Chapter 6

TEMPORAL ANALYSIS OF WINDOWS
MRU REGISTRY KEYS

Yuandong Zhu, Pavel Gladyshev and Joshua James

Abstract The Microsoft Windows registry is an important resource in digital
forensic investigations. It contains information about operating system
configuration, installed software and user activity. Several researchers
have focused on the forensic analysis of the Windows registry, but a
robust method for associating past events with registry data values ex-
tracted from Windows restore points is not yet available. This paper
proposes a novel algorithm for analyzing the most recently used (MRU)
keys found in consecutive snapshots of the Windows registry. The algo-
rithm compares two snapshots of the same MRU key and identifies data
values within the key that have been updated in the period between the
two snapshots. User activities associated with the newly updated data
values can be assumed to have occurred during the period between the
two snapshots.

Keywords: MRU registry keys, restore points, registry snapshots

1. Introduction

The Microsoft Windows registry is “a central hierarchical database”
[8] that contains information (stored as keys) related to users, hard-
ware devices and applications installed on the system. As such, it is
an important forensic resource that holds a significant amount of infor-
mation about user activities. This paper focuses on the most recently
used (MRU) keys that contain data values (file names, URLs, command
line entries, etc.) related to recent user activity [1]. An example is
the key HKCU\Software\Microsoft\Office\12.0\Word\File MRU that
stores the list of recently opened Microsoft Word 2007 documents (Fig-
ure 1).

Several MRU keys are used throughout the Windows operating sys-
tem. Some keys have “MRU” in their names, such as OpenSaveMRU,

G. Peterson and S. Shenoi (Eds.): Advances in Digital Forensics V, IFIP AICT 306, pp. 83-93, 2009.
© IFIP International Federation for Information Processing 2009

84 ADVANCES IN DIGITAL FORENSICS V

Microsoft Word Registry Key: HKCU\Software\Microsoft\Office\12.0\Word\File MRU
“File” Menu
A — _A—
Y .
Recent Documents L vislo A Nme Data
@ ;\i?rd (Default) {walue not set)
1 documentl é—gﬁﬁl 0] Item 1 [FO0000000] TO1C925A7AGSD2450T+C dacument 1 dac
2 document2 o olet' i [FOO000000][TO1Co28ATASDSL0ETC \dacument 2, do
B —— 5 S:cluDrE i [FO000000A][T01 C326A7A37CEDADTHC:\ dacument3. doc
(] Wizards

Figure 1. Word file MRU example.

which contains the names of files recently saved by applications that use
the standard Microsoft Windows OpenAndSave shell dialog. Others re-
flect the nature of items in the key such as TypedURLs, which contains
a list of the URLs typed into the Internet Explorer address bar by the
user. The connections between MRU keys and user actions can be found
in several publications (see, e.g., [1, 2, 7]). MRU keys are particularly
useful in investigations where it is important to determine the actions
performed by specific users [9].

This paper describes an algorithm for analyzing MRU keys in con-
secutive snapshots of the Windows registry. User activities occurring
during the period between the snapshots can be identified by analyzing
the updated data values corresponding to a specific MRU key.

2. Analysis of Registry Snapshots

The Windows registry is stored in the file system in blocks called
“hives.” System Restore Point hives are backups of the Windows registry
created every 24 hours or upon installation of new software [3]. The hives
contain several earlier versions of the registry. These versions, which we
call “snapshots,” can provide an investigator with a detailed picture of
how the registry changed over time [4].

Forensic analysis of the registry rarely focuses on the restore points.
At best, registry snapshots within the restore points are examined as
separate entities during an investigation. This overlooks the links be-
tween registry snapshots, which provide more timestamp information
about user activities and system behavior than single instances of the
Windows registry.

The forensic value of Windows registry information is limited by the
relative scarcity of timestamp information [1]. Only one timestamp, the
last modification time, is recorded for each registry key [2]. A registry
key usually contains multiple data values. Even if it could be determined
which value was the last to be updated, it is not possible to determine

Zhu, Gladyshev & James 85

when the other data values were last modified. This is problematic when
an investigator attempts to construct a timeline of events by combining
information from several registry keys using only a single instance of the
registry.

