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Abstract. Mathematical modeling is used to assist in studying complex
biological systems. Still, setting up and characterizing models pose chal-
lenges of its own: identifying suitable model parameters, even when high-
resolution time course data concerning the system behavior is available, is
a difficult task. This task is further complicated when this high-resolution
data remains unavailable like for the tissue level systems considered in
developmental biology—a type of systems we focus on in the present
study. In addition, costly simulations for tissue level systems prohibit
excessive simulations during the parameter estimation phase.

Here, we propose an approach that is dedicated to assist in the task of
parameter space characterization for reaction diffusion models—a com-
mon type of models in developmental biology. We investigate a method
to numerically identify boundaries that partition the parameter space
of a given model in regions that result in qualitatively different system
behavior. Using an Evolutionary Algorithm (EA) combined with an Ar-
tificial Neural Network (ANN), we try to identify a representative set of
parameter settings minimizing the distance to such boundaries. In detail
we train the ANN on numerical data annotated using analytical results
to learn the mapping between parameter space and distances to bound-
aries, thereby guiding the optimization process of the EA to identify such
a set of parameter settings. The approach is tested with respect to its
boundary identification and generalization capabilities on three differ-
ent reaction diffusion systems—for all three we are capable of reliably
identifying boundaries using the proposed approach.

1 Introduction

Mathematical modeling is a powerful tool to help understanding processes in
complex biological systems [I4120/22]. Especially in the field of developmental
biology a certain type of models, so called reaction diffusion systems, are among
the most cited approaches [20]. Dating back to Turing [21] different reaction
diffusion systems are used to explain a range of pattern formation in different
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biological systems [BUITIT2IT3ITE23]. Although mathematical modeling thereby
has proven its value in studying biological systems, the task of setting up suit-
able models poses some challenges of its own: after translating a set of initial
hypothesis in a model structure, the usually parameterized models need to be
tuned, i.e., the model parameters need to be optimized in order to minimize the
deviation between known experimental data and simulation output. This task
is complicated especially for tissue level systems considered in developmental
biology for which in many cases only scarcely high-resolution quantitative time-
course data is available and due to the fact that the interactions between model
components tend to be non-linear [8J17]. In addition, simulations for tissue level
simulations are computationally expensive which prohibits excessive simulations
during the parameter estimation phase.

In the literature, there are mainly three different approaches to tackle the
afore mentioned task of parameter estimation for multi cell systems where mostly
qualitative data is used: (i) tuning model parameters by hand [1T23], (ii) ex-
ploiting analytical results concerning the system to guide parameter choices [12],
(iii) employing optimization techniques to minimize deviations between experi-
mental data and simulation output [8II7]. All three techniques suffer from some
limitations: tuning by hand and analytical characterizations of target systems
are feasible only for small systems due to the increasingly cumbersome process
of the analytical characterization for growing numbers of involved independent
parameters and due to the fact that the size of respective parameter spaces
grows exponentially with the system size and single simulations are computa-
tionally costly. This prohibits the necessary number of tuning steps by hand.
Optimization techniques in turn are capable of handling up to mid-sized models
but with further growing systems as well suffer from the exponential explosion of
the parameter space, complexly structured parameter spaces due to non-linear
dependencies between model components, and costly simulations.

To address the main problem of exponential explosion of these complexly
structured parameter spaces we propose a method where we couple an analyt-
ical approach with an optimization method. By exploiting analytical results to
guide the optimization process, our approach is supposed to numerically reveal
the structure of the parameter space comparable to what an analytical charac-
terization would yield. Thereby, we could learn about for instance qualitatively
different system behaviors a considered model is capable of showing and since
the target behavior is described in rather qualitative terms, a parameter set-
ting contained in a matching region of the parameter space should show good
agreement with a sought target behavior. In addition, further fine tuning should
be possible either by hand or by using one of the afore mentioned optimization
techniques where the searched parameter space is restricted to parameter space
partitions identified by our approach.

