
Marker-Less Tracking for Multi-layer Authoring
in AR Books

Kiyoung Kim, Jonghee Park, and Woontack Woo�

GIST U-VR Lab.
500-712, Gwangju, S. Korea

{kkim,jpark,wwoo}@gist.ac.kr

Abstract. An Augmented Reality (AR) book is an application that ap-
plies AR technologies to physical books for providing a new experience
to users. In this paper, we propose a new marker-less tracking method
for the AR book. The main goal of the tracker is not only to recog-
nize many pages, but also to compute 6 DOF camera pose. As a result,
we can augment different virtual contents according to the correspond-
ing page. For this purpose, we use a multi-core programming approach
that separates the page recognition module from the tracking module. In
the page recognition module, highly distinctive Scale Invariant Features
Transform (SIFT) features are used. In the tracking module, a coarse-to-
fine approach is exploited for fast frame-to-frame matching. Our tracker
provides more than 30 frames per second. In addition to the tracker, we
explain multi-layer based data structure for maintaining the AR book.
A GUI-based authoring tool is also shown to validate feasibility of the
tracker and data structures. The proposed algorithm would be helpful to
create various AR applications that require multiple planes tracking.

Keywords: augmented reality, marker-less tracking, layer authoring,
page recognition, AR book, SIFT.

1 Introduction

Camera tracking plays an important role in the implementation of Augmented
Reality (AR) applications. Generally, the purpose of camera tracking in AR is to
compute a relative camera pose, represented in a rotation and a translation ma-
trix, with respect to the local coordinates of a tracked object. Then, the camera
pose is used to augment virtual contents with the projection matrix obtained
from camera intrinsic parameters. For AR book applications it is mandatory
to recognize which page is visible and to compute a camera pose in real time.
In particular, AR book applications requires a robust page number extraction
because it allows developers to map different virtual contents onto the corre-
sponding page of a book. The stability and accuracy of camera poses are also
important issues as well as the speed of tracking. An unstable and slow tracker
� This research was supported by the CTI development project of KOCCA, MCST in

S.Korea.

S. Natkin and J. Dupire (Eds.): ICEC 5709, pp. 48–59, 2009.
c© IFIP International Federation for Information Processing 2009



Marker-Less Tracking for Multi-layer Authoring in AR Books 49

may cause users to lose immersion to the AR books. Additionally, a real-time
page recognition method is also requires for the AR books. With AR books, users
can not only read the story written in the traditional way, but also view and
manipulate 3D models with the help of a good camera tracker. Moreover, AR
books offer improved user experiences by providing new applications which were
not available with traditional books, such as 3D virtual games or storytelling.

Many AR books with camera trackers have been developed [1,2,3]. In the early
stage, fiducial markers were used to get a camera pose relative to the markers
[1]. The fiducial markers are convenient for identifying each page and computing
camera poses. Additionally, attaching the markers on the physical tools provides
a way of interaction which allows direct manipulation of augmented objects.
However, the markers distract users’ concentrations and are sensitive to occlu-
sions. Recent AR books adopt tracking by detection-based marker-less tracking
methods [2][3]. The marker-less methods are robust to occlusions and do not
require any distinctive markers onto pages. However, most of the marker-less
tracking methods require high computational costs and are not much faster than
marker-based methods. Moreover, the fast method, like [4] requires a lot of time
and computer memory in training phase so that it takes long time for authoring
the contents. A hybrid method which uses markers for page recognition and ran-
domized trees for camera tracking [4] was proposed in order to support multiple
pages [5].

In this paper, we propose a new marker-less tracking method which supports
real time page recognition and fast camera tracking. We use a multi-core pro-
gramming approach which separates a page recognition from a camera tracking
module in order to improve the performance without losing accuracy and ro-
bustness of the tracker. Our method adopts highly distinctive Scale Invariant
Features Transform (SIFT) features [6] for the page recognition. We extract
SIFT features from each page and save them as a template in the offline process.
When an input image comes into the tracker, the tracker compares the SIFT
features of the input image and the saved SIFT features template. The process-
ing time for the comparison process is varied according to the total number of
features in each page. We proposed an efficient voting-based method to filter out
irrelevant pages to reduce the processing time for the recognition. In a camera
tracking phase, we perform frame-to-frame matching based on a coarse-to-fine
approach with FAST corners [7]. In addition, we explain a multi-layer, a set of
subregions of a page, data structure for maintaining the AR book. The Graphi-
cal User Interface (GUI) based authoring tool is shown to validate feasibility of
the proposed tracker and the multi-layer based data structure.