This problem can be addressed by comparing consecutive registry
snapshots and determining which data values were updated. Each reg-
istry snapshot is usually associated with a creation time that is recorded
as part of the snapshot. Any registry data value updated between two
registry snapshots must have been updated between the creation time
of the preceding registry snapshot and the last modification time of the
registry key that contains the newly updated data value. Furthermore,
the activity that caused the registry key update would have occurred
within the same time interval.

The YD algorithm presented in this paper compares two snapshots
of an MRU key and identifies the data values within the key that were
updated during the time interval between the two snapshots. The al-
gorithm provides an investigator with a timeline of changes from the
restore points in the Windows registry by reversing the MRU key up-
date process.

3. MRU Key Updates

The obvious way to determine the difference between two MRU key
snapshots is to compare them value-by-value and identify the registry
data values that were updated. However, although this method is valid
for some registry keys, it is not applicable to all MRU keys. As we discuss
below, the context in which specific registry data values are stored and
the way the values are updated provide clues to the events that took
place. In particular, it may be possible to deduce from the context
of the data that a specific registry data value was updated even if the
content of the data value did not change.

Data updates can be categorized based on two types of MRU keys.
The first type of MRU key (Figure 2) stores data in several values that
are named using numbers or letters and saves the order of the values in
a special value called MRUList or MRUListEx. The leftmost letter of the
MRUList or MRUListEx value corresponds to the most recently updated
entry in the list. As shown in Figure 2, the value ¢, which represents
the command c:, was the most recently typed command in the Run
dialog window in the first snapshot. When a user executes the regedit
command, the MRUList value data is updated to the new value sequence
and the value a that contains regedit\1 is not affected by this action.

86

ADVANCES IN DIGITAL FORENSICS V

JL

User Typed “regedit” in Run Dialog

Mame Tvpe Daka
@](Default) REG_5Z (walue not set)
(28] REG_S? regeditil
L‘-‘-’Jb REG_SZ cmdil Value “c” which stands for
[aB]c REG_5Z 4— command “c:\1” is the most
[2B]mRuList REG_SZ cab recent entry

window
Marne Type Data
E‘_’:](Default) REG_5Z (value not set)
ab] 5 REG_SZ
[ab] REG_SZ cmdh
[=E]c REG_SZ [Ull Value “a” which stands for
[2B]rR1List REG_SZ ach — command “regedit\1” is the

most recent entry

Figure 2. RunMRU example.

The second type of MRU key consists of a list of most recently used
records. However, instead of using a special value to denote the sequence
of values in the key, the name of each value contains a number that
indicates its order in the list. If the order of values is changed, the
system simply renames the values to maintain the order within the key.

Marne Type Ciata
REG_S7 {walue not set)
ur|1 REG_5Z htbp: v, google.ief
ur|2 REG_ST hiktp: S, hotmail.com/
url3 REG_SZ http: v, vahoo, comf
User types “http://www.ucd.ie”
in Internet Explorer
Marne Type Data
(DeFauIt) REG_5Z {value nok set)
urll REG_5Z hktp e ucd.ief
urlz REG_S52 hktp: v google.ief
L—',l_'j url3 REG_52 http: v hokmail.comf
url4 REG_5Z http: v vahoo, comf

Figure 3. TypedURLs example.

Figure 3 presents an example of the second type of MRU key. It shows
the consecutive states of the TypedURLs key before and after typing the
URL http://www.ucd.ie in Internet Explorer. The value url1 contains
the most recently typed URL while url3 contains the least recent entry
in the first state. After the new URL http://www.ucd.ie is entered, it
is added into the TypedURLs key as a new urll value. The initial data
values in the TypedURLs key are renamed, increasing their index by one
— the value url1 becomes url2, url2 becomes url3, and so on.

Zhu, Gladyshev € James 87

<element 1, element 2, element 3, element 4>

| Begin (Least Recent Entry) | [End (Most Recent Entry) |

Figure 4. MRU list.

