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Abstract. We prove that every key exchange protocol in the random
oracle model in which the honest users make at most n queries to the
oracle can be broken by an adversary making O(n?) queries to the oracle.
This improves on the previous fZ(nG) query attack given by Impagliazzo
and Rudich (STOC ’89), and answers an open question posed by them.
Our bound is optimal up to a constant factor since Merkle (CACM ’78)
gave a key exchange protocol that can easily be implemented in this
model with n queries and cannot be broken by an adversary making
o(n?) queries.

1 Introduction

In the 1970’s Diffie, Hellman, and Merkle began to challenge the accepted wis-
dom that two parties cannot communicate confidentially over an open channel
without first exchanging a secret key using some secure means. The first such
protocol (at least in the open scientific community) was designed by Merkle in
1974 (although only published in 1978 [I]). Merkle’s protocol allows two parties
Alice and Bob to agree on a random number k that will not be known to an
eavesdropping adversary Eve. It is described in Fig. [Il

One problem with Merkle’s protocol is that its security was only analyzed in
the random oracle model which does not necessarily capture security when in-
stantiated with a cryptographic one-way or hash function [4]. Recently, Biham,
Goren and Ishai [3] took a step towards resolving this issue by providing a se-
curity analysis for Merkle’s protocol under the concrete complexity assumption
of existence of exponentially hard one-way functions. In particular, they proved
that assuming there exist a one-way function that cannot be inverted with prob-
ability more than 27" by adversaries running in time 2¢" for a > 1/2 — 4,
there is a key exchange protocol in which Alice and Bob run in time n but any
adversary whose running time is at most n271% has o(1) chance of finding the
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Merkle’s Key Exchange Protocol

Let n be the security parameter. All parties have access to oracle to a function
H :{0,1}* — {0,1}* chosen at random, where £ > log n. The protocol operates as
follows:

1. Alice chooses 10n random numbers x1, ..., Z1on in [nz] and sends a1, ..., ai0n
to Bob where a; = H(x;) (embed [n?] in {0,1}" in some canonical way).
2. Bob chooses 10n random numbers y1, ..., Y10n in [nz] and sends b1, ..., bion to

Alice where b; = H(x;).

3. With at least 0.9 probability, there will be at least one “collision” between
Alice’s and Bob’s messages: a pair i, j such that a; = b;. Alice and Bob choose
the lexicographically first such pair, and Alice sets s4 = x; as her secret, and
Bob sets sp = y; as his secret. If no collision occurred they will not choose any
secret. Note that assuming 2¢ > n*, H will be one to one on [n2] with very
high probability and hence H(z;) = H(y;) implies z; = yj.

To analyze the protocol one shows that the collision is distributed uniformly in [nz]
and deduces that an adversary Eve that makes o(n?) queries to the oracle will find
the secret with o(1) probability.

Fig. 1. Merkle’s key exchange protocol [lEl

secret. But the most serious issue with Merkle’s protocol is that it only pro-
vides a quadratic gap between the running time of the honest parties and the
adversary. Fortunately, not too long after Merkle’s work, Diffie and Hellman [5]
and later Rivest, Shamir, and Adleman [6] gave constructions for key exchange
protocols that are conjectured to have super-polynomial (even subexponential)
security. But because these and later protocols are based on certain algebraic
computational problems, and so could perhaps be vulnerable to unforseen at-
tacks using this algebraic structure, it remained an important question to show
whether there exist key exchange protocols with superpolynomial security that
use only a random oracle[d The seminal paper of Impagliazzo and Rudich [§]
answered this question negatively by showing that every key exchange protocol
using n queries in the random oracle model can be broken by an adversary asking

1 Merkle described his protocol using “puzzles” that can be implemented via some
ideal cryptographic primitive; we describe the protocol in the case that the puzzles
are implemented by a random oracle. We remark that in Merkle’s original protocol
Bob will try different random queries y1, y2,... without sending them to Alice until
he finds y; such that f(y;) € {a1,...,a10n} and send j — the index of the “puzzle”
aj — to Alice. The Protocol of Fig. [l is a symmetric version of Merkle’s protocol,
and is similar to the protocol of [2] in the bounded storage model; see also discussion
in [3].

This is not to be confused with some more recent works such as [7], that combine the
random oracle model with assumptions on the intractability of other problems such
as factoring or the RSA problem to obtain more efficient cryptographic constructions.
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O(nSlogn) queries Since a random oracle is in particular a one-way function
(with high probability), this implied that there is no construction of a key ex-
change protocol based on a one-way function with a proof of super-polynomial
security that is of the standard black-box type (i.e., a proof that transforms
an adversary breaking the protocol into an inversion algorithm for the one-way
function that only uses the adversary and the function as black boxes). Indeed,
that was the motivation behind their result.

