
Building Secure Block Ciphers
on Generic Attacks Assumptions

Jacques Patarin1 and Yannick Seurin1,2

1 University of Versailles, France
2 Orange Labs, Issy-les-Moulineaux, France

jacques.patarin@prism.uvsq.fr,
yannick.seurin@orange-ftgroup.com

Abstract. Up to now, the design of block ciphers has been mainly
driven by heuristic arguments, and little theory is known to constitute
a good guideline for the development of their architecture. Trying to
remedy this situation, we introduce a new type of design for symmetric
cryptographic primitives with high self-similarity. Our design strategy
enables to give a reductionist security proof for the primitive based on
plausible assumptions regarding the complexity of the best distinguishing
attacks on random Feistel schemes or other ideal constructions. Under
these assumptions, the cryptographic primitives we obtain are perfectly
secure against any adversary with computational resources less than a
given bound. By opposition, other provably secure symmetric primitives,
as for example C [3] and KFC [4], designed using information-theoretic
results, are only proved to resist a limited (though significant) range of
attacks. Our construction strategy leads to a large expanded key size,
though still usable in practice (around 1 MB).

Keywords: block ciphers, Feistel schemes, generic attacks, provable
security.

1 Introduction

Provable Security. Building provably secure but still efficient block ciphers
is certainly the most desired but also the most challenging goal of symmetric
cryptography. In the area of asymmetric cryptography, “provable security” means
that one is mathematically able to reduce the security of a primitive to a well
studied and presumably difficult problem such as integer factorisation or discrete
logarithm (see [17] for an overview but also a critical look at “provable security”
in public key cryptography). The situation in symmetric cryptography is quite
different: the security of the most widely deployed primitives often relies on
heuristic arguments of one of the three following types:

– lack of known attacks whose complexity is less than “brute-force” attacks or
less than the desired security level (typically 280 operations nowadays).

– provable security against some classes of attacks, typically differential and
linear cryptanalysis when dealing with block ciphers. For example, AES does
possess such security arguments.

R. Avanzi, L. Keliher, and F. Sica (Eds.): SAC 2008, LNCS 5381, pp. 66–81, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Building Secure Block Ciphers on Generic Attacks Assumptions 67

– provable security when some components of the primitive are replaced by
“ideal” ones. This kind of arguments apply for example for all Feistel ciphers
such as DES, for which the celebrated result of Luby and Rackoff [19] shows
that when the internal functions are pseudorandom, the cipher is secure in
the sense that it is a pseudorandom permutation. This, however, does not
yield any security proof for the real primitive, but only ensures that the
general structure of the algorithm does not present intrinsic weaknesses.

Provable security in symmetric cryptography in the reductionist sense discussed
for asymmetric cryptography is rather rare. Most notable examples include some
number-theoretic hash functions like VSH [10] and the stream cipher QUAD [6]
whose security relies on the difficulty of solving systems of multivariate quadratic
equations. However, there is to the best of our knowledge no block cipher with
security reduction to some hard problem proposed so far. More concernedly,
no difficult problems have been identified as suitable for such a design goal.
We will see that the problem of distinguishing a Feistel scheme from a random
permutation could be a potential candidate.

The Proposal. We propose to build a block cipher whose security can be
reduced to some simple and well studied problem. The hard problem we propose
is not number-theoretic like for most schemes of asymmetric cryptography. We
will use the problem of distinguishing a random Feistel scheme from a random
permutation. The rational for such a choice is that Feistel schemes have been
extensively studied in the cryptographic literature since the introduction of DES.
Though most of this literature is primarily concerned with the information-
theoretic properties of these schemes, some authors have studied the so-called
“generic attacks” on them. The term generic attacks, introduced by Kilian and
Rogaway in [16], means any attack performed on Feistel schemes instantiated
using uniformly random and independent functions in each round (which we will
name a “random Feistel scheme” in the following), and hence not making use of
the underlying structure of the function generator of a real cipher such as DES.
Though we will primarily use Feistel schemes, any well studied structure with
similar properties could be used.

We propose to go beyond the intrinsic limitations of information-theoretic
designs. For Feistel schemes, information theory is “stuck” at five rounds in the
sense that increasing the number of rounds beyond five does not increase the
number of queries needed by a computationally unbounded adversary to dis-
tinguish the Feistel scheme from a random permutation. Indeed, whatever the
number r ≥ 5 of rounds used in a random Feistel schemes from 2n bits to 2n
bits, there is always an oracle adversary making Θ(2n) queries and distinguish-
ing a random Feistel scheme from a random permutation with high probability.
However the computational complexity of this distinguisher can be extremely
high. Taking the problem in the opposite way, we will make the hypothesis (and
give arguments supporting it) that the best generic attacks described against
Feistel schemes cannot be improved, and design a permutation generator such

68 J. Patarin and Y. Seurin

that any distinguishing attack against it would imply an improvement of the
generic attacks against random Feistel schemes.

To achieve this goal, we will start from a Feistel scheme with r1 rounds us-
ing random and independent functions at each round, and evaluate its security
according to the best generic attacks. Then, rather than using independent and
random functions directly as the key, we will instantiate each of these functions
with independent Feistel schemes with r2 rounds, and again estimate the security
of the overall construction with respect to the best generic attacks. We will keep
on using this recursive structure until the total size of the key (constituted of
the random functions used at the innermost level of the construction) becomes
practical. We name this design strategy the “Russian Dolls” construction. As
we will see, the complexity of the best distinguisher described so far increases
exponentially with the number of rounds of the Feistel scheme, so that using a
reasonable number of rounds will be sufficient for a good level of security. Note
that in the information-theoretic setting, the innermost Feistel schemes would
be potentially weak as they have very small block size. However, any attack on
the resulting block cipher would imply a better generic attack on random Feistel
schemes at some level of the construction.

