si−1, α̂i−1)−1ϕ(si−1, β̂i−1)∂θε(zi, θ̂i−1)�
)−1

. (23)

Note that the update (23) can be done in an online manner by applying the
well-known matrix inversion lemma [16]. We summarize our implementation of
the optimal online learning algorithm in Algorithm 1. The empirical results of
this algorithm will be shown in Section 6.

5.4 Acceleration of TD Learning

TD learning is a traditional online approach to model-free policy evaluation and
has been as one of the most important algorithms in reinforcement learning.
Although the TD learning is widely used due to its simplicity, it is known to
converge rather slowly. In this section, we discuss the TD learning from the
viewpoint of the estimating function method and propose a new online algorithm
which can achieve faster convergence than the usual TD learning.

To simplify the following discussions, let g(s,θ) be a linear function of features:

V (st) := φ(st)�θ := φ�
t θ,
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Algorithm 1. The proposed online learning algorithm
Initialize α̂0, β̂0, θ̂0, Q̂−1

0 = εI, a1, a2

{ε and I denote a small constant and an m×m identical matrix, respectively. }
for t = 1, 2, · · · do

Obtain a new sample zt = {st−1, st, rt}
Compute the optimal weight function w∗

t−1

α̂t ← α̂t−1 − ηα
t ∂αζ(st−1, α̂t−1){ζ(st−1, α̂t−1)− ε(zt, θ̂t−1)

2}
β̂t ← β̂t−1 − ηβ

t ∂βϕ(st−1, β̂t−1)
(
ϕ(st−1, β̂t−1)− ∂θε(zt, θ̂t−1)

)

w∗
t−1 ← ζ(st−1, α̂t−1)

−1ϕ(st−1, β̂t−1)

Update Q̂−1
t using matrix inversion lemma

Q̂−1
t ← 1

t−1
Q̂−1

t−1 − 1
t

Q̂−1
t−1w∗

t−1∂θε(zt,θ̂t−1)�Q̂−1
t−1

1+∂θε(zt,θ̂t−1)�Q̂−1
t−1w∗

t−1

Update the parameter
τ ← max(a1, t− a2)
θ̂t ← θ̂t−1 − 1

τ
Q̂−1

t w∗
t−1ε(zt, θ̂t−1)

end for

where φ(s) : S → R
m is a feature vector and θ ∈ R

m is a parameter vector.
In this case, we have two ways to solve the linear estimating equation; one is a
batch procedure:

θ̂ = {
T∑

t=1

wt−1(φt−1 − γφt)�}−1{
T∑

t=1

wt−1rt}

and the other is an online procedure:

θ̂t = θ̂t−1 − ηtwt−1ε(zt, θ̂t−1).

When the weight function wt is set to φt, the online procedure and batch pro-
cedure correspond to the TD learning and LSTD algorithm, respectively. Note
that both TD and LSTD share the same estimating function. Therefore, from
Lemma 3 and Theorem 4, we can in principle construct an accelerated TD learn-
ing which converges at the same speed as the LSTD algorithm.

Here, we consider the following learning equation;

θ̂t = θ̂t−1 − 1
t
R̂−1

t φt−1ε(zt, θ̂t−1), (24)

where R̂−1
t = {1/t

∑t
i=1 φi−1(φi−1 − γφi)�}−1. Since R̂−1

t converges to A−1 =
lim

t→∞ Eθ∗,ξ∗ [φt−1(φt−1 − γφt)�]−1 and A−1 must be a positive definite matrix

(see Lemma 6.4 in [10]), the online algorithm (24) also converges to the true
parameter almost surely. Then, if R̂t satisfies the condition in Theorem 4, it can
achieve same convergence rate as LSTD. We call this procedure the accelerated-
TD learning.
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In both the optimal online learning and the accelerated-TD learning, it is
necessary to maintain the inverse of the scaling matrix R̂t. Since this matrix
inversion operation costs O(m2) in each step, maintaining the inverse matrix
becomes expensive when the dimensionality of parameters increases. The com-
putational cost can be dramatically reduced by maintaining a coarse approxima-
tion of the scaling matrix (e.g. diagonal, block diagonal, etc.). An appropriate
setting ensures the convergence rate remains O(1/t) without spoiling computa-
tional efficiency.

6 Simulation Experiments

In order to validate our theoretical developments, we compared the performance
(statistical error) of the proposed online algorithms (accelerated-TD algorithm
and the optimal online learning algorithm) with those of the baselines: TD al-
gorithm [2] (online), LSTD algorithm [3] (batch), and gLSTD algorithm [1]
(batch) in a toy problem. An MRP trajectory was generated from a simple
Markov random walk on a chain with ten states (s = 1, · · · , 10) as depicted in
Fig. 2. At each time t, the state changes to either of its left (−1) or right (+1)
with equal probability of 0.5. A reward was given by the deterministic function
r = exp(−0.5(s − 5)2/32), and the discount factor was set to 0.95. The value
function was approximated by a linear function with three-dimensional basis
functions, that is, V (s) ≈ ∑3

n=1 θnφn(s). The basis functions φn(s) were gener-
ated according to a diffusion model [17]. This approximation was not faithful;
i.e. there remained tiny bias.

We generated M = 200 trajectories (episodes) each of which consisted of
T = 200 random walk steps. The value function was estimated for each episode.
We evaluated the “mean squared error” (MSE) of the value function, that
is, 1

M
1
10

∑M
k=1

∑
i∈{1,··· ,10} ‖φ�

i θ̂k − V ∗(i)‖2 where V ∗ denotes the true value
function.

