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Abstract. This paper describes how to construct a graph prototype
model from a large corpus of multi-view images using local invariant
features. We commence by representing each image with a graph, which
is constructed from a group of selected SIFT features. We then propose
a new pairwise clustering method based on a graph matching similarity
measure. The positive example graphs of a specific class accompanied
with a set of negative example graphs are clustered into one or more
clusters, which minimize an entropy function. Each cluster is simplified
into a tree structure composed of a series of irreducible graphs, and
for each of which a node co-occurrence probability matrix is obtained.
Finally, a recognition oriented class specific graph prototype (CSGP)
is automatically generated from the given graph set. Experiments are
performed on over 50K training images spanning ~500 objects and over
20K test images of 68 objects. This demonstrates the scalability and
recognition performance of our model.

1 Introduction

Local invariant feature based modeling from multi-view images has become a
popular approach to object recognition. Lowe [9] presents a method for com-
bining multi-views of a 3D object into a single model representation using so
called SIFT (scale invariant feature transform) features [10]. Rothganger et al.
demonstrate how to acquire true 3D affine and Euclidean models from multi-
ple unregistered images, and perform recognition from arbitrary viewpoints [12].
Ferrari et al. present an approach, which includes a mechanism for capturing the
relationships between multiple model views, and use the model to effect simul-
taneous object recognition and image segmentation [6]. Todorovic and Ahuja
demonstrate the completely unsupervised extraction and learning of a visual
category that occurs frequently in a given set of images [I5]. This body of work
has demonstrated impressive levels of performance and provide arguably the
most successful paradigm for object recognition [4]. Recently, the methods for
modeling and recognition have been extended to large image databases. For in-
stance, Nister and Stewenius perform real-time object specific recognition using
a database of 40,000 images [LI] while Torralba et al. [I6] have considered how
to scale the methods to the internet.
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A limitation of these models is that only small variations in object viewpoint
can be accommodated. A more significant limitation is the large number of
parameters required and the assumptions imposed (such as the Gaussian nature
of the data) which may not apply in practice [8][14]. To avoid these shortcomings,
our goal is to derive a canonical model of visual category or class which is totally
data driven and does not rely on limiting model assumptions.

One way to overcome these problems is to work with view-clusters and in
this way deal with large variations in viewpoint [6][9][12]. For instance Lowe [9]
clusters together training images from similar viewpoints into single model views.
Each view cluster consists of the complete set of SIFT features extracted from
the training views, along with a record of the location, orientation, and scale for
each feature within that view. Object models can be incrementally updated and
refined as recognition is performed. However, since the view clusters contain the
union of the detected SIFT features encountered in the relevant set of training
data, two potential pitfalls are encountered. The first of these is that the view-
clusters contain an unmanageably large number of feature points. The second
problem is that many of the feature points are not salient, and this gives rise to
matching ambiguities or errors. Additional problems that remain to be solved
are a) how to select the model views and b) how many views suffice. Our method
can automatically select an irreducible set of image views, and then merge the
information contained within the redundant image views into the most similar
model views using a feature co-occurrence probability matrix.

Since the contents of each image can be captured using structured data in
the form of SIFT features, attributed graphs provide a versatile and expressive
representational tool [2]. There have been previous efforts aimed at generating a
prototype graph from a set of training examples. For example, Crandall and Hut-
tenlocher [3] use a graphical structure referred to as k-fans to model geometric
constraints based on a statistical model. Here a Gaussian distribution is used to
represent geometric relationships between the parts of an object. Jiang, Munger
and Bunke [7] use a genetic search algorithm to learn a median graph from
a training set. Torsello and Hancock [I7] have constructed the class-prototype
through tree-union and have performed clustering using a mixture of tree-unions
controlled by a description length criterion. These ideas are taken further by Es-
colano and Lozano [I] who extended the methodology from trees to graphs, and
used an EM algorithm for clustering. However, these approaches also only deal
with a small range of views. Here we extend the methodology by developing a
simple information criterion for learning the prototypes.