Question and Motivation. Impagliazzo and Rudich [8, Sect. 8] mention as an
open question (which they attribute to Merkle) to find out whether their attack
can be improved to O(n?) queries (hence showing the optimality of Merkle’s pro-
tocol in the random oracle model) or there exist key exchange protocols in the
random oracle model with w(n?) security. Beyond just being a natural question,
it also has some practical and theoretical motivations. The practical motivation
is that protocols with sufficiently large polynomial gap could be secure enough
in practice — e.g., a key exchange protocol taking 10° operations to run and
(10%)8 = 10°* operations to break could be good enough for many applications@
In fact, as was argued by [3], as technology improves and honest users can af-
ford to run more operations, such polynomial gaps only become more useful.
Thus if known algebraic key exchange protocols were broken, one might look to
polynomial-security protocol such as Merkle’s for an alternative. Another moti-
vation is theoretical— Merkle’s protocol has very limited interaction (consisting
of one round in which both parties simultaneously broadcast a message) and in
particular it implies a public key encryption scheme. It is natural to ask whether
more interaction can help achieve some polynomial advantage over this simple
protocol. A third, less direct motivation comes from quantum computing. In one
scenario in which some algebraic key exchange protocols will be broken— the
construction of practical quantum computers— Merkle’s protocol will also fail
to offer non-trivial security due to Grover’s search algorithm [J]. Our results
below suggest (though do not prove) that Merkle’s protocol may be optimal in
this setting also, and so there may not exist a fully classical key-exchange proto-
col based on a one-way function with a black-box proof of super-linear security
for quantum adversaries. We note that using quantum communication there is
an information theoretically secure key-exchange protocol [10], and moreover,
very recently Brassard and Salvail [11] (independently observed by [3]) gave a
quantum version of Merkle’s protocol, showing that if Alice and Bob can use
quantum computation (but classical communication), to obtain a key-exchange

3 More accurately, [8] gave an O(m°logm)-query attack where m is the maximum
of the number of queries n and the number of communication rounds, though we
believe their analysis could be improved to an O(n6 log n)-query attack. For the sake
of simplicity, when discussing [8]’s results we will assume that m = n, though for
our result we do not need this assumption.

Of course, these numbers are just an example and in practical applications the
constant terms will make an important difference. We note though that the above
constants are not ruled out by [§]’s attack, but are ruled out by our attack (taking
number of operations to mean the number of calls to the oracle).
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protocol with super-linear (i.e., n?/?) security in the random oracle model against
quantum adversaries.

Our Result. In this work we answer the above question of [8], by showing that
every protocol in the random oracle model where Alice and Bob make n oracle
queries can be broken with high probability by an adversary making O(n?)
queries. That is, we prove the following:

Theorem 1. Let I be a two-party protocol in the random oracle model such
that when executing I the two parties Alice and Bob make at most n queries
each, and their outputs are identical with probability at least p. Then for every
0 < § <1, there is an adversary Fve making (1?5")2 queries to the oracle whose

output agrees with Bob’s output with probability at least p — 6.

To the best of our knowledge, no better bound than the O(nﬁ)—query attack of [§]
was previously known even in the case where one does not assume the one-way
function is a random oracle (hence making the task of proving a negative result
easier). We note that similarly to previous black-box separation results, our
adversary can be implemented efficiently in a relativized world where P = NP.

Correction of Error: A previous version of this manuscript [12] posted on the
Arxiv claimed a different proof of the same result. However, we have found a
bug in that proof— see the full version of this paper for more details. In fact
the current proof is quite different from the one claimed in [12]. In [I2] we also
claimed an extension of Theorem [I] to the case of protocols with an oracle to a
random permutation (i.e., a random one-to-one function R from {0, 1}* to {0, 1}*
such that |R(z)| = |z| for every x € {0,1}*). We do not know of an extension of
the current proof to this model, beyond the observation of [8] that any m-query
attack in the random oracle model translates into an O(m?)-query attack in the
random permutation model. Hence our results imply an O(n*)-query attack in
the latter model, improving on the previous O(n'?) attack of [8].

We also note that shortly after we posted the manuscript [12], Sotakova [13]
posted an independently obtained weaker result, showing that protocols with
only one round of interaction (each party sends one message) and non-adaptive
queries can achieve at most O(n?) security. In contrast, as in the work of [g], in
this paper we allow protocols where the parties’ choice of queries is adaptive and
they can use an arbitrary polynomial number of interaction rounds[ The one-
round case seems to be simpler, and in particular the bug found in our previous
proof does not apply to that case.

2 Owur Techniques

The main technical challenge in proving such a result is the issue of dependence
between the executions of the two parties Alice and Bob in a key exchange

5 In fact, because we count only the number of oracle queries made by the honest
parties, we can even allow a super-polynomial number of rounds.
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protocol. The presence of the random oracle allows Alice and Bob to correlate
their executions even without communicating (which is indeed the reason that
Merkle’s protocol achieves non-trivial security). Dealing with such correlations is
the cause of the technical complexity in both our work and the previous work of
Impagliazzo and Rudich [8]. We handle this issue in a different way than [§]. On
a very vague high level our approach can be viewed as using more information
about the structure of these correlations than [8] did. This allows us to analyze a
more efficient attacking algorithm, that is more frugal with the number of queries
it uses than the attacker of [8]. Below we provide a more detailed (though still
high level) exposition of our technique and its relation to [8]’s technique.

2.1 Comparison with [§]

We now review [§]’s attack and outline of analysis, and particularly the subtle
issue of dependence between Alice and Bob that arises in both their work and
ours. The main novelty of our work is the way we deal with this issue, which is
different from the approach of [§]. We believe that this review of [§]’s analysis
and the way it compares to ours can serve as a useful introduction to our actual
proof. However, no result of this section is used in the later sections, and so the
reader should feel free at any time to skip ahead to Sect. Bl and Ml that contain
our actual attack and its analysis.