Related Work. There have been a number of “provably secure” block ciphers
proposals. We review the most prominent of them. BEAR and LION were
proposed by Anderson and Biham [2]. They are constructed from an ideal stream
cipher and an ideal hash function, and the authors proved that attacking the
block cipher would imply an attack on one of the underlying components. Later
Pat Morin [22] identified some weaknesses in BEAR and LION and proposed
AARDVARK, which is based on the same design strategy.

Zheng, Matsumoto and Imai [36] presented block ciphers built on so-called
Generalized Type-2 transformations (which are kinds of generalized Feistel con-
structions). They analysed their constructions in the information-theoretic set-
ting and gave evidence supporting the security of their primitives, but no formal
security proof.

Baignères and Finiasz built on Vaudenay’s decorrelation theory [35] to pro-
pose two block ciphers, C [3] and KFC [4], provably secure against a wide
range of attacks. This is the logical continuation of the work initiated with the
NUT family [35] (COCONUT, PEANUT) and the AES proposal DFC [13].
Again, their security proof relies on information-theoretic arguments. In partic-
ular, KFC is based on a 3-round Feistel scheme using round functions with a
very low decorrelation bias and is proved resistant against “d-limited” adversaries
making less than d = 8 or 70 queries, depending on the parameters. The security
proof also handles so-called “iterated attacks” of order d/2, where the adversary
repeats independent non-adaptive d/2-limited attacks. However, we note that as
the Feistel scheme of KFC has only 3 rounds, it is vulnerable to a distinguishing
attack making only 3 chosen plaintext-ciphertext queries (see Section 4.2).

Granboulan and Pornin [14] proposed an efficient way of generating perfectly
random permutations (i.e. statistically very close to the uniform distribution,
even for an attacker having the entire codebook) using a pseudorandom number

Building Secure Block Ciphers on Generic Attacks Assumptions 69

generator, however their construction is only practical for small plaintext do-
mains (typically less than 30-bit blocks).

The prior proposal which is the closest to our work was made by Blaze [7]
but never published. He proposed the block cipher TURTLE and the stream
cipher HAZE. TURTLE is simply the Russian Dolls construction where 4-
rounds Feistel schemes are used at each stage, and HAZE is based on TURTLE
in counter mode. Yet the security arguments proposed by Blaze are quite different
from ours. He claims that retrieving the secret functions of an r-round Feistel
scheme, r ≥ 3, is NP-complete by reducing this problem to Numerical Matching
with Target Sums (NMTS) [11]. However, keeping the number or rounds constant
as the block-size decreases implies a dramatic loss of security.

Organization. Our paper is organized as follows. First we give our nota-
tions and some standard security definitions. Then, we describe the Russian
Dolls design strategy in all generality and state theorems about its security. In
Section 4 we analyse the Russian Dolls construction using balanced Feistel
schemes. We highlight some promising possibilities for future work and draw
our conclusions in Section 5.

2 Preliminaries

Notations. Throughout the whole paper, we will use the following notations.
We will denote by s

$←− S the operation of selecting an element in the set S
endowed with the uniform probability distribution. Func (D,R) will denote the
set of all functions from D to R, Perm(D) the set of all permutations on D, and
Perm+ (D) the set of all permutations on D with an even signature. In will de-
note the set of binary strings of length n, and we will use Func (n, m), Perm(n)
and Perm+ (n) as shorthands for Func (In, Im), Perm(In) and Perm+ (In) re-
spectively.

A family of functions from D to R indexed by key space K is a function
E : K×D → R. We will use the notation EK(X) as shorthand for E(K, X). E is
a family of permutations if D = R and EK is a permutation for each K ∈ K. We
will denote by E−1

K the inverse of EK . We will sometimes use the terms function
or permutation generator instead of family of functions or permutations.

Given a function f of Func (n, n), the 1-round Feistel scheme Ψf is the ele-
ment of Perm(2n) defined by Ψf (x) = xR‖xL ⊕ f(xR), where xL and xR de-
note respectively the left and right halves of the 2n-bit string x. We will note
Ψf1,...,fr the r-rounds Feistel scheme Ψfr ◦ . . . ◦ Ψf1 . Given two non null inte-
gers n and r, Ψ (r)(2n) will denote the permutation generator on I2n with key
space Func (n, n)r, taking as arguments r functions (f1, . . . , fr) in Func (n, n)
and x ∈ I2n and returning Ψf1,...,fr(x). When we omit the block-size, i.e. Ψ (r),
it will implicitly be 2n.

The adversaries we will consider are probabilistic. Implicitly, when we note
Pr[s $←− S : A = 1] the probability will always be on S and the internal ran-
domness of A.

70 J. Patarin and Y. Seurin

Pseudorandom Functions and Permutations. The notion of pseudoran-
dom function (PRF) was introduced by [12], and the notion of pseudorandom
and strong (or super-) pseudorandom permutation (PRP and SPRP) by [18].
Informally, a PRF is a family of functions E indexed by a key space K such
that any efficient adversary with access to an oracle can distinguish a function
associated to a random key K

$←− K from a uniformly random function only with
negligible probability. The definition of a PRP is quite similar, except that the
adversary tries to distinguish the permutation family from a uniformly random
permutation. For a SPRP, the adversary is given access to two oracles, either EK

and E−1
K for a random K, or G and G−1 for a uniformly random permutation G.

Rather than using the usual asymptotic notions of PRF and PRP, we will use the
concrete security approach introduced in [5] where the distinguishing advantage
of an adversary is measured as a function of its resources (namely, runtime and
number of oracle queries). We give now the following formal definitions.