We commence by representing each image, or each region of interest in an
image, with a graph which is constructed from a group of selected local invariant
features. Using graphs alone, it is difficult to construct models from images
containing large variations in viewpoint based on only one central prototype.
Hence we turn to graph prototypes as a means of representing object models.
Specifically, we aim to construct class specific prototype-graph (CSGP) for object
recognition. A CSGP model is automatically generated from an arbitrary set of
images of the relevant objects under significant or complex variations in imaging
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conditions. In a CSGP object model, a group of irreducible object views are
selected by minimizing an information theoretic entropy criterion defined on a
given training set. Each irreducible graph can be regarded as a central prototype
used to seed an object model. The information contained in those graphs that are
not selected as prototypes for model construction, and referred to as redundant
graphs, is combined with the most similar prototype using node co-occurrence
probabilities.

In previous work we have shown how the salient features required to construct
such a representation can be extracted from images, and detail the representa-
tion of class prototypes [I8/T9]. The novel contribution of the current work is to
show how the representation may be optimised with respect to both representa-
tional capacity and performance. The paper is organized as follows. In Section 2,
we introduce some preliminaries, including how SIFT features are ranked, and
present a pairwise graph matching method and the associated similarity mea-
sure required to merge graphs. In Section 3, we present the method used to learn
CSGP models. We present experimental results in Section 4 and conclude the
paper in Section 5.

2 Preliminaries

For an image, those SIFT [10] features that are robustly matched with the SIFT
features in similar images can be regarded as salient representative features. Mo-
tivated by this, a method for ranking SIFT features has been proposed in [21].
Using this method, the SIFT features of an image Z are ranked in descending
order according to a matching frequency. We select the 7 best ranked SIFT fea-
tures, denoted as V={V*, t = 1,2,...,T }, where V* = (X)T,(D"T, (U)T)T.
Here, X* is the location, Dt is the direction vector and U’ is the set of de-
scriptors of a SIFT feature. In our experiments, 7 is set to 40. If there are less
than this number of feature points present then all available SIFT features in an
image are selected. We then represent the selected SIFT features in each image
using an attributed graph.

Formally, an attributed graph G [3] is a 2-tuple G = (V, E), where V is the set
of vertices, ECV xV is the set of edges. For each image, we construct a Delaunay
graph G using the coordinates of the selected SIFT features. In this way, we can
obtain a set of graphs G ={G;, I =1,2,..., N} from a set of images.

We perform pairwise graph matching (PGM) with the aim of finding a max-
imum common subgraph (MCS) between two graphs G; and G, and the result
is denoted as M CS(G;,Gy). In general, this problem has been proven to be NP-
hard. Here we use a Procrustes alignment procedure [13] to align the feature
points and remove those features that do not satisfy the spatial arrangement
constraints.

Suppose that X; and X, are respectively the position coordinates of the se-
lected features in graphs G; and Gy. We can construct a matrix

Z = argmin || X; - 2 - X,||r, subject to 27 -2 =1. (1)
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where || o || 7 denotes the Frobenius norm. The norm is minimized by the nearest
orthogonal matrix

Z*=w-T*, subjectto X -X,=¥ - ¥ - T* 2)

where ¥ - ¥ - T* is the singular value decomposition of matrix X/ - X,. The
goodness-of-fit criterion is the root-mean-squared error, denoted as e(X;, Xy).
The best case is e(X;, X;) = 0. The error e can be used as a measure of ge-
ometric similarity between the two groups of points. If we discard one pair
of points from X; and X, denoted as X;_,; and Xq—; , e(X;—i, Xg—i), @ =
1,2,...,[|CS(G,Gq)|| can be obtained, where C'S(G;,Gy)|| is the number of SIFT
features between two graphs initially matched using the matching proposed in
[I8IT19]. The maximum decrease of e(X;_;, X,—;) is defined as

Ae((|CS(Gr, Go)ll) = e(Xi, Xg) — min{e(Xi—i, Xg—i)} 3)

if Ae(||CS(Gi,Gy)ll)/e(X1, X,) > €, e.g. € = 0.1, the corresponding pair X; and
X ; is discarded as a mismatched feature pair. This leave-one-out procedure can
proceed iteratively, and is referred as the iterative Procrustes matching of G;
and Gj.