Consider a protocol that consists of n rounds of interaction, where each party
makes exactly one oracle query before sending its message. [8] called protocols
of this type “normal-form protocols” and gave an é(n?’) attack against them
(their final result was obtained by transforming every protocol into a normal-
form protocol with a quadratic loss of efficiency). Even though without loss
of generality the attacker Eve of a key exchange protocol can defer all of her
computation till after the interaction between Alice and Bob is finished, it is
conceptually simpler in both [8]’s case and ours to think of the attacker Eve as
running concurrently with Alice and Bob. In particular, the attacker Eve of [§]
performed the following operations after each round 4 of the protocol:

— If the round ¢ is one in which Bob sent a message, then at this point Eve
samples 1000n logn random executions of Bob from the distribution D of
Bob’s executions that are consistent with the information that Eve has at
that moment (communication transcript and previous oracle answers). That
is, Eve samples a uniformly random tape for Bob and uniformly random
query answers subject to being consistent with Eve’s information. After each
time that she samples an execution, Eve asks the oracle all the queries asked
during this execution and records the answers. (Generally, the true answers
will not be the same answers as the one Eve guessed when sampling the
execution.)

— Similarly, if the round i is one in which Alice sent a message then Eve samples
1000n logn executions of Alice and makes the corresponding queries.
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Overall Eve will sample O(n?) executions making a total of O(n3) queries. It’s
not hard to see that as long as Eve learns all of the intersection queries (queries
asked by both Alice and Bob during the execution) then she can recover the
shared secret with high probability. Thus the bulk of [§]’s analysis was devoted
to showing the following statement, denoted below by (*): With probability at
least 0.9 Eve never fails, where we say that Eve fails at round i if the query made
in this round by, say, Alice was asked previously by Bob but not by Ewve.

2.2 The Issue of Independence

At first look, it may seem that one could easily prove (*). Indeed, (*) will follow
by showing that at any round 4, the probability that Eve fails in round i for
the first time is at most 1/(10n). Now all the communication between Alice
and Bob is observed by Eve, and if no failure has yet happened then Eve has
also observed all the intersection queries so far. Because the answers for non-
intersection queries are completely random and independent from one another it
seems that Alice has no more information about Bob than Eve does, and hence
if the probability that Alice’s query ¢ was asked before by Bob is more than
1/(10n) then this query ¢ has probability at least 1/(10n) to appear in each one of
Eve’s sampled executions of Bob. Since Eve makes 1000n logn such samples, the
probability that Eve misses ¢ would be bounded by (1—; )!000nlesn < 1/(10n).

When trying to make this intuition into a proof, the assumption that Eve
has as much information about Bob as Alice does translates to the following
statement: conditioned on Eve’s information, the distributions of Alice’s view
and Bob’s view are independent from one another [ Indeed, if this statement was
true then the above paragraph could be easily translated into a proof that [§]’s
attacker is successful, and it wouldn’t have been hard to optimize this attacker
to achieve O(n?) queries. Alas, this statement is false. Intuitively the reason is
the following: even the fact that Eve has not missed any intersection queries is
some non-trivial information that Alice and Bob share and creates dependence
between them ]

Impagliazzo and Rudich [§] dealt with this issue by a “charging argument”
(see also Remark [ below), where they showed that such dependence can be
charged in a certain way to one of the executions sampled by Eve, in a way
that at most n samples can be charged at each round (and the rest of Eve’s

5 Readers familiar with the setting of communication complexity may note that this
is analogous to the well known fact that conditioning on any transcript of a 2-
party communication protocol results in a product distribution (i.e., combinatorial
rectangle) over the inputs. However, things are different in the presence of a random
oracle.

As a simple example for such dependence consider a protocol where in the first round
Alice chooses x to be either the string 0" or 1" at random, queries the oracle H at x
and sends y = H(x) to Bob. Bob then makes the query 1" and gets ¢y’ = H(1"). Now
even if Alice chose x = 0™ and hence Alice and Bob have no intersection queries,
Bob can find out the value of = just by observing that 3’ # . Still, an attacker must
ask a non-intersection query such as 1" to know if x = 0" or z = 1".
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samples are distributed correctly as if the independence assumption was true).
This argument inherently required sampling at least n executions (each of n
queries) per round, hence resulting in an £2(n?) attack.

2.3 Our Approach

We now describe our approach and how it differs from the previous proof of [§].
The discussion below is somewhat high level and vague, and glosses over some
important details. Again, the reader is welcome to skip ahead at any time to
Sect. [3 that contains the full description of our attack, and does not depend on
this section in any way.

Our attacking algorithm follows the same general outline, but has two impor-
tant differences from the attacker of []]:

1. One quantitative difference is that while our attacker Eve also computes a
distribution D of possible executions of Alice and Bob conditioned on her
knowledge, she does not sample from D full executions and then ask the
arising queries. Rather, she computes whether there is any heavy query—
a string ¢ € {0,1}* that has probability more than, say, 1/(100n) of being
queried in D— and makes only such heavy queries.

Intuitively, since Alice and Bob make at most 2n queries, the total ex-
pected number of heavy queries (and hence the query complexity of Eve) is
bounded by O(n?). The actual analysis is more involved since the distribu-
tion D keeps changing as Eve learns more information through the messages
she observes and query answers she receives. We omit the details in this
high-level overview.

2. The qualitative difference between the two attackers is that we do not con-
sider the same distribution D that was considered by [8]. Their attacker to
some extent “pretended” that the conditional distributions of Alice and Bob
are independent from one another. In contrast, we define our distribution D to
be the real distribution of Alice and Bob, where there could be dependencies
between them. Thus to sample from our distribution D one would need to sam-
ple a pair of executions of Alice and Bob (random tapes and oracle answers)
that are jointly consistent with one another and Eve’s current knowledge. An-
other (less important) point is that the distribution D computed by Eve at
each point in time will be conditioned not only on Eve’s knowledge so far, but
also on the event that she has not failed until this point.

