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Abstract. In response to the constant increase in wire delays,
Non-Uniform Cache Architecture (NUCA) has been introduced as an
effective memory model for dealing with growing memory latencies. This
architecture divides a large memory cache into smaller banks that can
be accessed independently. Banks close to the cache controller therefore
have a faster response time than banks located farther away from it. In
this paper, we propose and analyse the insertion of an additional bank
into the NUCA cache. This is called Last Bank. This extra bank deals
with data blocks that have been evicted from the other banks in the
NUCA cache. Furthermore, we analyse the behaviour of the cache line
replacements done in the NUCA cache and propose two optimisations
of Last Bank that provide significant performance benefits without
incurring unaffordable implementation costs.

1 Introduction

Advances in technology have made it possible for more and more transistors
to be placed on a single chip. This enables computer architects to deal with
a huge number of transistors and build smarter processors. In the 1990s,
the main trend in constructing computers to satisfy the high performance
requirements of different applications was to increase clock speed and introduce
even greater complexity in order to exploit Instruction-Level Parallelism (ILP)
in applications. While increasing clock speed improves the performance of the
processors, it also increases power consumption. At the end of the 1990s, power
efficiency became a critical issue because the power consumption per unit of
area was growing dramatically and almost reaching the limits of affordability.
Another disadvantage of increasing clock speed is that, as memory frequency
does not grow as fast as processor frequency, the gap between processor speed
and memory speed has widened dramatically.

Today it is feasible to integrate more than one processor on a single chip. This
has opened up a new era in computer architecture (called the Multicore era) in
which the smarter integration of more than one core on a single chip becomes
the new challenge [1]. Chip Multiprocessors (CMPs) can work at much lower
clock frequencies than single core processors, thus solving the power consumption
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problem. CMPs also moderate the effects of the broad gap between processor
and memory speed by exploiting Thread-Level Parallelism (TLP). However, new
issues arise from this novel architecture. Chip complexity has increased with the
introduction of multiple processors. A high performance on-chip interconnection
network is required to connect all the components on the die. One of the main
advantages of CMPs over other multiprocessors is the on-chip network, which
enables data to be shared at very low latency.

The memory subsystem is also more complex in CMPs. Access to the main
memory is very expensive due to main memory response time and network delay.
Having a shared last-level cache on-chip is therefore a key issue in this kind of
architecture. Today’s CMP architectures incorporate larger and more complex
cache hierarchies. Recent studies have proposed mechanisms for dealing with
new challenges to the memory system posed by CMP architectures, some of
the most notable of these being cooperative caching [2,3], victim replication [4],
adaptive selective replication [5] and other works that exploit the private/shared
cache partitioning scheme [6,7].

The increasing influence of wire delay in cache design means that access
latencies to the last-level cache banks are no longer constant [8]. Non-Uniform
Cache Architectures (NUCAs) have been proposed [9] as a way of addressing
this problem. NUCA divides the whole cache memory into smaller banks and
allows nearer cache banks to have lower access latencies than farther banks, thus
mitigating the effects of the internal wires of the cache.

In this paper we propose and analyse the insertion of an additional bank into
the NUCA cache. This bank, called Last Bank, acts as a last-level cache on the
chip by dealing with data blocks evicted from the NUCA cache. Moreover, we
propose two optimisations for the Last Bank mechanism: Selective Last Bank
and LRU prioritising Last Bank.

The remainder of this paper is structured as follows. Section 2 describes
the baseline architecture assumed in our studies. Experimental methodology
is presented in Section 3. Section 4 introduces the Last Bank mechanism.
Section 5 analyses the NUCA cache line replacements and motivates the Last
Bank optimisations proposed in Section 6. Our results are analysed in Section 7.
Related work is discussed in Section 8, and concluding remarks are given in
Section 9.