Definition 1 (PRF). Let E : K × D → R be a family of functions from D to
R indexed by keys K. An adversary A (ε, T)-distinguishes E as a PRF if it runs
in time at most T and

Advprf
E (A) =

∣
∣
∣ Pr

[

K
$←− K : AEK = 1

]

− Pr
[

G
$←− Func (D,R) : AG = 1

] ∣
∣
∣ ≥ ε .

We will say that E is an (ε, T)-secure PRF if no adversary is able to (ε, T)-
distinguish it.

Definition 2 (PRP). Let E : K × D → D be a family of permutations on D
indexed by keys K. An adversary A (ε, T)-distinguishes E as a PRP if it runs
in time at most T and

Advprp
E (A) =

∣
∣
∣ Pr

[

K
$←− K : AEK = 1

]

− Pr
[

G
$←− Perm(D) : AG = 1

] ∣
∣
∣ ≥ ε .

We will say that E is an (ε, T)-secure PRP if no adversary is able to (ε, T)-
distinguish it.

Definition 3 (SPRP). Let E : K × D → D be a family of permutations on D
indexed by keys K. An adversary A (ε, T)-distinguishes E as a SPRP if it runs
in time at most T and

Advsprp
E (A) =

∣
∣
∣Pr

[

K
$←− K : AEK ,E−1

K = 1
]

− Pr
[

G
$←− Perm(D) : AG,G−1

= 1
] ∣
∣
∣ ≥ ε .

We will say that E is an (ε, T)-secure SPRP if no adversary is able to (ε, T)-
distinguish it.

Building Secure Block Ciphers on Generic Attacks Assumptions 71

Alternatively, when a primitive is (O(T
f(n)), T)-secure for some parameter n,

where O stands for some small constant independent of n, we will say that it
is Ω(f(n))-secure, meaning that a distinguisher must have runtime greater than
f(n) to have a non-negligible advantage. Note that all our definitions are stated
in terms of runtime T of the adversary. The total number q of queries of the
adversary to the oracle will only be constrained by the obvious inequality q ≤ T .

As we will see later, it is always possible to distinguish a random Feistel
scheme Ψ (r)(2n) from a uniformly random permutation with complexity O(22n).
This comes from the fact that a Feistel scheme has always an even signature,
whereas a random permutation has an even signature with probability 1/2. We
will therefore sometimes consider the difficulty of distinguishing a random Feistel
scheme from a random permutation with an even signature. For this reason we
also define the notion of (S)PRP+ (strong pseudorandom even permutation) by
simply substituting Perm+ (D) to Perm(D) in the definitions of PRP and SPRP.

We will use sometimes the term CPA (Chosen Plaintext Attack) to qualify
an adversary trying to break the pseudorandomness of a permutation generator,
and CPCA (Chosen Plaintext-Ciphertext Attack) to qualify an adversary trying
to break the strong pseudorandomness of a permutation generator. It will always
imply adaptive attacks.

3 The Russian Dolls Construction

In this section we explain our design strategy in all generality. Assume one
knows how to construct a secure (S)PRP E on D using a relatively large set
of keys K structured as a direct product of smaller permutations spaces K =
Perm(D1) × . . . × Perm(Dλ). Assume now that there exists secure PRPs E(i),
1 ≤ i ≤ λ, on Di with key spaces Ki. Then it is possible to define a new (S)PRP
E′ on D with key space K′ = K1 × . . .×Kλ, by

E′
(K1,...,Kλ)(·) = E

(E
(1)
K1

,...,E
(λ)
Kλ

)
(·) . (1)

For simplicity, we will make the assumption that when the E(i)’s are given as
oracles, ciphering or deciphering with E′ requires only direct queries to the E(i)’s.
As will be clear from the proof of the theorem below, this enables to use only
secure PRPs for the E(i)’s. As soon as it requires access to the direct and the
inverse oracle for some i, E(i) has to be a secure SPRP. The security of the new
(S)PRP E′ is characterized by the following theorem:

Theorem 1 (Security of the Russian Dolls construction). Let E be an
(ε, T)-secure PRP (resp. SPRP) on D indexed by key space K = Perm(D1)×. . .×
Perm(Dλ). Let also E(i), 1 ≤ i ≤ λ, be (εi, T)-secure PRPs on Di with key spaces
Ki. Then the permutation generator E′ defined by Equ. 1 is an (ε +

∑λ
i=1 εi, T)-

secure PRP (resp. SPRP) on D with key space K′ = K1 × . . .×Kλ.

Proof. The proof proceeds by a standard hybrid method. Let A be an oracle
algorithm running in time T . We are interested in bounding its advantage in
distinguishing the PRP E′:

72 J. Patarin and Y. Seurin

∣
∣
∣Pr

[

(K1, . . . , Kλ) $←− K1 × . . .×Kλ : A
E

(E(1)
K1

,...,E
(λ)
Kλ

) = 1
]

− Pr
[

G
$←− Perm(D) : AG = 1

] ∣
∣
∣ .