The main challenge in the analysis is to prove that the attack is successful,
that is that the statement (*) above holds, and in particular that the probability
of failure at each round (or more generally, at each query of Alice or Bob) is
bounded by, say, 1/(10n). Once again, things would have been easy if we knew
that the distribution D of the possible executions of Alice and Bob conditioned
on Eve’s knowledge (and not having failed so far) is a product distribution, and
hence Alice has no more information on Bob than Eve has. While this is not
generally true, we show that in our attack this distribution is close to being a
product distribution, in a precise sense we define below.
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At any point in the execution, fix Eve’s current information about the system
and define a bipartite graph G whose left-side vertices correspond to possible
executions of Alice that are consistent with Eve’s information and right-side ver-
tices correspond to possible executions of Bob consistent with Eve’s information.
We put an edge between two executions A and B if they are consistent with one
another and moreover if they do not represent an execution in which Eve failed
prior to this point (i.e., there is no intersection query that is asked in both ex-
ecutions A and B but not by Eve). The distribution D that our attacker Eve
considers can be thought of as choosing a random edge in the graph G. (Note
that the graph G and the distribution D change at each point that Eve learns
some new information about the system.) If G was the complete bipartite clique
then D would be a product distribution. What we show is that G is dense in the
sense that each vertex is connected to most of the vertices on the other side. We
show that this implies that Alice’s probability of hitting a query that Bob asked
before is at most twice the probability that Eve does so if she chooses the most
likely query based on her knowledge.

The bound on the degree is obtained by showing that G can be represented
as a disjointness graph, where each vertex u is associated with a set S(u) (from
an arbitrarily large universe) and there is an edge between a left-side vertex u
and a right-side vertex v if and only if S(u) N S(v) = OB The definition of the
graph G implies that |S(u)| < n for all vertices u. The definition of our attacking
algorithm implies that the distribution obtained by picking a random edge {u, v}
and outputting S(u) U S(v) is light, in the sense that there is no element ¢ in
the universe that has probability more than 1/(10n) of being contained in a set
chosen from this distribution. We show that these properties together imply that
each vertex is connected to most of the vertices on the other side, and so G is
close to being a complete bipartite graph.

Remark 2 (Comparison with [§]). One can also phrase the analysis of [§] in
terms of a similar bipartite graph. Their argument involved fixing, say, Alice’s
execution which corresponds to fixing a left-side vertex u. As we noted above,
if the degree of u is high (e.g., u is connected to most of the right side) then
independence approximately holds and hence the probability that [8]’s attacker
fails at this point is less than 1/(10n). The crucial component of [8]’s analysis was
their observation that if the degree of u is low, then by taking a random vertex
v on the right side and making all queries in the corresponding execution to v,
one is likely to make progress in the sense that we learn a new query made in
the execution corresponding to u. Now there are at most n new queries to learn,
and hence if we sample much more than n queries then in most of them we’re
in the high degree case. This potential/charging argument inherently requires
sampling all queries of the execution, rather than only the heavy ones, hence
incurring a cost of at least n? queries per round or n® queries total.

8 The set S(u) will correspond to the queries that are made in the execution corre-
sponding to u but not made by Eve.
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3 Our Attacker

We consider a key exchange protocol IT in which Alice and Bob first toss coins
r4 and rp and then run II using access to a random oracle H that is a random
function from {0, 1} to {0,1}* for some ¢ € N. We assume that the protocol
proceeds in some finite number of rounds, and no party asks the same query
twice. In round k, if k is odd then Alice makes some number of queries and
sends a message to Bob (and then Eve asks some oracle queries), and if k is even
then Bob makes some queries and sends a message to Alice (and then Eve asks
some oracle queries). At the end of the protocol Alice obtains an output string
s4 and Bob obtains an output string sp. We assume that there is some constant
p > 0 such that Pr[s4 = sp] > p, where the probability is over the coin tosses of
Alice and Bob and the randomness of the oracle. We will establish Theorem [II
by proving that an attacker can make O(n?) queries to learn s with probability
arbitrarily close to p.

In this section we describe an attacking algorithm that allows Eve to find a set
of size O(n?) that contains all the queries asked by Alice and Bob in the random
oracle model. This attack is analyzed in Sect. d to show that it is successful in
finding all intersection queries and is efficient (i.e., will not ask more than O(n?)
many queries). As was shown by Impagliazzo and Rudich, it not hard to use this
set to obtain the actual secret.

3.1 Attacking Algorithm

We start by showing that an attacker can find all the intersection queries (those
asked by both Alice and Bob) with high probability. It turns out that this is the
main step in showing that an attacker can find the secret with high probability.

Theorem 3. Let II be a key exchange protocol in the random oracle model in
which Alice and Bob ask at most n oracle queries each. Then for every 0 < 6 < 1
there is an adversary Eve who has access to the messages sent between Alice and
Bob and asks at most (1::;")2 number of queries such that Eve’s queries contain

all the intersection queries of Alice and Bob with probability at least 1 — 6.

Letting e = /13, our attack can be described in one sentence as follows:

As long as there exists a string q such that conditioned on Eve’s current knowl-
edge and assuming that no intersection query was missed so far, the probability
that ¢ was asked in the past (by either Alice or Bob) is at least €/n, Fve makes
the query q to the oracle.