Focusing on reaction diffusion systems, in detail we use analytical results
gained for a simple system (a simplified variant of the activator inhibitor system
[12]) and machine learning techniques (ANNs [3]) in order to train a predictor to
estimate the distance of a given parameter setting from a boundary in parameter
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space that discriminates between qualitatively different system behaviors. This
predictor ANN is then used in a stochastic optimization technique (EAs [14]) to
guide the search process to identify a well distributed set of parameter settings
constituting boundaries in parameter space between qualitatively different be-
having regions of the parameter space. Due to the fact that the general principles
inducing different system behaviors are similar for all reaction diffusion systems,
namely the concept of local self-activation and long range inhibition [BI13], the
predictor ANN trained on data for the simple reaction diffusion system is sup-
posed to generalize well for other systems. After testing the ANN and EA on
the activator inhibitor system used for training the ANN, we provide a proof of
principles concerning the generalization capabilities of our approach by applying
it to two further reaction diffusions systems: an activator substrate system [13]
and the Brusselator system [16].

In the following, we will first introduce the concept underlying our approach
and give a detailed description of the approach itself (Sec. ). We then show
results gained for the three considered test systems, activator inhibitor system,
activator substrate system, and Brusselator (Sec. [)), and conclude the paper
with some final remarks (Sec. [)).

2 Approach

Briefly summarizing the concept underlying our approach, we propose to use an
EA in order to identify parameter settings for reaction diffusion systems that
delimit regions in parameter space resulting in qualitatively different system be-
havior. To guide the EA we employ an ANN that was trained using analytical
characterization data for a simple reaction diffusion system in order to predict
for a given parameter setting its distance to such a boundary. In detail we use
analytical information concerning a simplified version of the activator inhibitor
system as found in the appendix of [12]. Numerically simulating a grid of param-
eter settings covering the interesting part of the parameter space, we generate
time course data that shows the typical behaviors this system is capable of gener-
ating (cf. Fig.[l). Since due to peculiarities of the used integrators the empirical
boundaries a slightly shifted with respect to the analytically determined bound-
aries, we manually adjust the theoretical boundaries to the numerical data. We
then compute the shortest distance of each parameter set to the empirical bound-
aries. In addition we process the numerical data in order to reduce it to some
meta characteristics that capture important features to determine to which qual-
itative region a given parameter setting belongs—a necessary step to allow that
the considered characteristics become invariant to the exact specification of the
considered reaction diffusion system and therefore allow for generalization. Us-
ing these meta characteristics as inputs and the calculated distances as outputs,
an ANN is employed to learn the mapping from input characteristics to distance
from parameter setting to a boundary in parameter space. This predictor is then
used to guide an EA in order to identify boundaries delimiting regions in param-
eter space resulting in qualitatively different behavior of a given system. In this
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Fig. 1. Time courses representing the three qualitatively different behaviors of the
one dimensional activator inhibitor system. The y-axis of each plot shows the reached
concentrations while the x-axis represents time and each of the 100 curves per plot
represents the time behavior of the activator of a single cell of the system: (a) a typical
oscillating system, (b) a spatially heterogeneous pattern, and (c¢) a spatially homoge-
neous behavior.
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Fig. 2. Sketch of the training phase of the ANN as a predictor for the distance between
a parameter setting and the closest boundary in parameter space delimiting regions
resulting in qualitatively different behavior (left) and the EA that identifies points
on such a boundary for an unknown reaction diffusion system, building on the ANN
(right)

context, the EA generates a parameter setting which is then simulated. Using
the simulated time course, the inputs for the ANN are determined and building
on the prediction of the ANN with respect to the distance to a boundary, the EA
than refines the proposed parameter setting in order to better match a supposed
boundary. Both, the training process of the ANN and the EA, are sketched in
Fig. 2 and further details are given in the following.