Note that in the example in Figure 2, although the MRU key was
updated because regedit was typed in the Run dialog window, the
corresponding value a was not modified. Only the MRUList value was
updated because the value sequence was changed. On the other hand,
all the data values in the second TypedURLs key example (Figure 3) were
modified even though only one of them (url1l) was added because of a
user action. The url3 value, for instance, was renamed to url4 in the
new state, but the user action did not change the content. Therefore,
when comparing MRU keys in two consecutive snapshots, it cannot be
assumed that the content of a changed value within an MRU key was
typed, selected or produced by some other user action. The analyst must
consider how the particular MRU key was updated in order to decide
whether or not a particular value within the key reflects a user action
that occurred between two states of the MRU key.

3.1 MRU List

Although different update processes are used for the two types of MRU
keys, the keys are still updated in a similar manner. Consequently, a
common model — the ordered MRU list — is used to represent the different
MRU key types in the registry. As shown in Figure 4, the first element
of the MRU list corresponds to the oldest entry of the MRU key; the
last element of the list is the most recent entry of the MRU key. The
MRU list thus abstracts the details of the MRU update process.

Type Craka

REG_52 {walue not set)

REa 52 Ihttp:,l',l'www.gnu:ugle.ie,l’ I
REG_S5Z [[httpffum hatmail, cam)
RFi3_57 [Fttp: v, vahoo, com]]

v v *

<”http://www.yahoo.com/”,”http://www.hotmail.com/”,” http://www.google.ie/”>

Figure 5. TypedURLs MRU list.

Figures 5 and 6 illustrate how the two types of MRU keys are con-
verted into MRU lists.

88 ADVANCES IN DIGITAL FORENSICS V

Marme Tyvpe Daka
(DeFauIt) REG_SZ (value nok set)
[ab]a REG_SZ regeditil
[ab]h REG_S7 cmd|1
[ab]c RES_57 gy
[abJMRULst REG_ST

T

\
< “regedit\1”, “cmd\1”, “c:\\1” >

Figure 6. RunMRU MRU List.

Since most MRU keys have a limit on the number of elements, their
MRU lists inherit this property. The maximum number of elements
varies according to the key. For example, TypedURLs can have at most
25 elements while OpenSaveMRU can store at most ten elements. The
least recent entry is removed when the number of elements in the list
exceeds the maximum allowed.

3.2 MRU List Updating Algorithm

Updating the MRU list involves two steps [5, 6]. The first is common
to every MRU list; it describes how a new element is added to the existing
MRU list. The second involves additional list processing that is unique
to each MRU key.

The updating process begins when the system receives a request to
add a new element to the MRU list. The first step enumerates the
existing MRU list and compares each entry with the new element. If no
entries match, the new element is appended to the end of the current
MRU list. If a match occurs, the old entry is removed and the new
element is appended to the end of MRU list.

In the second step, the new list is processed based on additional con-
straints imposed by the particular MRU list. For most MRU lists, the
constraint is the limit on the maximum number of elements (which re-
sults in the least recent element being removed when the maximum is ex-
ceeded). However, some MRU lists have an additional constraint, which
causes elements to be removed from the list even when the maximum
number of elements is not exceeded.

Figure 7 presents three examples of the MRU list updating process.
The MRU list is assumed to have a maximum size of five. The first
example adds a new element 5.txt to the existing MRU list <1.txt,
2.txt, 3.txt, 4.txt, 5.txt>. The system detects that 5.txt is al-
ready in the list; therefore, 5.txt is removed upon which the new 5. txt
element is added to the list. The same process is followed when a new

Zhu, Gladyshev & James

[[| [zt | 5] [at] [50t] |
Add B Ixt” I/L ’
(N Nothing changed -
| taxt || 2xt | [34xt | [4xt| [5axt]| | “5ixt”is already the

most recent element in

- Z— the list
Add “4.txt” /
' ’ 3\

| txt | | 2.4xt | | 3.xt | | 5itxt | | 4txt endof thelist e

L Z /
Add “6.tx%\L /
s X 4 N\ “1.txt” is discarded

| 2:xt | | 3xt | | 5ixt | | 4txt| | 6itxt | f;':'eﬁ;x;f t‘ﬁ:"ﬂgfd to

Element is in Element updated | Position changed
the initial state in this example
of the MRU list

Figure 7. MRU list updating example.