2 Related Work and Background

2.1 Mark-Less Tracking Methods

There have been recent developments on marker-less tracking. We categorize the
marker-less tracking into two groups according to its prior conditions: The first
one is detection-based tracking (tracking by detection) methods [4,8,9,10]; the



50 K. Kim, J. Park, and W. Woo

second one is SLAM-based methods [11,12,13,14]. While the detection methods
have been used mainly in pre-defined object tracking, the SLAM-based meth-
ods have been used in unknown environments. Thus, for AR book applications,
detection-based tracking methods are more appropriate than SLAM-based meth-
ods because we already know which page are included in the AR book. The
important problem of the detection-based methods is the processing time for
the feature recognition. Trackers with SIFT [6] or SURF [15] was not enough
for real time AR applications due to heavy computational costs. To provide real
time recognition, the randomized tree (RT) was adopted [4,10]. However, the
RT generation takes around 1 minute per one page. And it is not easy to uti-
lize RT method in a multiple pages recognition because of the large amount of
memory for keeping RT structures. It is not desirable characteristic for AR book
designers or developers.

Our method overcomes the limitations in training time and the camera frame
rate by adopting a multi-core programming approach. The proposed method
differs from [14,16] in which we maintain two different SIFT and FAST features
for the page recognition and frame-to-frame matching. We get the benefits of
both, SIFT features and FAST corners, so that the tracking is done in less than
10ms. Only orthogonal images of the pages are required to start tracking and
the preparation (training) time takes less than one second per page. Thus, the
proposed method is efficient to use in AR authoring.

2.2 Background

The pinhole camera model is adopted as the camera model for the proposed
tracking algorithm. A 3D point X =

(
X, Y, Z, W

)T in homogeneous coordinates

is projected onto x =
(
u, v, w

)T using Eq. 1:

x = K
(
R t

)
X (1)

where R and t is a rotation and a translation matrix, respectively. K is a camera
intrinsic matrix consisting of focal length, principal point and so on. Let us
assume that a page of a book is planar. In this case, the Z-value of 3D point X
becomes zero. Thus, the relation between 3D points X and its projected point
x is represented as a plane transformation, Homography H as shown in Eq. 2:⎛

⎝ u
v
w

⎞
⎠ = K

(
R3×2 t3×1

)
︸ ︷︷ ︸

H3×3

⎛
⎝ X

Y
W

⎞
⎠

︸ ︷︷ ︸
M

(2)

In many AR book applications, it has been assumed that model points M is
known as a priori with the assumption of W = 1 without loss of generality.
The model points are usually obtained from an orthogonal image of a page by
applying existing feature detectors [6,15]. Thus, we should know the correspon-
dences of model points and their observed points in the input image to compute



Marker-Less Tracking for Multi-layer Authoring in AR Books 51

H . Then, given K, the camera pose
(
R t

)
is decomposed from H by using a

rotation property [17].
The goal of the page recognition is to provide adequate model points M when

we compute H . It is very inefficient to use all of model points of all the pages
because a large number of model points require considerable processing time to
recognize each page as well as computational memory. The proposed method
reduces the recognition time by comparing the input image with the candidate
pages which have high probability.

3 Proposed Approach

3.1 Preparation and Overall Procedure

We take an orthogonal image (O) of a page as a template. Then, we extract
SIFT features (S) from the orthogonal image. And also, we apply FAST corner
(F) detector to get additional points on the page. As a result, we have Oi,Si,Fi

of ith page. In addition, we generate pyramid images (Li,s) from Oi where s
is a pyramid level from 0 to 4. We apply the FAST corner detection for each
level and keep the output points of each level for frame-to-frame matching. The
process is done in offline. Thus, it does not affect the performance of the tracker.