This advantage is upper bounded through the triangular inequality by the sum
of

∣
∣
∣Pr

[

(G1, . . . , Gλ) $←− K : AE(G1,...,Gλ) = 1
]

− Pr
[

G
$←− Perm(D) : AG = 1

] ∣
∣
∣

and the sum for i = 1 to λ of the following quantities (where by convention for
i = 1 (resp. i = λ), the expressions were i−1 (resp. i+1) appears are discarded):

∣
∣
∣Pr

[

(K1, . . . , Ki)
$←− K1 × . . .×Ki,

(Gi+1, . . . , Gλ) $←− Perm(Di+1)× . . .× Perm(Dλ) :

A
E

(E(1)
K1

,...,E
(i)
Ki

,Gi+1,...,Gλ) = 1
]

−Pr
[

(K1, . . . , Ki−1)
$←− K1 × . . .×Ki−1,

(Gi, . . . , Gλ) $←− Perm(Di)× . . .× Perm(Dλ) :

A
E

(E(1)
K1

,...,E
(i−1)
Ki−1

,Gi,...,Gλ)
= 1

]∣
∣
∣

The first term is upper bounded by definition by ε as E is an (ε, T)-secure
PRP. The i-th of the λ other terms is upper bounded by εi. Indeed, one can
build a probabilistic distinguisher Ai for E(i) as follows. Let F be the oracle
to which Ai has access. Ai draws random keys (K1, . . . , Ki−1) and random
permutations (Gi+1, . . . , Gλ) and runs A, answering each of its queries with
E

(E
(1)
K1

,...,E
(i−1)
Ki−1

,F,Gi+1,...,Gλ)
. Then Ai runs in time T and its advantage is exactly

the quantity above. Hence by hypothesis on E(i) it cannot be greater than εi.
The theorem follows. The SPRP case is handled in a similar way.
�
More restricted versions of this theorem in the information-theoretic setting can
be found in [20, Theorem 1] and [35, Lemma 20]. When the key spaces Ki are
themselves permutations spaces, the construction can be iterated to decrease the
key size of the outermost PRP. This construction may use functions instead of
permutations or even a mix of functions and permutations. However, we will be
primarily interested in permutations. We will now see how to use the Russian
Dolls construction with concrete PRP schemes.

4 Constructions with Balanced Feistel Schemes

Two main lines of research have been explored concerning Feistel schemes: one
aims at giving security bounds against information-theoretic adversaries, the
other tries to describe generic attacks on random Feistel schemes. We sum up
some known results about these two domains.

Building Secure Block Ciphers on Generic Attacks Assumptions 73

4.1 Information-Theoretic Bounds

First, we review the security results on random Feistel schemes holding in the
information-theoretic setting, i.e. against computationally unbounded adver-
saries. All these results are purely combinatorial and can be restated in terms
of statistical closeness between the output of a Feistel permutation and the out-
put of a uniformly random permutation. Though we restate them in terms of
computational runtime T , it is essential to note that they are in fact all true in
terms of number of oracle queries q. The computational statement simply stems
from q ≤ T .

Luby and Rackoff started the subject by proving [19] that Ψ (3)(2n) is a Ω(2
n
2)-

secure PRP, and claiming (without proof) that Ψ (4)(2n) is a Ω(2
n
2)-secure SPRP.

The later was proved by Patarin in [23]. The first improvements beyond the
so-called “birthday bound” (namely, Ω(2

n
2)-security) came from Patarin who

proved respectively in [25] and [26] that Ψ (5) is a Ω(2
2n
3)-secure PRP and Ψ (6)

is a Ω(2
3n
4)-secure PRP. Maurer and Pietrzak showed [21] that for r sufficiently

large, Ψ (r) is a Ω(2(1−O(1
r))n)-secure SPRP. Finally, Patarin proved in [28,29]

that the information-theoretic optimal security is obtained for 5 rounds in a
CPA attack (i.e. Ψ (5) is a Ω(2n)-secure PRP) and 6 rounds for a CPCA at-
tack (i.e. Ψ (6) is a Ω(2n)-secure SPRP). It is still an open problem to improve
the bound for Ψ (5) in a CPCA attack (for now it is only known that Ψ (5) is a
Ω(2

n
2)-secure SPRP).

However, building on these results doesn’t enable to construct secure schemes
using the Russian Dolls construction as the security decreases with the block
size. We will see in the following how we can circumvent this problem by making
hypotheses on the best generic attacks on random Feistel schemes.

4.2 Generic Attacks on Feistel Schemes

Generic Attacks on Ψ (3) and Ψ (4). Generic attacks on Ψ (3) and Ψ (4) match-
ing the information-theoretic security bounds were described in [25] and later
independently in [1]. In the 3-round case, for a CPA attack, the adversary
gets m values yi = E(xi) and counts the number of (i, j), i < j, such that
xiR ⊕ yiL = xjR ⊕ yjL. It can be proved that this number will be about twice
greater in the case of Ψ (3) than for a random permutation, and this leads to
an attack with O(2

n
2) queries and runtime. However, there is a very efficient

CPCA attack with only 3 queries: A asks for y1 = E(x1) and y2 = E(x2) where
x1R = x2R. Then, it asks for x3 = E−1(y2L||y2R⊕x1L⊕x2L) and checks whether
x3R = x1R ⊕ y1L ⊕ y2L. This will always be the case for Ψ (3) but will happen
only with probability 1/2n for a random permutation. We note that this attack
applies to KFC as it is based on a 3-round Feistel scheme. However KFC was
explicitly designed to resist only chosen-plaintext attacks.

In the 4-round case, there is the following CPA attack: the adversary gets m
values yi = E(xi) such that xiR is constant and counts the number of (i, j),
i < j, such that xiL⊕ yiL = xjL ⊕ yjL. Again, it can be proved that this number
will be about twice greater in the case of Ψ (4) than for a random permutation,
and this leads to an attack with O(2

n
2) queries and runtime.

74 J. Patarin and Y. Seurin

Brute Force Attacks. We state the following result concerning brute force
attacks on Feistel schemes, valid for any number of rounds.

Claim. Let r, n be non null integers, r fixed. Then there exists an oracle ad-
versary, running in time Θ(2rn2n

) and distinguishing Ψ (r)(2n) from a random
permutation with overwhelming probability.