2 Baseline Model

As illustrated in Figure 1, the baseline architecture consists of an eight-processor
CMP based on that of Beckmann and Wood [10]. The processors are located
on the edges of the NUCA cache, which occupies the central part of the chip.
Each processor provides the first-level cache memory, composed of two separated
caches: one for instructions and one for data. The NUCA cache is then the
second-level cache memory and it is shared by the eight processors. The NUCA
cache is divided into 256 banks structured in a 16x16 mesh that are connected
via a 2D mesh interconnection network. The banks in the NUCA cache are also
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Fig. 1. Baseline architecture layout

logically separated into 16 banksets that are either local banks (lightly shaded in
Figure 1) or central banks (darkly shaded in Figure 1) in accordance with their
physical distance to the processors.

3 Experimental Framework

We used the full-system execution-driven simulator, Simics [11], extended with
the GEMS toolset [12]. GEMS provides a detailed memory-system timing
model that enabled us to model the NUCA cache architecture. The simulated
architecture is structured as a single CMP made up of eight homogeneous cores.
Each core is a superscalar out-of-order SPARCv9 processor modelled by the Opal
simulator, which is one of the extensions that GEMS provides for Simics. With
regard to memory hierarchy, each core provides a first-level cache, which is in fact
two caches: one for instructions and one for data. The second level of the memory
hierarchy is the NUCA cache. In order to maintain correctness and robustness in
the memory system we used the MOESI token-based coherence protocol. Table
1 summarises the configuration parameters assumed in our studies. The access
latencies of the memory components are based on models done with the CACTI
6.0 [13] modelling tool, which is the first version of CACTI that provides support
for modelling NUCA caches.

We simulated a set of workloads from the PARSEC [14] benchmarks with
simlarge input data sets. The method we used for the simulations consisted
of, first skipping both the initialisation and thread creation phases, then
fast-forwarding while warming all caches for 100 million instruction intervals,
and finally performing a detailed simulation for 200 million instruction intervals.
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Table 1. Configuration parameters

Processors 8, 4-way SMT
Branch Predictor YAGS
Instr. Window / ROB 64 / 128 entries

Block size 64 bytes
L1 Cache (Instr./Data) 8 KBytes, 4-way / 8 KBytes, 4-way
L2 Cache (NUCA) 1 MByte, 4-way, 256 Banks
NUCA Bank 4 KBytes, 4-way

L1 Latency 3 cycles
NUCA Bank Latency 2 cycles
Router Latency 1 cycle
Memory Latency 350 cycles (from core)

4 Last Bank

Cache memories take advantage of the temporal and spatial data locality that
applications usually exhibit. However, the whole working set does not usually fit
into the cache memory, causing capacity and conflict misses. These misses mean
that a line that may be accessed later has to leave the cache prematurely. As a
result, evicted lines that are later reused return to the cache memory in a short
period of time. This is more pronounced in a NUCA cache memory because data
movements within the cache are allowed, so the most recently accessed data is
concentrated in a few banks rather than spread over the entire cache memory.
Therefore, we propose adding an extra bank to deal with data blocks that have
been evicted from the NUCA cache. This extra bank, called Last Bank, provides
evicted data blocks a second chance to come back to the NUCA cache without
leaving the chip.

Last Bank, which is as large as a single bank in the NUCA cache, acts as
the last-level cache between the NUCA cache and the off-chip memory. It is
physically located in the centre of the chip at about the same distance to all
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Fig. 2. Speed-up achieved with Last Bank compared to baseline configuration
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cores. When there is a hit on Last Bank, the data block that is being accessed
leaves Last Bank and goes back to the corresponding bank in the NUCA cache.

Figure 2 shows the performance gain achieved by adding Last Bank to the
baseline configuration. On average, the Last Bank configuration outperforms the
baseline with an IPC improvement of 4%. On the other hand, we also evaluated
an unaffordable setup in which the evicted data blocks nearly always fit in
Last Bank. The 64-MByte-sized Last Bank configuration shows the significant
performance potential of this proposal, that is, an average IPC improvement
of 22%. Thus, we conclude that although adding Last Bank to the baseline
configuration results in performance benefits, these benefits are strictly limited
by the size of Last Bank. The following sections analyse the behaviour of the
evicted lines and propose two optimisations that provide extra IPC improvement
to the Last Bank proposal without incurring unaffordable implementation costs.