2.1 Training Data Generation

To generate the training data for the ANN we use an already analytical char-
acterized simplified variant of the activator inhibitor system [I2] given by the
following equations:

Oa a?
6t—DAa+£h—a+U (1)
oh

Ah+ &p(a® — h) (2)
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This system consists of two interlinked species, an activator a and an inhibitor h.
Their respective time behavior is described by partial differential equations that
in addition to time depend on spatial information: a diffusion term represented
by the Laplace operator A and a diffusion constant D. Both species encompass
a reaction term, perturbed by a uniformly random value ¢ € [0.95,1.05], and a
decay term. The reaction- and decay term of the inhibitor are quantified with a
constant p. In addition, the activator contains the term o that represents basal
expression. This system depends on three constants: D, o, and pu.

To generate numerical data for this system, we consider an implementation of
this system in a one-dimensional spatial domain consisting of 100 cells with peri-
odic boundary conditions. We sample the parameter space using an equidistant
grid of 5000 parameter settings on the parameter sub-space spanned by (D, i)
and fix o = 0.001 as well as the initial conditions (a;, h;) = (0.01,0.01) of all cells
i for both species a and h. The grid spans (D, ) = [0.006, 0.3] x [0.04, 4] with re-
spective steps of (0.006,0.04). For numerical integration we consider the interval
[0, 1000] of dimensionless time and use an implicit explicit scheme consisting of a
modified Crank-Nicolson integrator and an Adams-Bashford integrator [18]. For
time discretization we use a time step of §; = 0.125 and for space discretization
we apply a spatial grid in cellular resolution.

After identifying the analytically determined boundaries in (D, i) parameter
space in the numerical data, we compute the shortest Euclidean distance for each
simulated parameter setting to these boundaries after normalizing the (D, u) =
[0,0.3] x [0, 4] parameter space to [0, 1] x [0, 1]. The resulting distances are shown
in Fig. Bl

After thereby generating the outputs used for training the ANN, in a last
step we need to reduce the integration data (per parameter setting an n x m
matrix X with n being the number of cells and m being the number of consid-
ered time points) to a set of meta characteristics that capture system invariant
features that allow the ANN to learn the mapping between parameter setting
(represented by the features) and the shortest distance to a boundary in pa-
rameter space. Analyzing the available time course data we found out that in
principle two characteristics should be sufficient to characterize the different pa-
rameter settings: (i) the spatial difference occurring between all cells during a late

Distance
Distance

Fig. 3. Normalized distances of each parameter setting in the (D, u) = [0,0.3] x [0, 4]
parameter space as determined from the simulation data (a) and predicted by the
ANN (b)
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Fig. 4. A sketch of the process used to estimate the dominant oscillation period in
time course data: (a) time course data of the activator for a 100 cell activator inhibitor
system, (b) time courses are reduced to a single time course that represents the maxi-
mum for each time point over the 100 cells (solid curve) and the threshold spresn used
for discretization (dashed curve), (c) discretized time course data for which the periods
between ‘1’ peaks are computed, and (d) histogram of the calculated periods and the
sliding window used to determine the dominant period in terms of occurrences

integration step and (ii) the dominating oscillation period estimated from the
data (for non-oscillating time courses it can be set to a very small positive value,
here 10e~1%). These two characteristics have the advantage that they are invari-
ant with respect two variations of the simulated domain, both in numbers of
cells and changes of dimensionality. Still, these two characteristics allow to cap-
ture features discriminating between oscillatory and stable system behavior and
spatially homogeneous or heterogeneous states. When in addition considering
these two characteristics only for the activator, we gain further invariance with
respect to possible other realizations of an inhibition, e.g., instead of a direct
inhibition by an inhibitor, inhibition could be realized by depleting a substrate.