A rigorous proof of this claim can be found in [24]. Note that a simple entropy
argument [21, footnote 2] shows that the number of oracle queries required is
only r · 2n, which is in O(2n) for any fixed r. The adversary proceeds by making
an exhaustive search on the key space Func (n, n)r to see if there is one for which
all queries match. It is however highly non trivial to reduce the complexity of
the distinguisher described in the above claim in the case r ≥ 5, as we will see
now.

Attacks “By The Signature”. As noticed by Patarin in [27], there are better
attacks than the exhaustive search described above taking advantage of the fact
that Feistel schemes lie in a proper subgroup of Perm(2n), namely Perm+ (2n).
Indeed, it can easily be checked (see [27]) that a Feistel scheme has always an
even signature. Clearly, the signature of a permutation E ∈ Perm(2n) can be
computed in time O(22n) when all the cipherbook is available. As a random
permutation has an even signature with probability 1

2 , we have the following
claim:

Claim. Let r, n be non null integers. Then there exists an oracle adversary,
running in time Θ(22n) and distinguishing Ψ (r)(2n) from a uniformly random
permutation with probability 1

2 .

However, as we will see in the following, it is much harder to distinguish Ψ (r)

when this “global” property is suppressed, i.e. when the adversary tries to
distinguish Ψ (r) from a random permutation with an even signature.

Best Known Attacks against Ψ (r) as an SPRP+ When r ≥ 5. The
best generic attacks for distinguishing Ψ (r) from a random even permutation fall
in the class of iterated attacks of order 2. The notion of iterated distinguisher
of order d has been defined by Vaudenay [34,35]. Roughly, such a distinguisher
obtains a number d of plaintext-ciphertext pairs (xj , yj), takes a binary decision
γi depending on x = (x1, . . . , xd) and y = (y1, . . . , yd), and after N repetitions of
this, outputs 0 or 1 depending on (γ1, . . . , γN). At each iteration i, the d-tuple of
plaintext-ciphertext pairs that is tested is determined, possibly adaptively, and
possibly in a probabilistic way1 by the adversary, by making only queries to E
for a CPA attack, or to E and E−1 for a CPCA attack. It is important however
that the decision function Γ such that γi = Γ (x, y) is fixed during all the attack.
In particular, it must not depend on the previously tested d-tuples and previous
decisions. Indeed, if it were the case, the i-th decision γi of the adversary would in
1 Indeed, as we consider computationally bounded adversaries, there may be an ad-

vantage for the adversary to be probabilistic.

Building Secure Block Ciphers on Generic Attacks Assumptions 75

Parameters: number of iterations N , decision function Γ : Dd ×Dd → {0, 1},
acceptance set S ⊂ {0, 1}N

Oracle: a permutation E ∈ Perm (D) (and possibly its inverse E−1)
1: for i = 1 to N do
2: for j = 1 to d do
3: select xj ∈ D and get yj = E(xj) or select yj ∈ D and get xj = E−1(yj)
4: end for
5: set γi = Γ (x, y), where x = (x1, . . . , xd) and y = (y1, . . . , yd)
6: end for
7: if (γ1, . . . , γN) ∈ S then output 1 else output 0

Fig. 1. Iterated attack of order d

fact depend on all previous d-tuples already tested and the distinguisher would
in fact be a classical d′-limited adversary with d′ > d. Note that this is only
a logical description. In particular the total runtime of the adversary can be
less than N . For example, the generic attack described previously on Ψ (4) is an
iterated attack of order 2 where the attacker makes N = m(m− 1) tests in time
m by storing the m values of xiL⊕yiL and counting the number of collisions. The
total runtime of the adversary is thus T =

√
N . It is evident that making the

same test more than one time does not increase the advantage of the adversary,
hence we will assume that the distinguisher never makes twice the same test.
Thus, the total number of possible tests is 22n(22n − 1) · · · (22n − d + 1). Note
that the outcomes of the tests are of course not independent.

Up to now, the best distinguishing attacks on Feistel schemes with r ≥ 5
rounds, described in [28], are iterated attacks of order 2. They follow the general
description of Fig. 1. We describe the case r even; the case r odd is handled in a
similar way. The attacks need only to access the direct oracle E. To understand
how these attacks work, we introduce the d-ary transition probabilities associated
to a permutation generator E on D with key space K defined for any pairs of
d-tuples x = (x1, . . . , xd), y = (y1, . . . , yd) of distinct elements of D by

Pr[x EK−−→ y] = Pr
[

K
$←− K : EK(xi) = yi for all i ∈ [1..d]

]

. (2)

These quantities were introduced and extensively studied by Patarin in [24,23]
and are fundamental in upper bounding the advantage of information-theoretic
adversaries making less than d queries and trying to distinguish EK from a
uniformly random permutation on D. In particular, closed formula were given in
the binary case d = 2, for any number of rounds r. Let Pr∗ = 1

22n(22n−1) denote
the binary transition probability for a random even permutation for any x and

y. We will simply note Pr for Pr[x Ψ (r)−−−→ y]. For r even, when x1R = x2R, then
depending on (y1, y2) the transition probabilities have the following values:

1. when y1L = y2L, Pr = Pr∗
(

1− 1
2(r−2)n

)

2. when y1L
= y2L and x1L ⊕ y1L
= x2L ⊕ y2L, Pr � Pr∗
(

1− 1

2(
r
2 −1)n

)

76 J. Patarin and Y. Seurin

3. when y1L
= y2L and x1L ⊕ y1L = x2L ⊕ y2L, Pr � Pr∗
(

1 + 1

2(
r
2 −2)n

)

With these notations the attack proceeds as follows. The adversary tests N pairs
(x1, y1), (x2, y2) such that x1R = x2R. The decision function is defined by