To describe the attack more formally, we need to introduce some notation.
We fix n to be the number of oracle queries asked by Alice and Bob and assume
without loss of generality that all the queries are of length £ = ¢(n) for some
¢ € N. We will make the simplifying assumption that the protocol is in normal
form— that is, at every round of the protocol Alice or Bob make exactly one
query to the oracle (and hence there are 2n rounds). Later in Section [l we will
show how our analysis extends to protocols that are not of this form. Below and
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throughout the paper, we often identify a distribution D with a random variable
distributed according to D.

Ezecutions and the Distribution EXEC. A (full) execution of Alice, Bob, and Eve
can be described by a tuple (ra,rp, H) where r4 denotes Alice’s random tape,
rp denotes Bob’s random tape, and H is the random oracle (note that Eve is
deterministic). We denote by EXEC the distribution over (full) executions that
is obtained by running the algorithms for Alice, Bob and Eve with uniformly
chosen random tapes and a random oracle. A partial execution is an execution
truncated at a certain point in time (that is, the transcripts contain only the
oracle answers for queries that are asked up to that point). For any partial
execution we denote by M the sequence of messages sent between Alice and Bob
till that moment, and denote by I the set of oracle query/answer pairs known
to Eve. We define Alice’s view in the execution to be the tuple A = (ra, Ha, M)
where r4 are Alice’s coins and H4 is the concatenation of oracle answers to
Alice’s queries. Similarly Bob’s view is the tuple B = (rp, Hg, M). Below we
will only consider Alice’s and Bob’s view conditioned on a fixed value of M and
hence we drop M from these tuples and let A = (r4, Ha) and B = (rp, Hp).

The Distribution EXEC(M,I). For M = [mq,...,m;] a sequence of i messages,
and I a set of query/answer pairs, we denote by EXEC(M, I) the distribution
over the views (A, B) of Alice and Bob in partial executions up to the point in the
system in which the i message is sent (by Alice or Bob), where the transcript
of messages equals M and the set of query/answer pairs that Eve learns equals
I. For every (M, I) that have nonzero probability to occur in the protocol, the
distribution EXEC (M, I) can be sampled by first sampling (r4, 75, H) at random
conditioned on being consistent with (M, I) and then deriving from this tuple
Alice’s and Bob’s views: A = (ra,Ha) and B = (rp, HB)E

The Event Good(M, I) and the Distribution GEXEC(M, I). The event Good(M, I)
is defined as the event over EXEC(M, I) that all the intersection queries asked
by Alice and Bob during the partial execution are in I. More formally let Q(A)
(resp. Q(B)) be the set of queries asked by Alice (resp. Bob) which are specified
by Alice’s view A (resp. Bob’s view B). Therefore Good(M,I) is the same as
Q(A) N Q(B) C Q(I) where Q(I) is the set of queries of I (note that I is a
set of query/answser pairs). We define the distribution GEXEC(M, I) to be the
distribution EXEC(M, I) conditioned on Good(M, I).

Eve’s Algorithm. The attacker Eve’s algorithm is specified as follows. It is pa-
rameterized by some constant 0 < € < 1/10. At any point in the execution, if

9 Note that we can verify that the pair (M, I) has nonzero probability to occur in the
protocol by simulating Eve’s algorithm on the transcript M, checking that whenever
Eve makes a query, this query is in I, in which case we feed Eve with the corre-
sponding answer (and verifying at the end that there are no “extra” queries in I not
asked by Eve). However in our attack the pair (M, I) will always be generated by
running the actual protocol and so we won’t need to run such checks.
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M is the sequence of messages Eve observed so far and I is the query/answer
pairs she learned so far, Eve computes for every ¢ € {0,1} the probability Dq
that ¢ appears as a query in a random execution in GEXEC(M, I). If p, > €/n
then Eve asks ¢ from the oracle and adds ¢ and its answer to I. (If there is more
than one such ¢ then Eve asks the lexicographically first one.) Eve continues in
this way until there is no additional query she can ask, at which point she waits
until she gets new information (i.e., observes a new message sent between Alice
and Bob).

Note that Eve’s algorithm above may ask much more than n? queries. How-
ever, we will show that the probability that Eve asks more than n?/e? queries
is bounded by O(e), and hence we can stop Eve after asking this many queries
without changing significantly her success probability.

4 Analysis of Attack: Proof of Theorem [3]

We now go over the proof of Theorem Bl For i € [2n], define the event Fail; to
be the event that the query made at the i*" round is an intersection query but
is not contained in the set I of query/answer pairs known by Eve, and moreover
that this is the first query satisfying this condition. Let the event Fail = \/, Fail;
be the event that at some point an intersection query is missed by Eve, and let
the event Long be that Eve makes more than n?/e? queries. By setting € = §/13
and stopping Eve after n?/e? queries, Theorem Bl immediately follows from the
following two lemmas:

Lemma 4 (Attack is successful). For every i, Prgyec[Fail;] < 3; Therefore
by the union bound, Pr[Fail] < 3e.

Lemma 5 (Attack is efficient). Prgygc[Long] < 10e.

4.1 Success of Attack: Proof of Lemma [4]

Lemma [ follows from the following stronger result which is the main technical
lemma of our paper:

Lemma 6. Let i be even and let B = (rg, Hg) be some fizing of Bob’s view in
an execution up to the i™ message sent by him, and let M, I be some fixing of the
messages exchanged and query/answer pairs learned by Eve in this execution such
that Prg)(gc(MJ) [GOOCI(]\I7 I) ‘ B] > 0. Then it holds that Prgg)(gc(MJ)[Fa”i ‘
B] < Sfl That is, the probability that Fail; happens is at most Sfl conditioning
on Eve’s information equalling (M, I), Bob’s view of the execution equalling B

and Good(M, I).