While the computation of the spatial difference is a straight forward proce-
dure, we briefly explain how we estimate the dominant oscillation period. In a
first step, we reduce the existing time course data X to a consensus time course
Xoinaz by taking the maximum over all cells for each time point. This has the
advantage of generating a more regular signal since due to the stochastic £ terms
the considered time course might show some irregularities in single cells. In a
second step we discretize the data using a threshold dypresn = %mean (Xmaz)- For
all time points where X4 > Othresh, the discretized time course data X gisc is
set to 1 and 0 otherwise. Then, the periods between ‘1’ peaks are determined and
gathered in a histogram with buckets encompassing 5 time steps. Using a sliding
window covering 5 consecutive buckets, the period with the most occurrences is
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determined where in case of equal occurrences we have a preference for shorter
periods. The process of determining the dominant period is sketched in Fig. [

2.2 Artificial Neural Networks

To learn the mapping between inputs extracted from the time course data of the
numerical integration to the distance of the respective parameter setting to a
boundary in parameter space delimiting partitions of qualitatively different sys-
tem behavior, we chose to use ANNs [3]. Since learning the described mapping is
a regression problem, we decided to choose feed forward multi-layer perceptrons
with two layers of adaptive weights and in total three layers: an input layer with
two neurons, a hidden layer of 50 neurons with hyperbolic tangent functions
as activation functions, and an output layer with a single neuron and a linear
activation function. To further enhance the predictive capabilities of the ANN,
instead of a single ANN we decided to train an ensemble of ANNs [19]. In detail
we use the W-SECA procedure proposed by Grannito et al. [6] to construct the
ANN ensemble where the ensemble prediction is the weighted mean of all ANNs
in the ensemble, using the following weighting function w; for each ensemble
member i [6]:
e; 2
wi =y (3)

3 €

Here, e is the prediction error of an ensemble member with respect to the data
set containing all 5000 data points and j iterates over all ensemble members.
Since the single input values can become rather large, to facilitate training we
transform the inputs by taking their logarithm. Each ensemble member is trained
using the scaled conjugate gradients algorithm [3]. For training, the available
data is divided in a training set and a validation set using bootstrapping: the
training set consists of 5000 bootstrap samples while the not-sampled points are
used as validation set. The ANNs are trained using the training set until the
prediction error for the validation set in successive training epochs gets worse.
Ensemble predictions of the ensemble used in the following for all parameter
settings used during training are shown in Fig.

2.3 Evolutionary Algorithm

Aiming at the identification of a representative set of parameter settings de-
limiting regions in parameter space resulting in qualitatively different system
behavior, we complement the optimization criterion of minimizing the distance
to a boundary by a second objective: the coverage of the parameter space by
identified parameter settings. In order to identify trade-offs between these two
objectives we apply the Multiobjective Covariance Matrix Adaption Evolution
Strategyfl (MO-CMA-ES) [10], belonging to a class of EAs designed to identify

1 We slightly vary the original MO-CMA-ES: instead of the exact hypervolume we use
a Monte Carlo sampling method for hypervolume estimation [2] during environmen-
tal selection [9].
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compromises between conflicting objectives like distance to a boundary and cov-
erage of parameter space; the MO-CMA-ES already showed good results in a
comparable situation where on top of the core optimization criterion the coverage
of the parameter space had to be considered [9]. The coverage of the parameter
space is assessed using a criterion proposed in [9]: the parameter settings 2% in
a population G of an EA are ranked using their distance to uniformly random
parameter settings 2/ € S (see [9] for a detailed description). In total we draw
|S| = 29958 random parameter settings, following Hoeffding’s inequality [7] re-
sulting in a probability of 0.95 of resulting in an error in coverage computation
err < 0.01 for the considered two dimensional normed parameter space [0, 1]2.

3 Simulations and Results

In the following we present results of our approach on three test systems: as a
proof of principle we use the activator inhibitor system that was used for training
data generation; to test the generalizability we use two further, conceptually
different systems. Before we present the obtained results, we briefly describe the
used experimental setup as well as the means of validation for the found settings.