Γ (x, y) =
{

0 if Pr ≤ Pr∗ (cases 1 and 2)
1 if Pr > Pr∗ (case 3)

Let X be the random variable defined by X =
∑N

i=1 γi. Let E(X) and σ(X)
(resp. E∗(X) and σ∗(X)) be the expected value and the standard deviation of
X for a random Feistel scheme (resp. a random even permutation). One can

easily check that E∗(X) � N
2n and E(X) � N

2n

(

1 + 1

2(
r
2−2)n

)

, and it can be

proved that σ∗(X) �
√

N

2
n
2

and σ(X) �
√

N

2
n
2

. If we let the acceptance set be

S = {(γ1, . . . , γN) | ∑N
i=1 γi ≥ τ} for τ = (E(X)−E∗(X))/2, the adversary will

have a noticeable advantage as soon as τ is larger than σ(X) and σ∗(X). This
implies the condition N ≥ 2(r−3)n.

Because of the constraint x1R = x2R, the number of possible tests is only 23n.
So in order to have a meaningful attack for r ≥ 7 we have to broaden slightly
the security model by letting the adversary interact with μ > 1 permutations
randomly outputted by the generator. The adversary will have to repeat the test
on μ = 2(r−6)n permutations. For each permutation, the 23n tests can in fact be
implemented in time 22n by building, for each possible value of xR, the list of
the 2n values for xiL⊕yiL and counting the number of collisions. Hence the total
runtime of A is T=μ22n = 2(r−4)n. Note that originally Patarin [28] described a
known plaintext attack with roughly the same complexity.

We will take these best known generic attacks as a starting point to build
secure PRPs by making the following conjecture:

Conjecture 1. Let n > 1 be an integer, r be an integer ≥ 5. Then Ψ (r)(2n) is a
(O(T

2(r−4)n), T)-secure SPRP+.

Evidence in favour of this conjecture is that the best distinguishing attacks for
3 and 4 rounds, matching the information-theoretic bounds, are iterated attacks
of order 2. Hence this conjecture may be viewed as a natural generalization to
r ≥ 5 of a provable result for r < 5. We also conjecture that for a fixed d, iterated
attacks of order d are not more efficient than the best iterated attack of order
2 for sufficiently large n. Hence improving the attacks described above would
require to handle large d-tuples of plaintext-ciphertext pairs, which appears to
be intractable as the computation of the transition probabilities for random
Feistel schemes becomes very involved as soon as d ≥ 3.

4.3 The Russian Dolls Construction with Balanced Feistel Schemes

We now concretely describe how to construct a secure SPRP using the Russian
Dolls construction and Conjecture 1. The parameters of the construction will be
as follows:

Building Secure Block Ciphers on Generic Attacks Assumptions 77

– the block size of the SPRP will be 2n,
– s will denote the number of iterations of the Russian Dolls construction,
– r1, r2, . . . , rs = will denote the number of rounds of the Feistel schemes used

at the i-th iteration of the process.

We start with the outermost Feistel scheme, which will have r1 rounds. If it were
to be instantiated with r1 random functions, the obtained permutation generator
would be a (O(T

2(r1−4)n), T)-secure SPRP+. However, the size of the key would
be r1n2n bits, which is impractical for usual values of n. Using the Russian Dolls
construction, one can decrease the size of the key while maintaining a good level
of security by instantiating each function inside the Feistel scheme Ψ (r1) with
independent Feistel schemes with r2 rounds. Again, each function used in the
r1 Feistel schemes Ψ (r2) can be instantiated using independent Feistel schemes
with r3 rounds, and so on. . . Note that we implicitly make here the assumption
that the security of a Feistel scheme with internal random permutations is close
to the security obtained when using internal random functions. A security proof
by Piret [33] as well as preliminary results on generic attacks on Feistel schemes
with internal permutations [32] point towards the validity of this assumption.

Consider the permutation generator obtained after s iterations of the nesting
process. The innermost Feistel schemes use random functions from n

2s−1 bits to
n

2s−1 bits which will constitute the key for the global permutation generator. It
can easily be seen that the total number of functions needed to define the global
permutation is r1 · r2 . . . rs. Hence the size of the key defining a permutation is

log2(|K|) = r1 · r2 · · · rs · n

2s−1
· 2 n

2s−1 .

Suppose now that the numbers of rounds ri were chosen as the minimal integers
to satisfy, for some α, the following inequality:

(ri − 4)
n

2i−1
≥ α i.e. ri =

⌈
2i−1α

n
+ 4

⌉

. (3)

According to Conjecture 1, any Feistel scheme used in the construction is a
(T
2α , T)-secure SPRP. Then, according to Theorem 1, any adversary running

in time T and trying to distinguish a permutation resulting from the overall
construction from a uniformly random even permutation has an advantage upper
bounded by

(
T

2α
+ r1

(
T

2α
+ r2

(

. . .

(
T

2α
+ rs · T

2α

)

. . .

)))

=

⎛

⎝1 +
s∑

i=1

i∏

j=1

rj

⎞

⎠
T

2α
.

Suppose that n is a power of 2. From an asymptotic point of view, if we set
α = poly(n), Equation 3 shows that for a logarithmic number on iterations
s = log2(n) − c, for some constant c, (which means that the key is constituted
of functions from 2c+1 bits to 2c+1 bits), the numbers of rounds ri will all be
polynomials in n. Hence the size of the key will be in poly(n)log n = eO((log n)2),

78 J. Patarin and Y. Seurin

which is quasi-polynomial, whereas the security is in (eO((log n)2) T
2poly(n) , T). So

the Russian Dolls construction will be quite efficient and secure.
In practice, the optimal number of iterations is determined the following way.