5 Characterization of NUCA Cache Line Replacements

This section analyses the behaviour of the data blocks that leave the NUCA
cache, focusing on those that later return. The aim of this study is to find hints
to help us guess whether a data block that is being evicted from the NUCA
cache will be accessed later.

5.1 Frequency of Insertions into NUCA Cache of Reused Addresses

We first analysed the frequency of insertions of reused addresses to find out
whether most reinsertions are concentrated on a few addresses or whether the
number of reinsertions are fairly spread out over all the reused addresses.

Figure 3(a) shows the insertion frequency of addresses that have been
previously evicted for each of the workloads simulated (note that the X-axis
deals with an exponential scale). The figure shows that 16% of reused addresses
represent almost 50% of total reinsertions. This indicates that the assumed
workloads generally concentrate a huge number of reinsertions on a few
addresses. In this case, if we prevent this 16% of addresses from being evicted
with a selective mechanism, off-chip requests would reduce dramatically as
almost 50% of total reinsertions would become on-chip requests. Performance
would therefore improve accordingly.

5.2 Time between Eviction and Insertion of a Reused Address

The second part of the analysis focused on the cycles passed between the eviction
of a reused address and the reinsertion of the same address.

Figure 3(b) presents, for each workload, the percentage of addresses that
return to the NUCA cache in a certain period of cycles. On average, nearly
30% of evicted addresses that are later inserted into the NUCA cache return
in less than 100,000 cycles. In fact, with the blackscholes workload over 50%
of evicted addresses return in less than 1,000 cycles. This clearly explains the
benefit obtained by the Last Bank configuration.



302 J. Lira, C. Molina, and A. González

5.3 Last Location of Evicted Data Blocks

This section analyses the location of evicted data blocks before replacement
in order to evaluate whether the probability of an evicted data block being
reinserted into the NUCA cache is related to the last NUCA bank in which
it was stored. For the sake of simplicity, we have classified the NUCA banks
according to the two bank categories introduced in Section 2 (local and central).

The results shown in Figure 3(c) are classified into the following three
categories: 1) evicted data blocks that are not later accessed (0 R), 2) evicted
data blocks that are later accessed only once more (1 R), and 3) evicted data
blocks that are later accessed more than once (+1 R).

Figure 3(c) shows that, on average, the vast majority of addresses that were
evicted from a local bank were later reinserted once or more than once (over
60% and over 70% of reused addresses, respectively). Moreover, fewer than 60%
of the addresses that were not accessed after eviction were evicted from a local
bank. In general, this trend in which the percentage of the non-reinserted evicted
addresses from a local bank is lower than that of the evicted and later inserted
addresses is consistent for all workloads.

5.4 Action That Provokes Replacement

Finally, we analysed the type of action that provokes the eviction of the data
block from the NUCA cache. Only two actions motivate an eviction from a
NUCA cache bank: incoming data from memory (New Data) or an eviction
from L1 cache (L1 replacement). When an incoming data block from off-chip
memory is inserted into the NUCA cache, it is placed statically in any of the
banks of the entire NUCA architecture. On the other hand, when a data block
comes from an L1 cache eviction, it is always placed in the closest local bank to
the L1 cache that provoked the replacement.

Figure 3(d) shows the percentage of evictions provoked by each of the actions,
broken down into the following categories: addresses that were not accessed after
their eviction; addresses that were inserted into the NUCA cache only once after
their eviction; and addresses that were evicted and later inserted into the NUCA
cache more than once. On average, 55% of the evictions of addresses that were
reused more than once were evicted due to L1 replacement. Meanwhile, the same
action provoked nearly 45% of the evictions of addresses that were reinserted only
once into the NUCA cache. On average, only 40% of non-reused addresses were
evicted due to an L1 cache eviction. In general, for all workloads the percentage
of evictions provoked by L1 cache replacements that are not accessed later is
always lower than in the other two cases.

6 Last Bank Optimisations

Section 4 shows that some performance benefits are achieved by adding
Last Bank to the baseline NUCA cache architecture. However, it also shows
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(a) Frequency of insertions into NUCA cache of addresses
previously evicted.
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(b) Cycles between eviction and
insertion of the same address.
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Fig. 3. Analysis of NUCA cache line replacements
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considerable potential improvements in performance that cannot be attained
using the current Last Bank configuration. This section introduces two
mechanisms that optimise the usage of Last Bank based on the analysis described
in Section 5.