As shown in Figure 1, the proposed marker-less tracker uses two threads.
The main thread where the camera tracking is carried out via a frame-to-frame
matching determines an overall frame rate. The other module, the page recog-
nition process, is repeatedly performed in the background thread, which is rel-
atively slower than camera tracking in the main thread. We explain details of
two modules in Section 3.2 and Section 3.3, respectively.

3.2 Real-Time Page Recognition

In this section, we explain the method that determines a visible page. We adopt
SIFT features for the page recognition. The SIFT is highly distinctive so that
it can support multiple pages. In addition, it does not require a lot of time to
process when we make tracking data compared to other method, like [4], which is
an efficient property for authoring of many pages. The output of the method are
page ID (pid) and the Homography (H) induced from matching results between
the input image and Opid. The problem is, specifically, to find out parameters
by comparing SIFT features of input image (Sinput) with the saved features in
the preparation step (3.1) which satisfy Eq. 3.

E∗ = argmin
H,pid

‖Sinput − HSpid‖ (3)

The goal of our method is to reduce the processing time when an AR book has a
large number of registered pages. The first step to achieve the goal is evaluating
all pages at every frame with given an input image. We use a voting scheme in
the first step. We compute the defined scores at each page, and then sort the
pages in a high score order. Then, the dense matching process is performed step



52 K. Kim, J. Park, and W. Woo

7

Compute

Homography (H) 

Perform dense match 
Valid?

Search points 

(Coarse-to-Fine)

Compute

Homography

Decompose

Homography

Enough

points?

Yes

Yes

No

Inliers,

Page ID

(R t)i-1

Test Page ID 

(Localization)

No

Evaluate page 

Valid Page 

ID?

Count inliers 

Yes

No

Inliers,

Page ID,

H

Tracking Thread (Main) Page Recognition Thread (Background)

image
image

Fig. 1. Overall flowchart of the proposed tracker using two threads

by step from the highest-score-page to the lowest-score-page. The score function
of kth page is shown in Eq. 4:

Score(k) = −1 × {ω1EDIST (k) + ω2ESSD(k)} (4)

where EDIST and ESSD evaluate a sequential and a similarity constraint, re-
spectively. ω1 and ω2 are weighting factors between two evaluation functions.
EDIST score measures how much the page is far from the lastly recognized (or
currently viewing) page (pid∗) as shown in Eq. 5:

EDIST (k) = ‖pid∗ − k‖ (5)

Eq. 5 allows to begin with the closest page matching. ESSD score measures how
much the input image is similar with the reference pages. We generate low level
t pyramid image (Linput,t) of the input image. And we perform Sum of Squares
Difference (SSD) with Linput,t and each page pyramid image Lk,t.

ESSD(k) = SSD (Lk,t,Linput,t) (6)

When the image resolution is 640 × 480 pixels and t = 4, the image size of Lk,4
becomes 40 × 30 pixels. To reduce computational time, we limit the number of
candidate pages. If we have the set of page scores C∗ = {ci > cj > ck, ...}, we
compute the ratio values between adjacent pages, for example, r(i, j) = ci

cj
. If

the ratio is drastically changed, we ignore the consequent pages.
Based on the candidate pages from the process mentioned earlier, we perform

dense matching process in the second stage. In the dense matching process, we



Marker-Less Tracking for Multi-layer Authoring in AR Books 53

compare Sinput with SIFT features of candidates pages sequentially. We compute
Homography and count inliers during the dense matching process. If the number
of inliers satisfies our condition, then the system recognize the visible page as the
recognized one. After the visible page is identified, we compute Homography and
count inliers again. Finally, the page ID, Homography, and inliers information
are sent to the main thread. For speeding up matching process, k -d tree can be
used. Therefore, we can easily get the page ID without comparing all features in
all pages.

3.3 Marker-Less Tracking

In this section, we explain the tracking thread illustrated in Figure 1. The main
thread is used for frame-to-frame matching, which matches points from two
sequential images. The frame-to-frame matching enables a fast and an easy way
to handle points because the movement of points between each frame is short.
The tracking thread has i) localization and ii) frame-to-frame matching modules.