Assume that s iterations have been made, and we want to know whether the
following iteration will increase or decrease the size of the key (we suppose that
the loss of security coming from the next iteration is negligible). Up to now,
the number of bits needed to store one of the functions constituting the key is

n
2s−1 ·2

n

2s−1 . Iterating the construction one more time would require to instantiate
each of these functions with Feistel schemes with rs+1 rounds, where rs+1 verifies
Equ. 3. Hence the storage requirements for each function would become rs+1 ·
n
2s · 2 n

2s . Consequently, it is unfavourable to iterate again as soon as

rs+1 · n

2s
· 2 n

2s ≥ n

2s−1
· 2 n

2s−1 , i.e. rs+1 ≥ 2
n
2s +1 .

4.4 Concrete Instantiations

We give now some concrete values for the parameters (n, s, ri). We describe
a block cipher with 128-bit blocks, hence n = 64. We aim roughly at 80-bit
security, meaning that the cipher has to be a (T/280, T)-secure SPRP. After
some optimizations, one can verify that s = 5 iterations, with the following
number of rounds: r1 = 6, r2 = 7, r3 = 10, r4 = 16 and r5 = 28, is optimal and
gives the desired level of security. The size of the expanded key, constituted of
functions from 4 bits to 4 bits, is

log2(|K|) = 6× 7× 10× 16× 28× 4× 24 � 1.5 MB ,

which is quite practical. Note however that stopping at s = 4 iterations (with
the same number of rounds r1 to r4) yields an expanded key size of � 1.7 MB,
which is close to the previous size. Yet the resulting block cipher would be much
faster as the number of table accesses to encrypt or decrypt one plaintext would
only be 6× 7× 10× 16 = 6, 720 instead of 6× 7× 10× 16× 28 = 188, 160, which
shows that trade-offs are possible.

Key Schedule. It is arguable that such a block cipher as we just described
would be implemented using pseudorandom bits for the expanded key. We did not
consider this problem in details and expect that a provably secure pseudorandom
number generator, such as BBS [8] or QUAD [6] would be used to expand a
smaller key. It may even be possible to design a key expansion procedure relying
itself on the Russian Dolls construction with PRFs rather than PRPs. Besides,
we’d like to underline that the nonexistence of short keys may be turned into
an advantage in some cases, particularly in a white-box context of operation [9].
We leave this as topics for further research.

5 Conclusion and Further Work

We described a general recursive strategy enabling to build secure PRFs or PRPs
and applied this design approach with random balanced Feistel schemes in order

Building Secure Block Ciphers on Generic Attacks Assumptions 79

to obtain symmetric primitives provably secure under plausible conjectures about
generic attacks on random Feistel schemes. The schemes we obtain look very
promising: the size of the expanded key required for our proposed constructions
is of the order of 1 MB, and hence compares very favorably with other proposals
of provably secure block ciphers such as KFC which may require in extreme
cases up to 4 GB of expanded key. Moreover our schemes should be very fast in
software as they require only XOR operations and table look-ups.

Other structures are potentially very interesting to use inside the Russian
Dolls construction. In the case of PRP constructions, unbalanced Feistel schemes
could be suitable. They have been studied in [15,30,31] and could lead to ex-
panded key size savings and efficiency improvements. Such schemes are currently
under investigation.

Finally, proving results in the vein of Conjecture 1 may be very difficult be-
cause of its connexions with the “P vs. NP” problem. However it may be possible
to obtain more restricted security results by considering weaker models of adver-
sary (such as iterated attacks of order d). Such results would greatly reinforce
the confidence in the primitives based on the Russian Dolls construction. Ex-
ploring new kinds of attacks on random Feistel schemes (e.g., by studying the
cycle structure of the permutation) might also be a fruitful avenue of research.

References

1. Aiello, W., Venkatesan, R.: Foiling birthday attacks in length-doubling transforma-
tions. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 307–320.
Springer, Heidelberg (1996)

2. Anderson, R.J., Biham, E.: Two Practical and Provably Secure Block Ciphers:
BEAR and LION. In: Gollmann, D. (ed.) FSE 1996. LNCS, vol. 1039, pp. 113–120.
Springer, Heidelberg (1996)

3. Baignères, T., Finiasz, M.: Dial C for cipher. In: Biham, E., Youssef, A.M. (eds.)
SAC 2006. LNCS, vol. 4356, pp. 76–95. Springer, Heidelberg (2007)

4. Baignères, T., Finiasz, M.: KFC - the krazy feistel cipher. In: Lai, X., Chen, K.
(eds.) ASIACRYPT 2006. LNCS, vol. 4284, pp. 380–395. Springer, Heidelberg
(2006)

5. Bellare, M., Kilian, J., Rogaway, P.: The Security of the Cipher Block Chaining
Message Authentication Code. J. Comput. Syst. Sci. 61(3), 362–399 (2000)

6. Berbain, C., Gilbert, H., Patarin, J.: QUAD: A practical stream cipher with
provable security. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004,
pp. 109–128. Springer, Heidelberg (2006)

7. Blaze, M.: Efficient Symmetric-Key Ciphers Based on an NP-Complete Subproblem
(1996), http://www.crypto.com/papers/turtle.pdf

8. Blum, L., Blum, M., Shub, M.: A Simple Unpredictable Pseudo-Random Number
Generator. SIAM J. Comput. 15(2), 364–383 (1986)

9. Chow, S., Eisen, P.A., Johnson, H., van Oorschot, P.C.: White-box cryptography
and an AES implementation. In: Nyberg, K., Heys, H.M. (eds.) SAC 2002. LNCS,
vol. 2595, pp. 250–270. Springer, Heidelberg (2003)