Proof (of Lemmal[j) from Lemmal@ ). Lemma [0 implies that in particular for ev-
ery even i, Prg xec(Fail; | Good;] < 3¢, where Good; denotes the event Good(AM, I)
where M, I are Eve’s information just before the i round. But since Fail; is the
event that Eve fails at round ¢ for the first time, Fail; implies Good; and hence
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Prexec|Fail;] < Prexec|Fail; | Good;], establishing the statement of Lemma @l
for every even i. By symmetry, the analog of Lemma [0 for odd ¢ also holds with
the roles of Alice and Bob reversed, completing the proof for all i.

Proof of Lemma

Product Characterization. Lemma [6] would be easy if the distribution
GEXEC(M,I) would have been a product distribution, with the views of Al-
ice and Bob independent from one another. Roughly speaking this is because in
this case Bob has no more information than Eve on the queries Alice made in the
past, and hence also from Bob’s point of view, no query is more probable than
€/n to have been asked by Alice. Unfortunately this is not the case. However,
we can show that the distribution GEXEC (M, I) is equal to the distribution ob-
tained by taking some product distribution A x B and conditioning it on the
event Good(M, I).

Lemma 7 (Product characterization). For every M, I denoting FEve’s infor-
mation up to just before the i™ query, if Prexec(m,n[Good(M, I)] > 0 there exist
a distribution A (resp. B) over Alice’s (resp. Bob’s) view up to that point such
that the distribution GEXEC(M, I) is the same as the product distribution (AxB)
conditioned on the event Good(M,I): GEXEC(M,I) = (A x B) | Good(M,I).

Proof. We will show that for every pair of Alice/Bob views (A4, B) in the proba-
bility space EXEC(M, I) that satisfy the event Good(M, I), Prgexec(ar,n (A, B)]
= ¢(M, I)asap where a4 depends only on A, ap depends only on B and ¢(M, I)
depends only on M, I. This means that if we let A be the distribution such that
Pra[A] is proportional to a4, and B be the distribution such that Prg[B] is
proportional to ag, then GEXEC(M, I) is proportional (and hence equal to) the
distribution A x B | Good(M, I).

Because (A, B) € SUPP(GEXEC(M, 1)), if (A, B) happens, it makes the event
Good(M, I) hold, and so we have

P A,B)] = P A, B M, I
mc(rMJ)[( ,B)] mc(rMJ)[( , B) A Good (M, I)]
= Pr [Good(M,I)] Pr [(AB).
EXEC(M,I) GEXEC(M,I)

On the other hand, by definition we have Prexeco,n((4,B)] =

Prfjf;igc‘?&%%’]m, therefore it holds that Prgexecin,nl(A, B)]

Prexec((A,B,M,I)] The
Prexec[(M,I)] Prexec(m,r)[Good(M,I)]"
side is only dependent on M and [I. The numerator is equal to
2= Iralg=IrBlg—tQAUQBIVQ(II - The reason is that the necessary and suf-
ficient condition that (A = (ra,Ha),B = (rg,Hp),M,I) happens is that
when we choose an execution (4,75, H’) then 7y = ra, ry = rp and
H is consistent on the queries in Q(A) U Q(B) U Q(I) with the answers

denominator of the righthand

19" A similar observation was made by [§], see Lemma 6.5 there.
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specified in Ha,Hp,I. Note that this will ensure that Alice and Bob
will indeed produce the transcript M. Let ay = 27 Iralg=tiQANQRMI 4nq
By = 2-Irsla-tQBNQL Since (Q(A) \ Q) N (Q(B) \ Q(I)) = 0, the
numerator is equal to 27 |TA|2 Irelg—tQIALRBIVRUN — o, 352 1Rl Thus
indeed Prgexecom,nl(A, B)] = c¢(M,I)aafBp where ¢(M,I) only depends on
(M, I).

Graph Characterization. This product characterization implies that we can think
of GEXEC as a distribution over random edges of some bipartite graph G. Using
some insights on the way this graph is defined, and the definition of our attacking
algorithm, we will show that every vertex in G is connected to most of the vertices
on the other side. We then show that this implies that Bob’s chance of asking a
query outside of I that was asked before by Alice is bounded by O(e/n).

More precisely, fixing M, I that contain Eve’s view up to just before the 7*!
round, define a bipartite graph G = (V,, Vg, E) as follows. Every node u € V7,
will have a corresponding view A, of Alice that is in the support of the distri-
bution A obtained from Lemma [} we let the number of nodes corresponding
to a view A be proportional to Pr4[A], meaning that A corresponds to the uni-
form distribution over the left-side vertices V. Similarly, every node v € Vg
will have a corresponding view of Bob B, such that B corresponds to the uni-
form distribution over Vgr. We define Q,, = Q(A4,) \ Q(I) for u € Vi to be the
set of queries outside of I that were asked by Alice in the view A,, and define
Qv = Q(By) \ Q(I) similarly. We put an edge in the graph between w and v
(denoted by u ~ v) if and only if Q, N Q, = 0. Lemma [7] implies that the distri-
bution GEXEC(M, I) is equal to the distribution obtained by letting (u,v) be a
random edge of the graph G and choosing (A, By).