The localization is to find the current locations of the saved FAST corners
with given Homography (H) obtained from the page recognition process. From
the localization process, we find out which points are visible and valid for track-
ing. This is tested whenever the recognition module passes the results (page
ID, H , and inliers) to the main thread. We need to search the corresponding
points again because H often yields inaccurate results. For this purpose, we ran-
domly select few sample points and warp patches of them by H . Then, SSD is
performed for the selected points. After we find the corresponding points, we
perform the guided matching within very narrow area. Then, we accept only if
the reprojection error (Rε) and the number of inliers satisfy the below conditions
in the validation test.

Rε < Tinit and # of Inliers
Total # of Points > Tinliers (7)

From the experiments, we found the tracker works well when Tinit is 2.0 pixels
and Tinliers is 0.1. The localization enables recovery of the camera pose when
tracking fails.

The frame-to-frame matching starts with the Homography (Hprev) of a pre-
vious frame and matched points. While the localization is performed only when
the page recognition results are available, the frame matching is called at every
new frame. First of all, we project high-scored 50 points of Fpid by Hprev and
search the corresponding points to what within a circular area with radius ρb.
Then, we compute Homography Hc with the coarse matching results. We project
many points based on Hc and search again within a reduced circular area with
radius ρb

2 . Finally, we obtain the refined Homography Hfinalwith many matches
and warp the patch at each step with given Homographies. To improve the speed
of the tracker, only if the initial error is small, we use the matched patches in
the current image without warping. The final step is to decompose the Hfinal

into rotation and translation matrix [17].



54 K. Kim, J. Park, and W. Woo

3.4 Multi-layer Authoring

One of obstacles in building AR book applications with a marker-less tracker is
positioning virtual contents. In particular, content-aware augmentation, which
augments virtual contents in accordance with real figures, texts, or user-defined
regions in the page, cannot be realized without analyzing a page layout and
layers. In this section, we address a multi-layer authoring scheme to realize a
content-aware augmentation efficiently.

We define a page layout Ri as an arrangement and a style of virtual con-
tents on the page. Ri of the page has multiple sub-layers {r1, r2, ..., } which are
defined by users. We use a scene graph structure for representing the multiple
layers. Users define a sub-layer by dragging or picking a virtual point and allo-
cate contents to the sub-layer. Currently we provide users pictures, text, sound,
videos, and 3D CG models as virtual contents. Each layer is defined with several
virtual points by the users and the defined layers are saved. Figure 2 shows a
scene graph representation of the AR book and its Extensible Markup Language
(XML) representation. The AR book consists of multiple pages. Additionally,

Fig. 2. Illustration of page data structure and its example of XML representation

each page of the AR book is able to include multiple sub-layers which have areas
of various contents. Each sub-layer can have multiple contents. When users cre-
ate a sub-layer or area using an input device, the transformation that includes
rotation and translation values is stored in the parent node of the layer.

Figure 3 shows the overall procedure of a multi-layer based authoring. When
users make an AR book, a multi-layer authoring system constructs a scene graph
of the AR book for rendering virtual contents in an AR environment. The gener-
ated multi-layer of the page is stored in XML format to facilitate the modification
of the layers later in the layer management module. The AR book Viewer loads
XML file according to a visible page ID in online mode. After that, the AR book
viewer parses the XML file. After parsing page layers information, contents are
augmented on top of the page.



Marker-Less Tracking for Multi-layer Authoring in AR Books 55

Fig. 3. Procedure for the multi-layer authoring

4 Implementation and Results

In this section, we explain practical implementation issues of the proposed algo-
rithm and show experimental results. We used a 2.66 GHz core 2 duo CPU with
a GTX280 NVIDIA graphic card for our experiments. The camera resolution
was 640 × 480 pixels and it supported up to 60 frames per second for rendering
image onto a screen. We used an ordinary book consisting of figures and texts.
No special markers were attached onto pages in the book. We implemented an
AR book system using OpenSceneGraph [18]. The OpenSceneGraph allows to
manage virtual contents efficiently. And also the proposed tracking algorithms
were implemented using OpenCV [19] library. We exploited Graphics Processing
Unit (GPU) implementation of SIFT [20] for increasing the speed of the page
recognition.