As is often done in online procedures, we utilized some batch procedures to
obtain initial estimates of the parameter. More specifically, the first 20 steps in
each episode were used to obtain an initial estimator in a batch manner and the
online algorithm started after 20 steps. In this random walk problem, owing to
the linear approximation, the parameter by the batch algorithm can be obtained
analytically. In general situations, on the other hand, an online algorithm has

1 2 3 10
p=0.5 p=0.5

p=0.5p=0.5

p=0.5p=0.5

Fig. 2. A ten-states MRP
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Fig. 3. Simulation results

a merit, because online procedures require less memory and are computation-
ally more efficient. They perform only a single update at each time, while the
batch algorithms must keep all trajectories and need to iterate computation until
convergence which is serious when employing nonlinear estimating equations.

In the proposed online algorithms, the stepsizes were decreased as simple as
1/t. On the other hand, the convergence of TD learning was too slow in simple
1/t setting due to fast decay of the stepsizes but also in certain well-chosen
constant stepsize. Therefore, we adopt an ad-hoc adjustment for the stepsizes as
1/τ , where τ = max(10, t − 100).

Fig. 3 shows the MSEs of the value functions estimated by our proposed
algorithms and the existing algorithms, in which the MSEs of all 200 episodes
are shown by box-plots; the center line, and the upper and lower sides of each box
denote the median of MSE, and the upper and lower quartiles, respectively. The
number above each box is the average MSE. As is shown in Fig. 3, the optimal
online learning algorithm (Optimal) and the optimal batch learning algorithm
(gLSTD) achieve the minimum MSE among the online and batch algorithms,
respectively, and these two MSEs are very close. It should be noted that the
accelerated-TD algorithm (accelerated-TD) performs significantly better than
the ordinary TD algorithm showing the matrix R was effective for accelerating
the convergence as expected by our theoretical analysis.
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7 Conclusion

In this study, we extended the framework of semiparametric statistics inference
for value function estimation to be applicable to online learning procedures.
Based on this extension, we derived the general form of estimating functions for
the model-free value function estimation in MRPs, which provides the statistical
basis to many existing batch and online learning algorithms. Moreover, we found
the optimal estimating function, which yields the minimum asymptotic estima-
tion variance amongst the general class, and presented a new online learning
algorithm (optimal algorithm) based on it. Using a simple MRP problem, we
confirmed the validity of our analysis, that is, the optimal algorithm achieves
the minimum MSE of the value function estimation and converges with almost
the same speed with the batch algorithm gLSTD.

Throughout this article, we assumed that the function approximation is faith-
ful, that is, there is no model misspecification for the value function, and ana-
lyzed only its asymptotic variance. Even in misspecified cases, the asymptotic
variance can be correctly evaluated [14]. Therefore, if we can reduce the bias
term to be much smaller than the variance, our optimal and accelerated-TD
procedures could also improve significantly the existing algorithms. Moreover, it
is an important future issue to find out a good parametric function g or set of
basis functions φn for linearly approximating the value function.
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A Proof: Theorem 3

To simplify the following proof, we assume the true parameter is located on
the origin without loss of generality: θ∗ = 0. Let ht be ‖θ̂t‖2. The conditional
expectation of variation of ht can be derived as

Eθ∗,ξ∗
s
[ht+1 − ht|st] = −2ηt+1θ̂

�
t R(θ̂t)Eθ∗,ξ∗

s

[
ψt+1(Zt+1, θ̂t)|st

]

+ η2
t+1Eθ∗,ξ∗

s

[
‖R(θ̂t)ψt+1(Zt+1, θ̂t)‖2|st

]
.

From Condition 1, the second term of this equation is bounded by the second
moment, thus we obtain

Eθ∗,ξ∗
s

[
ht+1 − (1 + η2

t+1c2)ht|st

]

≤ −2ηt+1θ̂
�
t R(θ̂t)Eθ∗,ξ∗

s

[
ψt+1(Zt+1, θ̂t)|st

]
+ η2

t+1c1. (25)

Now, let χt =
∏t−1

k=0
1

1+η2
k+1c2

and h′
t = χtht. From the assumption

∑∞
t=1 η2

t < ∞,

we easily verify that 0 < χt < 1. Multiplying both sides of eq. (25) by χt+1, we
obtain

Eθ∗,ξ∗
[
h′

t+1 − h′
t|Pt

]

≤− 2ηt+1χt+1θ̂
�
t R(θ̂t)Eθ∗,ξ∗

s

[
ψt+1(Zt+1, θ̂t)|st

]
+ η2

t+1χt+1c1.

The first term of this upper bound is negative because of Condition 1, and the
second term is nonnegative because ηt, χt+1, and c1 are nonnegative, and the
sum of the second terms

∑∞
t=1 η2

t χt+1c1 is finite. Then, the supermartingale
convergence theorem [10] guarantees that h′

t converges to a nonnegative random
variable almost surely, and

∑∞
t=1 ηt+1χt+1θ̂

�
t Rt(θ̂t)Eθ∗,ξ∗

s

[
ψt+1(Zt+1, θ̂t)|st

]
<

∞. Since
∑∞

t=1 ηt = ∞ and lim
t→∞χt = χ∞ > 0, we have

θ̂�t R(θ̂t)Eθ∗,ξ∗
s

[
ψt+1(Zt+1, θ̂t)|st

]
a.s.−→ 0, where a.s.−→ denotes the almost sure

convergence. This result suggests the conclusion that the online learning algo-
rithm converges almost surely: θ̂t

a.s.−→ θ∗ = 0.
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