It turns out that this graph is dense (i.e., every vertex is connected to almost
all other vertices in the other side). The proof has two steps. The first one is to
show that such graphs are “highly connected” in the sense that removing any
vertex v and its neighbors from the graph, remains a small fraction of the edges
in the graph. The reason is that otherwise, there is a member of @, which is
heavy and Eve should have asked that query. The second step is to show that this
notion of connectivity would imply that the graph dense (whenever the graph is
bipartite). More formally, we prove the following lemma:

Lemma 8. Let G = (V1,, Vg, E) be the graph above. Then for every u € Vi,
d(u) > |Vr|(1 — 2€) and for every v € Vg, d(v) > |VL|(1 — 2¢) where d(w) is the
degree of the verter w.

Proof. We first show that for every w € Vi, 37, cy,. .z, d(v) < €[E|. The reason
is that the probability of vertex v being chosen when we choose a random edge
. d . d .

is Igl) and if ZvEVR,w76v Igl) > ¢, it means that Pr(u’v)eRE[Qw NQy # 0] > e
Hence because |Q.| < n, by the pigeonhole principle there exists ¢ € @, such
that Pr(uyv)eRE[q € Qo] > €/n. But this is a contradiction, because then ¢ should
be in I by the definition of the attack and hence cannot be in Q,,. The same

argument shows that for every w € Vi, >°,cv, w0 d(u) < €|E|. Thus for every
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vertex w € Vi, U Vg, |E*(w)| < €|E| where E”(w) denotes the set of edges that
are not adjacent to any neighbor of w (i.e., E*(w) = {(u,v) € E | u 7t w Aw
v}). Now the following claim proves the lemma.

Claim. Let G = (V1,, Vg, E) be a nonempty bipartite graph such that for every
vertex w, |[E”(w)| < €|E| for € < 1/2, then for all u € Vg, d(u) > |Vg|(1 — 2¢)
and for every v € Vg, d(v) > |VL|(1 — 2¢).

Proof. Let di, = min{d(v) | v € Vp} and dg = min{d(v) | v € Vg}. By
switching the left and right sides if necessary, we may assume without loss of

generality that (*): ﬁ,;l < ﬁ};l. Thus it suffices to prove that 1 — 2¢ < Ig/;l‘

Suppose 1—2¢ > Ieszzl ,and let u € Vi, be the vertex that d(u) = dr, < (1—2¢)|Vg]|.
Because for all v € Vi we have d(v) < |V, thus using (*) we see that |[E™ (u)| <
dr|Vi| < dr|Vr| where E™(u) = E\ E*(u). On the other hand since we assumed
that d(u) < (1—2¢)|Vg|, there are more than 2¢|Vg|dr edges in E7(u), meaning
that |E™(u)| < |E”(u)|/(2¢). But this implies

|E7 ()] < €| E| = € (B (u)] + |E™ (u)]) < e E7 (u)| + |[E* (u)|/2
which is a contradiction for € < 1/2 because the graph G is nonempty.

Proof of Lemmald from Lemmas[7 and[8. Let B, M, I be as in Lemma [6l and ¢
be Bob’s query which is fixed now. By Lemma[7] the distribution GEXEC(M, I)
conditioned on getting B as Bob’s view is the same as (A x B) conditioned on
Good(M, I) A (B = B). By the definition of the bipartite graph G = (V, Vg, E)
it is the same as choosing a random edge (u,v) &, E conditioned on B, = B and
choosing (A, By). We prove Lemma [l even conditioned on fixing v such that
B, = B. Now the distribution on Alice’s view is the same as choosing u €, N(v)
to be a random neighbor of v and choosing A,. Let S = {u € V1, | ¢ € A,}.
Then it holds that

15| 5] ISI| Vg Dues d(w) € 3e
P A)< 2L < < < < o
e bl €A S eSS A S T 20iE] S (= 207E] = (1=20% < 2n

The second and fourth inequalities are because of Lemma [8l The third one is
because |E| < |VL||Vr]|. The fifth one is because of the definition of the attack
which asks €/n heavy queries, and the sixth one is because e = §/13 < 1/13. O

4.2 Efficiency of Attack: Proof of Lemma

The proof of attack’s efficiency (i.e. Lemma [l) crucially uses the fact that the
attack is successful, and uses the following lemma from [§].

Lemma 9 (Lemma 6.4 of [8]). Let Z1,...,Z;,... be any sequence of random
variables determined by a finite underlying random variable X, let F' be any event
for random variable X, and let 0 < p < 1. Let B; be the event that Prx[F(X) |
Zv,...,Zj] = p, and let B =\ ; Bj. Then it holds that Prx[F[X] | B] > p.
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We say that a member of the probability space X € EXEC is in the event Bad,
if at the moment that Eve is go to ask her j*" query from the oracle, we have
Prexec(m,n[—Good(M, I)] > 1/2, where (M, I') are the sequence of messages and
Eve’s set of query/answer pairs at that moment. Let Bad = \/j Bad;. We define
the probability space EXEC(Bad) to be the same as EXEC with the difference
that Eve stops asking more queries whenever Bad; happens for some j.

The proof of efficiency consists of the following two steps.

Step 1. We first use the success property of the attack (i.e., Preyec|[Fail] <
3e/n) to show that Preyec[Bad] < 6e (Lemma [I0 below) which also means that
Pre vec(pagy[Bad] = Prexec[Bad] < 6e. Note that ~Good(MM, I) implies that Fail;
has already happened for some i, and so =Good(M, I) implies Fail.