3.1 Methodology

For the optimization process, on each system we used the same ANN ensemble
and ran the EA 10 times. For each EA run we allowed 2500 function evaluations
using a population size of 50. For the HypE function [2] employed during environ-
mental selection we used 10000 samples and the reference point (1,100) for the
two objectives (i) distance to boundary and (ii) coverage of the parameter space.
Each of the EA runs took approximately 2 days on a two chip dual core AMD
Opteron 2.6GHz 64-bit machine with 8GB RAM using MATLAB® 7.6 (R2008a)
and the NETLAB [15] implementation for ANNs and related algorithms.

For the evaluation of the EA runs we considered two different factors: (i)
the reproducibility of the identified sets of parameter settings over all EA runs
for each system, and (ii) the goodness of the identified boundaries. Although
the reproducibility of the found sets of parameter settings is difficult to asses
quantitatively, nevertheless, visual inspection of the sets clearly showed that
certain sub spaces contained no identified parameter settings while others were
well-populated for all runs, we deem this visual inspection sufficient to docu-
ment the reproducibility. In order to validate the identified boundaries we used
two different approaches: since for the activator inhibitor system the boundaries
are known, we visually compared the identified parameter settings to the known
boundaries. For the remaining two systems we validated the putative boundaries
inferred from the identified parameter settings by probing the behavior around
the putative boundaries: we simulate parameter settings residing on vectors or-
thogonal to the assumed boundaries in order to test if a qualitative change of
system behavior occurs in the vicinity of the putative boundaries. In addition,
using the same probing technique we test if parameter settings located in regions
for which no boundary is detected exhibit qualitatively similar behavior.
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3.2 Proof of Principle

We used the proposed method to identify boundaries partitioning the parameter
space in regions resulting in qualitative different system behavior for the activa-
tor inhibitor system (Eqs.[IH2) that was used for training the ANN ensemble.
In a first go we observed that the coverage of the parameter space became worse
during the optimizations process corresponding with a reduction in number of
distinct parameter settings constituting the estimated boundaries. Eventually,
the algorithm converged ending up with only one or two parameter settings.
When analyzing the landscape of distances predicted by the ANN ensemble, we
found out that although the general distance landscape is in good agreement
with the calculated distances (see Fig B) not all boundary constituting param-
eter settings are mapped to the same globally optimal value: for example in
the the region with small D-values and large p-values the predicted distances
become negative and in terms of minimization better than those for other bound-
ary points. Thereby, our approach traded off coverage for concentrating on the
regions containing negative values. In order to prevent these false global optima
from dominating the optimization process we decided to cut-off the predicted
distance values on the level of 0. Thereby we achieve that most boundary con-
stituting parameter settings are mapped to the globally optimal value of 0 but
at the same time introduce some false positive boundary points, e.g., again in
the region with small D-values and large p-values. Using this modification the
boundary determined by our approach is in good agreement with the known
boundary (see Fig. Bl). Still, the (D, i) € [0,0.3] x [0, 1.56] regime corresponding
to oscillating system behavior contains a considerable number of false positive
settings. When again checking the predicted distances (see Fig.[Bh) it can be seen
that these false positive settings correspond to narrow spikes in the predicted
landscape—a fact that could be addressed either by considering the robustness
of the predicted distance to a boundary with respect to some sort of neighbor-
hood around the considered parameter setting or by further refining the training
process of the ANNs, e.g., by including regularization terms to smoothen ANN
outputs by preventing possible over fitting. Nevertheless, although a number of
parameter settings corresponds to false positive boundary points, the approach
in its current form already clearly shows that large parts of the parameter space
belong to qualitatively similar regions and therefore can be neglected.