6.1 Selective Last Bank

Section 5.2 shows that almost 30% of evicted addresses that are later accessed
return to the NUCA cache in a reduced number of cycles (fewer than 100,000
cycles). However, Last Bank cannot take advantage of this fast return and, with
the exception of blackscholes, it does not result in any IPC improvement at all
(see Figure 2). This is mainly because Last Bank is not large enough to deal with
all the evicted data blocks from the entire NUCA cache. So, Last Bank is polluted
with useless data blocks that will not be accessed again and that provoke the
eviction of useful data blocks from Last Bank before they are accessed.

Based on these observations, we propose a selection mechanism in Last Bank
called Selective Last Bank. This selection mechanism allows evicted data blocks
to be inserted into Last Bank by way of a filter. The aim is to prevent Last
Bank from becoming polluted with data blocks that are not going to be accessed
further by the program.

Section 5.3 shows that almost 70% of reused addresses were evicted from
local banks. On the other hand, only 60% of addresses that were not requested
further after NUCA cache eviction were evicted from local banks and the rest
were evicted from central banks. We therefore propose a filter that allows only
the evicted data blocks that resided in a local bank before eviction to be cached.

Finally, the action that provokes the eviction from the NUCA cache could
provide another filter for Selective Last Bank. However, after evaluating the
filters for both incoming data from the off-chip and for L1 cache evictions, they
were both ruled out because they complement one another and do not provide
benefits to Last Bank.

6.2 LRU Prioritising Last Bank

Figure 3(e) shows that the vast majority of evicted lines that return to the
cache memory leave the NUCA cache and are later reused at least twice. Thus,
we propose modifying the data eviction algorithm of the NUCA cache in order
to prioritise the lines that enter the NUCA cache from Last Bank. We call this
LRU prioritising Last Bank (LRU-LB). LRU-LB gives the lines that have been
stored by the Last Bank and that return to the NUCA cache an extra chance, so
they remain in the on-chip cache memory longer. This requires storing an extra
bit, called the priority bit, attached to each line in the NUCA cache.

The LRU-LB eviction policy works as follows. When an incoming line comes
to the NUCA cache memory from Last Bank, its priority bit is set. Figure
4(a) shows how this policy works when a line with its priority bit set is in the
LRU position. The line that currently occupies the LRU position, then, clears its
priority bit and updates its position to the MRU, and thus, the other lines in the
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(a) (b) (c)

Fig. 4. LRU prioritising Last Bank (LRU-LB) scheme. (a) A priority line is in the
LRU position. (b) The priority line resets its priority bit and updates its position to
the MRU; the other lines move one position forward to the LRU. (c) The line in the
LRU position is evicted since its priority is clear.

LRU stack move one position forward towards the LRU (Figure 4(b)). Finally,
as the line that is currently in the LRU position has its priority bit clear, it is
evicted from the NUCA cache (Figure 4(c)). If the line that ends in the LRU
position has its priority bit set, the algorithm described above is applied again
until the line in the LRU position has its priority bit clear.

7 Results and Analysis

This section analyses the performance results obtained with the two
optimisations for the Last Bank proposed in Section 6, Selective Last Bank and
LRU prioritising Last Bank (LRU-LB). With Selective Last Bank, the filter only
allows blocks that have been evicted from a local bank to be cached.

Figure 5 shows that, on average, both Last Bank optimisations achieve greater
IPC improvement than that achieved by the Last Bank configuration. Selective
Last Bank obtains 6% speed-up with respect to the baseline configuration, while
the performance gain obtained by LRU-LB is nearly 8%.
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Fig. 5. Speed-up achieved with Last Bank optimisations
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Figure 5 also shows that Selective Last Bank does not obtain performance
benefits in three of the workloads (blackscholes, dedup and fluidanimate),
however, it works especially well with bodytrack and swaptions. It is clear,
then, that with an effective filter Selective Last Bank would provide significant
performance benefits. Adaptive selective filters for Selective Last Bank will be
analysed in future work.