Given MCS(Gi,Gy) obtained by the above PGM procedure, we construct a
similarity measure between the graphs G; and G, as follows:

R(G1,Gq) = [MCS(Gr, Gg)|| x (exp(= e(Xi, Xg)) )" (4)

where ||MCS(Gi,Gy)| is the cardinality of the MCS of G; and Gy, & is the
number of mismatched feature pairs discarded by iterative Procrustes matching,
which is used to amplify the influence of the geometric dissimilarity between X;
and X,.

We use the similarity measure to define a Positive Matching Graph (PMG)
using the test
1 R(Gl,Gq) > R,

0 else

P(Gy,Gy) = { (5)
where R.; is a threshold on the similarity measure. If P(G;,Gy) = 1, the two
graphs G; and G are called a PMG pair.

Finally, for the graph set G ={G,, ¢ = 1,2, ..., N}, for each graph G; € G, and
the remaining graphs in the set (VG4 € G), we obtain the pairwise graph simi-
larity measures R(Gy, G4) defined in Equation (). Using the similarity measures
we rank in descending order all graphs G. The K top ranked graphs are defined
as the K-nearest neighbor graphs (KNNG) of graph G, denoted as K{G}.

3 Class Specific Graph Protypes

In this Section, we commence by showing how to construct an initial class specific
graph prototype (CSGP). We then describe how to simplify such a CSGP model
to obtain a compact model which suffice to capture structural variations from
multiple views of objects of a particular class.
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3.1 Construction of Initial CSGP

A Class Specific Graph Prototype (CSGP) is defined as 2-tuple CSGP =
(PV,PE) , where 1) the prototype vertex PV ={ G;,l=1,2,...,N } is a fi-
nite set of graphs forming the nodes of the CSGP; 2) the prototype-edge PE
is the edge set of the CSGP. There is an edge between two nodes G; and Gy,
denoted by Edge(G;,Gy), if and only if P(G;,G,) = 1.

For efficiency, we use an incremental clustering tree-RSOM proposed in [20] for
incrementally learning large corpus of SIFT descriptors and obtaining K,{G,}.

3.2 Learning a CSGP Model

Optimal Pairwise Clustering of CSGP. Suppose an initial CSGP model
has been trained from a batch of images. In the CSGP model, the relationships
of the graphs K,{G;} have been encoded and will be updated with additional
graphs. The number of the items in K- {G)} is largely influenced by the threshold
R,. We wish to obtain a compact representation from the initial CSGP. To this
end we provide two basic definitions.

The siblings of G; are defined as:

S5{Gi} = {G, € KA{Gi} | P(G),G,) =1} = Sp {G1}. (6)

For each graph G, € S{G,}, the corresponding siblings can also be obtained. In
this way, we can iteratively obtain a series of graphs which all satisfy consistent
sibling relationships. The graph set, obtained in this way, is called a family tree
of graph Gj.

Given a CSGP model, a Family Tree of a Graph (FTOG) of G; with k gen-
erations and denoted as F{G/, k}, is defined as:

F{G,k} = F{G,k — 1} U Sk, {Gy}. (7)

G, €F{Gik—1}

where, if kK = 1, F{G,,1} = F{G,,0} | US{Gi} and F{G,,0} = {G;}; and the
process stops when F{Gj, k} = F{Gj,k + 1}. An FTOG, whose graphs satisfy
the restriction defined in Equation (@), is a sub-set of graphs in a CSGP model
and can be regarded as a cluster of graphs. We refer to this process as pairwise
clustering.