3.3 Test of Generalizability

After this proof of principle, we tested the generalization capabilities of our ap-
proach by running it on the remaining two test systems. When checking the
data for the activator substrate system (Eqgs.[d@HH), the identified parameter set-
tings clearly outline a boundary from small D-values and large p-values towards
large D-values and small p-values. To validate if these settings constitute a true
boundary between qualitatively differently behaving parameter space regions we
probed the behavior in a neighborhood around the putative boundary using the
vectors shown in Fig. Bb. Evaluating the corresponding simulations we could
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Fig. 5. Plots showing the probable boundary delimiting parameter settings identified
for the three test systems: (a) identified parameter settings (circles) and analytically
determined boundary points (squares) for the activator inhibitor system, (b) identified
parameter settings for the activator substrate system and the used probing vectors,
and (c) identified parameter settings for the Brusselator as well as the used probing
vectors and the hyperplane outlining an assumed boundary

confirm that on the lower boarder of the identified boundary the system shows
a change in behavior from a spatially heterogeneous pattern (lower region in
Fig. Bb) to a spatial homogeneous pattern (upper region in Fig. Bb). In addi-
tion, along the probing vectors located in regions for which no boundary was
predicted, indeed no qualitative change in system behavior could be observed.

When looking at the putative boundary constituting parameter settings iden-
tified for the Brusselator (see Fig.[Bk), one recognizes that identifying boundaries
becomes increasingly more difficult when dealing with higher dimensional search
spaces especially when the boundaries stem from non-linear relations between
parameters. Still, we have been able to identify a hyperplane outlined by found
parameter settings. Using the same probing approach (see Fig. Bk for exact lo-
cation of hyper plane and probing vector) to validate this putative boundary, we
observed a change from spatially homogeneous timely stable solutions to timely
oscillations when following the probing vector in direction of increasing b. Again,
probing regions that according to our approach were not supposed to contain
boundaries showed no qualitative change in system behavior.

4 Conclusions

In this study we investigated the proposed approach to exploit analytical in-
formation in order to numerically characterize reaction diffusion systems. Using
an EA, we tried to identify parameter settings that constitute boundaries that
partition the parameter space in regions showing qualitatively different system
behavior. To guide the search process of the EA we employed an ANN ensemble
which was trained using numerical data generated for a simple reaction diffusion
system and annotated with analytical results. We tested our approach on three
different reaction diffusion systems, the activator inhibitor system that was used
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for training data generation, and two conceptually different reaction diffusion
systems: an activator substrate system and the Brusselator.

With the presented results we documented the reliable identification of param-
eter settings residing on boundaries in parameter space as well as the generaliz-
ability of our approach for different reaction diffusion systems. In order to further
test out approach we plan to apply it to new and larger systems—although the
results obtained for the Brusselator indicate that it might be necessary to gen-
erate exponentially growing numbers of parameter settings to reliably outline
boundaries in high-dimensional parameter spaces as well as it could become
difficult to infer the putative boundaries outlined by the identified parameter
setting with growing dimensionality.

Addressing these concerns it could be interesting to slightly alter the scope of
our approach: although knowing the complete structure of the parameter space
provides valuable information concerning the characterization of a system, in
many situations it is sufficient to identify a region in parameter space showing a
certain qualitatively behavior. Therefore it should be possible to train an ANN
ensemble, instead for boundary identification, for identification of a region in
parameter space showing the target behavior. In turn, a small number of pa-
rameter settings is sufficient to, e.g., indicate the centroid of such a region, as
well as it solves the problem of having to derive the exact location of a putative
boundary from a set of parameter settings.
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A  Further Test Systems

In the following we would like to briefly introduce the remaining two test systems
that were used in this study. To be able to test the generalization capabilities of
the proposed approach we chose to use conceptually different reaction diffusion
systems compared to the activator inhibitor system used for training purposes;
both realize the long-range inhibition by some sort of depleting substrate. Equa-
tions @HEl thereby constitute the activator substrate system [GII2/T3]. Alike to the
activator inhibitor system used for training, we fix ¢ = 0.001 and explore the
thereby reduced (D, ) parameter space. The remaining two Eqs. BH7 form the
Brusselator [16] for which we consider the three-dimensional (D, a,b) parameter
space. In all four equations £ represents a random perturbation uniformly drawn
from the interval [0.95,1.05].
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