89

4.txt item is added; the old 4.txt is removed and the new 4.txt is
placed at the end of the list. In the third example, a new element 6.txt
is added to the current MRU list. Because 6.txt is not already in the
list, the system appends 6.txt to the end of the list. However, the new
list exceeds the maximum number of elements, causing the oldest item

in the list (1.txt) to be removed.

3.3 MRU List Update Rules

Based on the list updating process, we specify two rules for identifying

the newly updated elements between two states of the MRU list.

MRU List Rule 1: Element ele is a newly updated element
if there exists an element before ele in the current state of the
MRU list that does not appear before ele in the previous state of
the MRU list. To understand this rule, consider the second step
in Figure 7 where 4.txt is added to the list. In the state that
immediately precedes this step, the element 4.txt is preceded by
the elements 1.txt, 2.txt and 3.txt in the list. However, when
4.txt is “added” to the MRU list, the element 4. txt is moved to
the end of the list, causing it to be preceded by 5.txt in addition
to 1.txt, 2.txt and 3.txt. Note that the “happened before”
relationship between 4.txt and 5.txt has changed. The rule relies

90 ADVANCES IN DIGITAL FORENSICS V

on detecting this change to identify the newly updated elements
between two states of the MRU list.

MRU List Rule 2: If element ele in the current list is known to
be newly updated, then any elements after ele in the current list
are also newly updated. This rule follows from the fact that the
MRU list update process appends new elements to the end of the
existing list.

4. YD Algorithm

The YD algorithm enumerates all the elements in the current state
of the MRU list from the first (least recent) to the last (most recent)
element looking for the first newly updated element according to MRU
List Rule 1. It then returns all the elements starting with the found
element to the end of the current state list. All the returned elements
are identified as newly updated according to the MRU List Rule 2. Since
an MRU list is a model of a particular MRU key, the newly updated
elements identidied in the MRU list correspond to the newly updated
data values in the MRU key.

Figure 8 presents the flowchart of the YD algorithm. List A denotes
the previous state of the MRU list with n elements and List B is the
current state of the MRU list with m elements. Note that A, and B,
denote the 2 and y*" elements of A and B, respectively.

The YD algorithm first checks if A or B are empty. If B is empty,
the algorithm returns NULL. On the other hand, if A is empty, the
algorithm returns the elements of B. Next, the algorithm compares the
first element B; of (current) List B with each element of (previous)
List A. The loop ends either when an element A, is equal to B or
the end of List A is encountered. If a match for By is not found, the
algorithm terminates and returns the entire List B. If By is found in
A, the algorithm continues to compare each consecutive element in B
with each element in A following the matched A, element. The process
terminates when element B, is not found in A (and the algorithm returns
the elements from By to By,) or the algorithm reaches the end of List B
(and the algorithm returns NULL).

Figure 9 shows an example involving the first and last MRU lists
from Figure 7. The algorithm requires three steps to identify the newly
updated elements 4.txt and 6.txt. These results match the results of
the updating process discussed in Section 3.2. Note, however, that one
updated element 5.txt is not identified. MRU List Rule 1 does not
detect 5.txt as newly updated because the addition of 5.txt to the

Zhu, Gladyshev & James 91

Assume: List A is the previous state of the MRU list with n elements
and B is the current state of the MRU list that contains m elements

False »(Return NULL)

False

< False
X++
True
X++; Y+ >n?
True
Return NULL
True
x>n? pie
False

A
@eturn (By,By+1...BmD

Figure 8. YD algorithm.

MRU list does not change the “happened before” order of the MRU list
elements.

5. YD Algorithm Limitations

As discussed above, the YD algorithm may not detect all the elements
updated between two MRU lists. This is because the algorithm relies on
two (somewhat limited) rules that rely on the fact that elements change
their positions in the list when they are updated. However, in some
cases (as in the first step of the updating example in Figure 7), the state
of the MRU key does not change in response to a user action.