Consider a CSGP model, VR, 3G, ,i = 1,2,...,¢, subject to F{Gy,,g9} N
F{Gi,,9} = 0,1 # j,i,j € {1,2,...,c }. We uniquely label these FTOG’s as
L1, Lo, ..., L. and denote the cluster set as follows:

CRT = { FRT{Gl,OO}} e { F; | le {Ll,LQ, ...,LC} } (8)

Clearly, the clustering result is influenced by threshold R.. Hence, we present a
learning approach to obtain the optimal value of R, for a given CSGP model.
We can regard the above clustering process as a classification problem which
gives rise to four possible outcomes, i.e a) true positive, b) false negative, c)
true negative and d) false positive. The number of instances corresponding to
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the above four cases are separately denoted as |T'P|, |F'N|, |TN| and |FP|.
Accordingly a confusion matrix can be constructed representing the dispositions
of the set of instances. This matrix forms the basis for computing many common
performance measures [5], such as precision (p), recall (r) and the F-measure (f).

We denote the positive graph set as g*, and the negative graph set g—. We
only consider those FTOGs generated from those graphs which belong to gT.
Suppose that TP = |Cr.{g"}|, FP = |¢g~ (Cr,{g"}| and |P| = |g"|. We define
the precision, recall and the F-measure as p{R, | g*,9~} = TP/(TP + FP),
r{R;|gT,g7} =TP/P and f{R,|g",97} = 1/p3_1/r. We define an entropy

on Cg, {g*} as follows.

Ly,

F
E{Cgr.} =— Z{pz -logpi}  where p = L|chl||||F ||7 =1,2,..,Le. (9)
=1 =1 l

We wish to find the optimal threshold R, = max{argming FE{Cg.}} such
that f{R,; | g7,97} > 1 — &, where the threshold ¢ is is heuristically set to
0.02 in our experiments. The smaller E{Cg,, }, the better. If E{Cr, } =0, then
all the graphs in g* are clustered into a single FTOG, and the corresponding
F-measure is greater than 1 — ¢. The optimal cluster membership is such that
Cr, {97} 2 { B[l €{L1, La, ..., Lc}}.

In the above process, with the decrease of threshold R, then f{R, | g™, g7}
may decrease significantly. Namely, if 3G, € g% and R, subject to:

VB [9797}

oim VR, 00. (10)

4 Experimental Results and Discussions

We have collected 53536 images as a training data set which spans more than
500 objects, including some human faces and scenes. From the training data we
have obtained an RSOM clustering tree with 25334 leaf nodes using the method
described in [20]. The method was implemented using Matlab 7.2 and run on
a 2.14GHz computer with 2G RAM. In the incrementally training process, we
have obtained K,{G;} for each of the graphs. Following this, we individually
train the CSGP models for the above 68 labeled object classes using the method
presented in Section For training a single specific object, the positive graphs
are those of the desired class and all remaining graphs, labeled or unlabeled, are
regarded as the negative set. This method is also adopted for recognition test.

The training process is incrementally carried out commencing from the first
batch of 3600 graphs of A to all 50K graphs. For each object, the minimized
entropy, and its accompanying F-measure and similarity threshold have been
learned. As a second training stage, the similarity threshold for selecting irre-
ducible graphs, the number and percentage of irreducible graphs are also learned.
These parameters are part of the generated CSGP model and will be used for
recognition and incremental training.



Learning Class Specific Graph Prototypes 275

As distinct from most object recognition methods, where many implemen-
tation parameters can be varied, our method individually generate optimized
models for each concerned object from given training data-sets.

Using the trained model, the F-measures of recognition test for Object 1 to
Object 68 are shown in Table[Il It is interesting to note that the test recognition
performance of Object B1 to B8 is very close to that obtained in [12] when only
SIFT features are used (corresponding to the 8 objects marked magenta in Table
[l However, our results are obtained with large negative sample sets.