Step 2. We then show that in EXEC(Bad) on average Eve will not ask more
than N = 422 number of queries (see Lemma [II] below). Since Long is the

event that Eve asks more than 222 = ﬁ queries, by Markov inequality we have

Pre vec(pagylLong] < 4e, and therefore we will have

Pr [Long| < Pr [LongV Bad| = Pr Long Vv Bad
br [Long] < Pr [Long } SXSC(Bad)[ g }

< Pr [Long]+ Pr [Bad]<10¢ .
£XEC(Bad) £XEC(Bad)

Now we prove the needed lemmas.
Lemma 10. Prgyec[Bad] < Ge.

Proof. We use Lemma [ as follows. Let the underlying random variable be X =
EXEC, and the event F' = Fail. Let the random variable Z; be the information
that Eve learns about X after asking her (j — 1)*" query, before she asks her ;!
query. Namely (Z1, ..., Z;) is equal to (M, I) of the moment she wants to ask her
j* query. Let p = 1/2, which means B, is the event that Pr[Fail | Zy,..., Z;] >
1/2. Lemma [@ implies that Pr[Fail | B] > 1/2.

Note that =Good (M, I') at any moment implies that Fail has already happened,
so Bad; implies B; and therefore Bad implies B. Now if Prgxgc[Bad] > 6¢, we
would have Pr(Fail] > Pr[B A Fail] = Pr[B] Pr(Fail | B] > Pr[Bad](}) > 3¢ which
contradicts Lemma Hl

Lemma 11. Let v = S, and X = EXEC(Bad). If I denotes the set of query/

2n’
answer pairs that Fve learns by the end of protocol in X, then Ex|[|I|]
< 2n _ an?
_— ,y € .

Proof. For a fixed query q € {0,1}", let E, (resp. F,) be the event (over X) that
Eve (resp. Alice or Bob) asks ¢. By linearity of expectation we have E[|I|] =
> Pr[Eg] and 3 Pr[Fy] < 2n. We claim that Pr[Eg]y < Pr[F,] which would

imply the lemma E[|/[] =3 Pr[E,] < i > PriFy] < 27".
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To prove Pr[E,]y < Pr[Fy], we use Lemma [J as follows. The underlying ran-
dom variable X = EXEC(Bad) (as here), the event F' = F,, and the random
variable Z; is as defined in the proof of Lemma Let p =~y which means B;
is the event that Pr[Fy, | Z1,...,Z;] > ~. Lemma[@ implies that Pr[F, | B] > ~.

Note that if Eve asks ¢ from the oracle when she knows (M,I) = Z1,...,Z;
about X, g has at least €¢/n probability to be asked by Alice or Bob conditioned
on Good(M, I). But Pr[Good(M,I)] > 1/2 holds in X whenever Eve wants to
ask a query, and it means that ¢ is asked by Alice or Bob with probability
at least ;' = 7 before. In other words when Eve asks ¢ it holds that Pr[F) |
Z1,...,Zj] >~ which means that the event E; implies B.

Therefore it holds that Pr[F,] > Pr[F, A B] = Pr[B] Pr[F, | B] > Pr[E,]y.

5 Completing the Proof

To complete the proof, we need to (a) show how to handle protocols that are
not necessarily in normal form and (b) show how Eve can recover the secret
once she knows the intersection queries. Task (b) was already achieved by [8]
Theorem 6.2] (although it can be shown that our attack does not need to ask any
more queries to find the secret). [§ also showed how one can achieve task (a)
using a general “compiler” that transforms general protocols to normal form.
However that transformation has a quadratic blowup in efficiency that we can-
not afford. We now sketch how our attack can be extended to handle general
protocols without incurring this cost. (See the full version for the remaining
details.)

In order to get an attack of the same ('3")? complexity finding all the inter-
section queries of Alice and Bob for general form of protocols we do the following.

Attack for Seminormal Protocol. We first extend the result with the same com-
plexity of (1?5”)2 queries for the attack to the “seminormal” protocols by a bit
more careful analysis of the same attack given above. A seminormal protocol is
a protocol in which Alice and Bob can ask either zero or one query in each of
their rounds. Again Alice and Bob ask at most n queries each, but the number
of rounds can be arbitrary larger than n.

Roughly speaking, the reason that the same attack as above works for semi-
normal protocols is that although there are £2(n?) number of rounds in the new
seminormal protocol, we only need to bound the probability that Eve misses an
intersection query for the first time whenever Alice or Bob does ask a query in
their turn (and there are only 2n such queries). Assuming that it is Bob’s turn,
if we fix the query he asks we can still bound the probability that the query is
the first missing intersection query using Lemma [6l That is because in Lemma
the statement holds even conditioned on Bob’s computation (and his query in
particular) being fixed.

Compiling into Seminormal Form. Any protocol can be simply changed into a
seminormal protocol without increasing n or loosing the security. To see why,
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suppose it is Bob’s turn and he is going to ask k£ < n queries from the oracle
before sending a message to Alice. Alice and Bob can blow this single round into
2n — 1 number of rounds in which Alice does nothing other than sending | to
Bob and it lets Bob to ask his queries in different rounds. He sends the actual
message in the last round among the 2n — 1 new rounds. The total number of
rounds will be O(n?), but the number of queries that Alice and Bob together
ask will still remain 2n as before.

Acknowledgements. We thank Russell Impagliazzo for useful discussions, and
also for his warning that attempting to prove an O(n?) bound for this problem
leads naturally to conjecturing (and even conjecturing that you proved) inter-
mediate results that are simply not true. He was much more prescient than we
realized at the time.
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