4.1 Page Recognition and Marker-Less Tracker Performance

We measured the processing time in the page recognition. In total 30 pages were
registered in advance and the features mentioned in 3.1 were extracted. The
time for the registration was only 3 seconds for 30 pages with the help of GPU
powers. This is the significant contribution of the proposed tracking algorithm
compared to the other tracking algorithm which required about 1 minutes for
one page training [4]. Figure 4 shows the selected results when a user turns a
page step by step. We augmented different virtual contents with respect to each
page ID. The page is successfully detected in all cases. As shown in Figure 4(b),
the overall frame rate was more than 30 fps.

The performance results of the page recognition in background thread are
shown in Figure 5. We compared the proposed algorithm with the sequential
matching test, which showed the worst recognition results. The number of SIFT
features depends on the octave and scale parameters. We carried out the com-
parison with two conditions; light and heavy. As shown in Figure 5, the proposed



56 K. Kim, J. Park, and W. Woo

(a)

(b)

Fig. 4. Results of the page recognition: (a) page-dependent contents and page ID were
augmented on each page (b) corresponding performance results for the sequence

method does not drastically increase the page searching time according to the
number of SIFT feature points from the registered pages.

To show the performance of the proposed tracker, we measured the time and
the accuracy for the proposed tracker. As shown in Figure 6(a), the tracker
is robust to distance changes and rotation of a camera. Figure 6(b) shows
the average time spent in each step of the proposed algorithm. The proposed
tracker consists of three big steps; preparation, frame-to-frame matching, and
pose computation. The preparation step includes capturing camera image, check-
ing the current page number obtained from the background thread, and copying
points. Note that the coarse-to-fine matching time depends on the number of
tracked points and the size of the searching window. We used the maximum 200
points per page and 8 × 8 window size for this experiment. We observed that
our algorithm runs at between 4ms and 8ms in most cases. It is as shown in
Figure 6(c).



Marker-Less Tracking for Multi-layer Authoring in AR Books 57

(a) (b)

Fig. 5. Performance results of the page recognition compared to SIFT sequential
matching: (a) SIFT light condition: octave(2) and scale(2) (b) SIFT heavy condition:
octave (3) and scale(3)

(a)

(b) (c)

Fig. 6. Results of the marker-less tracker performance: (a) axis augmentation and
tracked points (b) average time spent in the camera tracking thread (c) corresponding
time and accuracy results



58 K. Kim, J. Park, and W. Woo

DigilogBook

Display

(Authoring Tool) 

Camera

Authoring Viewer Authoring Viewer

Fig. 7. Snapshots of the multi-layer authoring tool: (from the left) environmental setup,
mapping a figure and a video to two layers, example of another page authoring

4.2 Application to Multi-layer Authoring

We built a multi-layer authoring system using the proposed tracker, as explained
in Section 3.4. The environmental setup and two examples are shown in Figure 7.
We generated two layers and mapped a figure and a video file to each layer. In the
authoring window, users could manipulate the defined layers and see the mapped
files in a text format. In the AR viewer window, as a result, users could see the AR
contents which had been configured before. The benefit of the multi-layer author-
ing with the proposed marker-less tracking compared to marker-based authoring
is that we can use the context of figures and texts on the page when a user make
his/her own story.

5 Conclusions and Future Works

We proposed the speed-improved marker-less tracker and the multi-layout au-
thoring method. We showed that the proposed multi-layout authoring was use-
ful to facilitate the content-aware augmentation. Especially, the proposed tracker
outperformed the existing methods in time aspect. By using the proposed tracker
and authoring tool, we could have a rapid prototype of an AR book application.
In the future, we will consider edge features for more robust tracking results.
The tracker with a book of more than 30 pages will be tested and analyzed. And
also we will consider the interaction authoring with a multi-layer interface. The
proposed methods will be used not only in AR book applications, but also in
other AR applications which require multiple planes tracking.