Table 1. F-measure f for given test set of Object 1~68

ID f ID f ID f ID f ID f ID f ID f ID f ID f ID f
1.996 2 .955 3 1.0 4.983 5 1.0 6 1.0 7 1.0 8.989 9 1. 10 1.0
11.985 12 1.0 13.987 14 1.0 15 1.0 16 1.0 17 1.0 18.984 19.979 20 1.0
21.98522 1.0 23 1. 24 1.0 25 1.0 26 1.0 27.995 28 1.0 29 1. 30 1.0
31 1.0 32 1.0 33.992 34 1.0 35 1.0 36 1.0 37 1.0 38.993 39.979 40 1.0
41 1.0 420.989 43 1.0 44.995 45.941 46 1.0 47 1.0 48 1.0 49 1.0 50.988
51.625 52 1.0 53 1.0 54 1.0 55.714 56 1.0 57.953 58 1.0 59.992 60.998
51.625 52 1.0 531.0 5/ 1.0 55.714 56 1.0 57 1.0 58 1.0

61.992 62 .997 63.993 64.983 65.991 66.989 67.994 68 1.0

The recognition result is largely determined by the training samples. Figure [I]
(Left) shows how the F-measure is influenced by training samples for object C10.
As a trend, the F-measure increases with the number of training samples. In our
model, the F-measure is determined by the irreducible graphs. For objects Al
to A50, the average number of irreducible graphs are about 30% of the initial
number of graphs. This means that 1 in 3 of the initial graphs are selected.
This verifies the conclusion that an initial model view can be used to match and
identify views of the object over a range of rotations of at least 20 degrees in
any direction [9]. As an example, the F-measure of object B1 is low. The reasons
include 1) B1 is an apple who lacks suitable texture; 2) Several of the test samples
are largely occluded; 3) Both the test set (11 samples) and the training set (29
samples) are too small. Hence, for objects Bl to B8, the minimum number of
graphs is only 16 and the maximum number of graphs is only 29, while the view
variation is very large. Hence basically all graphs are irreducible. If the training
and test graphs are obtained under similar imaging conditions (including the
camera viewpoint), though the training set is small, we might still obtain good
test result. If not, the F-measure tends to be low as shown in Figure [I] (Left).

For objects with complex appearance, we need a large training sample set.
For each of the objects in C1 to C9, the number of irreducible graphs is compar-
atively large. However, for an increasing number of graphs, the number of new
irreducible graphs, incrementally learned using our method, will decrease. As
an example, only about 5% of the graphs are selected as irreducible graphs for
object C10, shown in Figure[Il (Right). Using the redundant graphs, the node co-
occurrence probability can be determined and used to locate the the most typical
representative sub-graph (i.e. the median) of each irreducible graph. Hence each
irreducible graph acts as a central prototype and a test graph, coming from the
i.i.d. of an irreducible graph, is likely to be correctly recognized.
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For a trained model CSGP; of object k, we define maxg, ecsap, R(Gi,Gy)
as the similarity of a graph instance G; to that model. For the above test set,
as an example, the probability distribution (histogram) of the similarity of the
positive set (the magenta part) and the negative set (the blue part) for object
C10 are shown in Figure [I] (Right). This clearly illustrates the distinctiveness
between negative and positive instances using our generated CSGP model. Hence
we obtain high recognition performance for Object 68, as shown in Table [l
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Fig. 1. Test result of object C10. F-measure of recognition test varies with the number
of training samples is shown in the left sub-figure. For each number, we randomly select
10 different combinations and obtain the corresponding F-measures. The average of
these F-measures is marked as 'e’, and the standard deviation of F-measure is marked
as a vertical magenta line. Similarity distributions of negative and positive test set are
shown in right sub-figure. The green line corresponds to the learned threshold R, of
object C10.

5 Conclusion

This paper describes a framework for generating structural models from a large
corpus of multi-view images. Our model is a comprehensive integration of the
global and local information contained in local features from different views. The
model is totally data driven. Using our method the precision of recognition can
always be kept high while the recall can be improved with incremental training.
Directions for future work include exploring the use of the method for image
indexing and annotation. The most significant limitation of our approach is that
it is best suited for objects that have some texture, much like the other local
invariant feature of appearance based recognition schemes [6][12]. Hence we will
combine some contour or edge based local invariant feature extractors for further
research. We leave such problems as future work.
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