With regard to the LRU-LB optimisation, giving an extra chance to
reused addresses before being evicted from the NUCA cache has two direct
consequences: 1) if accessed, they are closer to cores, and due to the NUCA
basis they have lower access latency, and 2) the number of reused addresses
stored in the NUCA cache is higher. As a result, LRU-LB outperforms the Last
Bank configuration with all simulated workloads. We highlight that with the
blackscholes, LRU-LB dramatically outperforms the Last Bank configuration
(even the unaffordable setup) by achieving 49% IPC improvement.

8 Related Work

Kim et al. [9] introduced the concept of Non-Uniform Cache Architecture
(NUCA). They observed that the increase in wire delays would make cache access
times no longer a constant. Instead, latency would become a linear-function
of the line’s physical location within the cache. From this observation, several
NUCA architectures were designed by partitioning the cache into multiple
banks and using a switched network to connect these banks. The two main
architectures, however, were Static NUCA (S-NUCA) and Dynamic NUCA
(D-NUCA). Both designs organise the multiple banks into a two-dimensional
switched network. The difference between the two architectures is the Placement
Policy they manage. While in S-NUCA architecture, data are statically placed in
one of the banks and always in the same bank, in D-NUCA architecture data can
be promoted to be placed in closer and faster banks. Since the development of
these two architectures, several works using NUCA architectures have appeared
in the literature. One of the most relevant proposals is NuRAPID [15], which
decouples data and tag placement. NuRAPID stores tags in a bank close to
the processor, optimising tag searches. Whereas NUCA searches tag and data
in parallel, NuRAPID searches them sequentially. This increases overall access
time but provides greater power efficiency. Another difference between NUCA
and NuRAPID is that NuRAPID partitions the cache into fewer, larger and
slower banks. In terms of performance, NuRAPID and D-NUCA achieve similar
results, but NuRAPID vastly outperforms D-NUCA in power efficiency.

However, the introduction of CMP architectures posed additional challenges
to the NUCA architecture leading Beckmann and Wood [10] to analyse NUCA
for CMP. They demonstrated that block migration is less effective for CMP
because 40-60% of the hits in commercial workloads were satisfied in the central
banks. Block migration effectively reduced wire delays in uniprocessor caches.
However, to improve CMP performance, the capability of block migration relied
on a smart search mechanism that was difficult to implement. Chishti et al. [15]
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also proposed a version of NuRAPID for CMP in which each core had a private
tag array instead of a single, shared tag array.

Recent studies have explored policies for bank placement [16], bank migration
[17] and bank access [18] in NUCA caches. Kim et al. [9] proposed two
alternatives for bank replacement policy: zero-copy policy and one-copy policy.
Zero-copy policy means that an evicted data element is sent back to the off-chip
memory. In one-copy policy, on the other hand, the victim data element is moved
to a lower-priority bank farther from the processor.

9 Conclusions

In this paper we propose adding an extra bank to deal with data blocks evicted
from the NUCA cache. We call this bank Last Bank. This extra bank, which
acts as the last-level cache on the chip, gives evicted data blocks a second chance
to be reinserted into the NUCA cache without leaving the chip. We found that
although this mechanism provides significant performance potential, the benefits
achieved with Last Bank are strictly limited by the number of lines that can be
allocated. Therefore, we analysed the behaviour of the cache line replacements
in the NUCA cache and propose two optimisations that provide additional IPC
improvement to Last Bank without incurring unaffordable implementation costs.

We first propose Selective Last Bank, which defines that only evicted data
blocks that pass the selection filter are allowed to be allocated in Last Bank. In
this paper we propose a selection filter that allows only data blocks that were
evicted from a local bank to be cached. With Selective Last Bank we achieve
up to 6% IPC improvement with respect to the baseline configuration, however,
the performance results obtained by this mechanism rely on the effectiveness of
the filter applied. In future works we will analyse adaptive selection filters.

Finally, we propose LRU prioritising Last Bank. This modifies the data
eviction algorithm of the NUCA cache by prioritising the data blocks that came
from Last Bank. On average this mechanism achieved performance gains of up
to 8% with respect to the baseline configuration.
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