References

1. Billinghurst, M., Kato, H., Poupyrev, I.: The magicbook - moving seamlessly be-
tween reality and virtuality. IEEE Computer Graphics and Applications 21(3), 6–8
(2001)

2. Taketa, N., Hayashi, K., Kato, H., Noshida, S.: Virtual pop-up book based on
augmented reality. In: Smith, M.J., Salvendy, G. (eds.) HCII 2007. LNCS, vol. 4558,
pp. 475–484. Springer, Heidelberg (2007)

3. Scherrer, C., Pilet, J., Fua, P., Lepetit, V.: The haunted book. In: IEEE/ACM
International Symposium on Mixed and Augmented Reality, ISMAR 2008, pp.
163–164 (2008)



Marker-Less Tracking for Multi-layer Authoring in AR Books 59

4. Lepetit, V., Lagger, P., Fua, P.: Randomized trees for real-time keypoint recog-
nition. In: IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, CVPR 2005, May 2005, vol. 2, pp. 775–781 (2005)

5. Yang, H.S., Cho, K., Soh, J., Jung, J., Lee, J.: Hybrid visual tracking for augmented
books. In: Stevens, S.M., Saldamarco, S.J. (eds.) ICEC 2008. LNCS, vol. 5309, pp.
161–166. Springer, Heidelberg (2008)

6. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. International
Journal of Computer Vision 60(2), 91–110 (2004)

7. Rosten, E., Drummond, T.: Fusing points and lines for high performance track-
ing. In: Tenth IEEE International Conference on Computer Vision, ICCV 2005,
September 2005, vol. 2, pp. 508–1515 (2005)

8. Vacchetti, L., Lepetit, V., Fua, P.: Stable real-time 3d tracking using online and
offline information. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence 26(10), 1385–1391 (2004)

9. Reitmayr, G., Drummond, T.: Going out: robust model-based tracking for out-
door augmented reality. In: IEEE/ACM International Symposium on Mixed and
Augmented Reality, ISMAR 2006, October 2006, pp. 109–118 (2006)

10. Ozuysal, M., Fua, P., Lepetit, V.: Fast keypoint recognition in ten lines of code.
In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2007,
May 2007, pp. 1–8 (2007)

11. Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time sin-
gle camera slam. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence 29(6), 1052–1067 (2007)

12. Williams, B., Klein, G., Reid, I.: Real-time slam relocalisation. In: IEEE Inter-
national Conference on Computer Vision, ICCV 2007, September 2007, pp. 1–8
(2007)

13. Castle, R., Gawley, D., Klein, G., Murray, D.: Video-rate recognition and localiza-
tion for wearable cameras. In: British Machine Vision Conf. (January 2007)

14. Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In:
IEEE/ACM International Symposium on Mixed and Augmented Reality, ISMAR
2007, October 2007, pp. 225–234 (2007)

15. Bay, H., Ess, A., Tuytelaars, T., Vangool, L.: Speeded-up robust features (surf).
Computer Vision and Image Understanding 110(3), 346–359 (2008)

16. Lee, T., Hollerer, T.: Hybrid feature tracking and user interaction for markerless
augmented reality. In: IEEE Virtual Reality, VR 2008, February 2008, pp. 145–152
(2008)

17. Pilet, J., Geiger, A., Lagger, P., Lepetit, V., Fua, P.: An all-in-one solution to
geometric and photometric calibration. In: IEEE/ACM International Symposium
on Mixed and Augmented Reality, ISMAR 2006, September 2006, pp. 69–78 (2006)

18. Openscenegraph, http://www.openscenegraph.org
19. Open computer vision library,

http://sourceforge.net/projects/opencvlibrary/
20. Siftgpu, http://cs.unc.edu/~ccwu/siftgpu/

http://www.openscenegraph.org
http://sourceforge.net/projects/opencvlibrary/
http://cs.unc.edu/~ccwu/siftgpu/

	Marker-Less Tracking for Multi-layer Authoring in AR Books
	Introduction
	Related Work and Background
	Mark-Less Tracking Methods
	Background

	Proposed Approach
	Preparation and Overall Procedure
	Real-Time Page Recognition
	Marker-Less Tracking
	Multi-layer Authoring

	Implementation and Results
	Page Recognition and Marker-Less Tracker Performance
	Application to Multi-layer Authoring
	Conclusions and Future Works

	Conclusions and Future Works
	References