10. Contini, S., Lenstra, A.K., Steinfeld, R.: VSH, an efficient and provable collision-
resistant hash function. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS,
vol. 4004, pp. 165–182. Springer, Heidelberg (2006)

http://www.crypto.com/papers/turtle.pdf

80 J. Patarin and Y. Seurin

11. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman, New York (1979)

12. Goldreich, O., Goldwasser, S., Micali, S.: How to Construct Random Functions. J.
ACM 33(4), 792–807 (1986)

13. Granboulan, L., Nguyên, P.Q., Noilhan, F., Vaudenay, S.: DFCv2. In: Stinson,
D.R., Tavares, S. (eds.) SAC 2000. LNCS, vol. 2012, pp. 57–71. Springer, Heidelberg
(2001)

14. Granboulan, L., Pornin, T.: Perfect block ciphers with small blocks. In: Biryukov,
A. (ed.) FSE 2007. LNCS, vol. 4593, pp. 452–465. Springer, Heidelberg (2007)

15. Jutla, C.S.: Generalized birthday attacks on unbalanced feistel networks. In:
Krawczyk, H. (ed.) CRYPTO 1998, vol. 1462, pp. 186–199. Springer, Heidelberg
(1998)

16. Kilian, J., Rogaway, P.: How to protect DES against exhaustive key search.
In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 252–267. Springer,
Heidelberg (1996)

17. Koblitz, N., Menezes, A.: Another Look at Provable Cryptography. J. Cryptol-
ogy 20(1), 3–37 (2007)

18. Luby, M., Rackoff, C.: Pseudo-random Permutation Generators and Cryptographic
Composition. In: STOC, pp. 356–363. ACM, New York (1986)

19. Luby, M., Rackoff, C.: How to Construct Pseudorandom Permutations from Pseu-
dorandom Functions. SIAM J. Comput. 17(2), 373–386 (1988)

20. Maurer, U.M.: A simplified and generalized treatment of luby-rackoff pseudoran-
dom permutation generators. In: Rueppel, R.A. (ed.) EUROCRYPT 1992. LNCS,
vol. 658, pp. 239–255. Springer, Heidelberg (1993)

21. Maurer, U.M., Pietrzak, K.: The Security of Many-Round Luby-Rackoff Pseudo-
Random Permutations. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656,
pp. 544–561. Springer, Heidelberg (2003)

22. Morin, P.: Provably Secure and Efficient Block Ciphers. In: Selected Areas in Cryp-
tography - SAC 1996, pp. 30–37 (1996)

23. Patarin, J.: Pseudorandom Permutations Based on the DES Scheme. In: Charpin,
P., Cohen, G. (eds.) EUROCODE 1990. LNCS, vol. 514, pp. 193–204. Springer,
Heidelberg (1991)

24. Patarin, J.: Etude des générteurs de permutations basés sur le schéma du DES,
Ph.D. thesis, INRIA, Domaine de Voluceau, Le Chesnay, France (1991)

25. Patarin, J.: New results on pseudorandom permutation generators based on the
DES scheme. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 301–312.
Springer, Heidelberg (1992)

26. Patarin, J.: About feistel schemes with six (or more) rounds. In: Vaudenay, S. (ed.)
FSE 1998. LNCS, vol. 1372, pp. 103–121. Springer, Heidelberg (1998)

27. Patarin, J.: Generic attacks on feistel schemes. In: Boyd, C. (ed.) ASIACRYPT
2001. LNCS, vol. 2248, pp. 222–238. Springer, Heidelberg (2001)

28. Patarin, J.: Security of random feistel schemes with 5 or more rounds. In: Franklin,
M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 106–122. Springer, Heidelberg (2004)

29. Patarin, J.: On linear systems of equations with distinct variables and small block
size. In: Won, D.H., Kim, S. (eds.) ICISC 2005. LNCS, vol. 3935, pp. 299–321.
Springer, Heidelberg (2006)

30. Patarin, J., Nachef, V., Berbain, C.: Generic attacks on unbalanced feistel schemes
with contracting functions. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS,
vol. 4284, pp. 396–411. Springer, Heidelberg (2006)

Building Secure Block Ciphers on Generic Attacks Assumptions 81

31. Patarin, J., Nachef, V., Berbain, C.: Generic attacks on unbalanced feistel schemes
with expanding functions. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS,
vol. 4833, pp. 325–341. Springer, Heidelberg (2007)

32. Patarin, J., Treger, J.: Generic Attacks on Feistel Networks with Internal Permu-
tations (2008) (in submission)

33. Piret, G.: Luby-Rackoff Revisited: On the Use of Permutations as Inner Functions
of a Feistel Scheme. Des. Codes Cryptography 39(2), 233–245 (2006)

34. Vaudenay, S.: Resistance against general iterated attacks. In: Stern, J. (ed.)
EUROCRYPT 1999. LNCS, vol. 1592, pp. 255–271. Springer, Heidelberg (1999)

35. Vaudenay, S.: Decorrelation: A Theory for Block Cipher Security. J. Cryptol-
ogy 16(4), 249–286 (2003)

36. Zheng, Y., Matsumoto, T., Imai, H.: On the construction of block ciphers prov-
ably secure and not relying on any unproved hypotheses. In: Brassard, G. (ed.)
CRYPTO 1989. LNCS, vol. 435, pp. 461–480. Springer, Heidelberg (1990)

	Building Secure Block Ciphers on Generic Attacks Assumptions
	Introduction
	Preliminaries
	The Russian Dolls Construction
	Constructions with Balanced Feistel Schemes
	Information-Theoretic Bounds
	Generic Attacks on Feistel Schemes
	The Russian Dolls Construction with Balanced Feistel Schemes
	Concrete Instantiations

	Conclusion and Further Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