To address this issue, we propose that the elements in the most recent
MRU list be divided into a “Definitely Newly Updated Elements” set and
a “Possibly Newly Updated Elements” set. “Definitely Newly Updated

92

ADVANCES IN DIGITAL FORENSICS V

S
. . A4 A As Aq As
Previous state of the MRU List (A) 1ixt| [2.txt |3.txt| |4.txt| |5.txt|
: £ 4 [|
A A

1. Compare element “2.txt” (B4) with :/ H
element “1.txt” (A4) and “2.txt” (A,), |2.txt
when it equals to A,, the algorithm
proceeds to compare B,. !
! /

(2. Compare “3.txt” (B,) with the first
element after A, A3, and since they 3.txt
are identical, the algorithm proceeds

to the next step.
'/

3. Compare “5.txt” (B3) with elements ',/ Return
starting with A,; since the element
equal to B; is the last one in list A, 5.txt |4.txt| |6.txt|
the algorithm terminates and returns
elements “4.txt” and “6.txt”. Y,

B4 Bs
Current state of the MRU List (B) 2.txt} |3.txt} {5.txt |4.txt| |6.txt|

Figure 9. Using the YD algorithm to examine MRU lists.

Elements” are the elements identified by MRU List Rules 1 and 2. On
the other hand, “Possibly Newly Updated Elements” are the elements
that cannot be determined as newly updated when comparing two MRU
lists. In the example discussed above, 2.txt, 3.txt and 5.txt are
possibly newly updated elements — it cannot be determined from MRU
data alone if these elements were actually updated. However, if some
external evidence exists to suggest that one of the three elements (say
3.txt) was newly updated, then, according to MRU List Rule 2, any
possibly newly updated elements that happened after it (i.e., 5.txt)
must also have been updated during the same time period.

6. Conclusions

The YD algorithm for analyzing MRU keys found in different snap-
shots of the Windows registry relies on two rules derived from a generic
MRU key update model. Although the algorithm may not detect all
the newly updated data values corresponding to MRU keys, it can iden-
tify “definitely newly updated” values. These data values are important
because they enable investigators to determine the associated events
that occurred between the two snapshots. The algorithm can be used

Zhu, Gladyshev & James 93

to examine MRU keys in consecutive registry snapshots extracted from
Windows restore points as well as from consecutive backups of a system.

Acknowledgements

This research was funded by the Science Foundation of Ireland under
the Research Frontiers Program 2007 Grant No. CMSF575.

References

1]
2]

[3]

H. Carvey, The Windows registry as a forensic resource, Digital
Investigation, vol. 2(3), pp. 201-205, 2005.

H. Carvey, Windows Forensic Analysis, Syngress, Burlington, Mas-
sachusetts, 2007.

B. Harder, Microsoft Windows XP system restore, Microsoft Cor-
poration, Redmond, Washington (technet.microsoft.com/en-us/lib
rary/ms997627.aspx), 2001.

K. Harms, Forensic analysis of system restore points in Microsoft
Windows XP, Digital Investigation, vol. 3(3), pp. 151-158, 2006.

J. Holderness, MRU lists (Windows 95) (www.geocities.com/Silicon
Valley /4942 /mrulist.html), 1998.

E. Kohl and J. Schmied, comctl32undoc.c, Wine Cross Reference
(source.winehq.org/source/dlls/comctl32/comctl32undoc.c), 2000.

V. Mee, T. Tryfonas and 1. Sutherland, The Windows registry as a
forensic artifact: Illustrating evidence collection for Internet usage,
Digital Investigation, vol. 3(3), pp. 166-173, 2006.

Microsoft Corporation, Windows registry information for advanced
users, Redmond, Washington (support.microsoft.com/kb/256986),
2008.

B. Sheldon, Forensic analysis of Windows systems, in Handbook of
Computer Crime Investigation: Forensic Tools and Technology, E.
Casey (Ed.), Academic Press, London, United Kingdom, pp. 133—
166, 2002.

	II FORENSIC TECHNIQUES
	TEMPORAL ANALYSIS OF WINDOWS MRU REGISTRY KEYS
	Introduction
	Analysis of Registry Snapshots
	MRU Key Updates
	YD Algorithm
	YD Algorithm Limitations
	Conclusions
	Acknowledgements
	References

