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Abstract. Matsui’s one-dimensional Alg. 2 can be used for recovering
bits of the last round key of a block cipher. In this paper a truly mul-
tidimensional extension of Alg. 2 based on established statistical theory
is presented. Two possible methods, an optimal method based on the
log-likelihood ratio and a χ2-based goodness-of-fit test are compared in
theory and by practical experiments on reduced round Serpent. The the-
ory of advantage by Selçuk is generalised in multiple dimensions and the
advantages and data, time and memory complexities for both methods
are derived.

1 Introduction

Linear cryptanalysis was introduced by Matsui in [1]. The method uses a one-
dimensio- nal linear relation for recovering information about the secret key
of a block cipher. Matsui presented two algorithms, Algorithm 1 (Alg. 1) and
Algorithm 2 (Alg. 2). While Alg.1 extracts one bit of information about the
secret key, Alg. 2 ranks several candidates for a part of the last round key of
a block cipher according to a test statistic such that the right key should be
ranked highest. Using the recovered last round key, it is then possible to extract
one bit of information about the other round keys.

Since then researchers have been puzzled by the question how the linear crypt-
analysis method could be enhanced by making use of multiple linear approxi-
mations simultaneously. In [2] Kaliski and Robshaw used several linear relations
involving the same key bits in an attempt to reduce the data complexities of
Matsui’s algorithms. Multiple linear relations were also used by Biryukov, et al.,
[3] for extracting several bits of information about the key in an Alg. 1 type
attack. This basic attack was also extended to an Alg. 2 type attack. However,
both [2] and [3] depend on theoretical assumptions about the statistical prop-
erties of the one-dimensional linear relations that may not hold in the general
case as was shown in [4].

The statistical linear distinguisher presented by Baignères, et al., in [5] does
not suffer from this limitation. It has also another advantage over the previous
approaches [2] and [3]: it is based on a well established statistical theory of log-
likelihood ratio, LLR, see also [6]. In [7] it was further shown how to distinguish
one known probability distribution from a set of other distributions.
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The purpose of this paper is to present two new multidimensional extensions
of Matsui’s Alg. 2 including an effective ranking method for the key candidates
based on Selçuk’s concept of advantage [8]. First a straightforward solution for
Alg. 2 based on goodness-of-fit test using χ2-statistic will be presented. We
will then discuss a χ2-based version of Alg. 1 [9] and show that the method
of Biryukov, et al., is related to a combination of the χ2-based Alg. 1 and
Alg. 2. We will then present a method based on LLR which actually combines
Alg. 1 and Alg. 2 and outperforms the χ2-based method in theory and practice.
In the practical experiments the data, memory and time complexity for achieved
advantage is determined and compared with the values given by the theoretical
statistical models developed in this paper.

The structure of this paper is as follows: In Sect. 2 the basic statistical theory
and notation is given. The advantage and the generalisation of Selçuk’s theory is
presented in Sect. 3. The multidimensional Alg. 2 is described in Sect. 4 and the
different methods based on the two test statistics are described in Sect. 5 and
Sect. 6. The time, memory and data complexities of both methods are examined
in Sect. 7. The experimental results are given in Sect. 8. Finally, Sect. 9 draws
conclusions.

2 Boolean Function and Probability Distribution

We will denote the space of n-dimensional binary vectors by Vn. A function
f : Vn → V1 is called a Boolean function. A function f : Vn → Vm with f =
(f1, . . . , fm), where fi are Boolean functions is called a vector Boolean function
of dimension m. A linear Boolean function from Vn to Vm is represented by an
m×n binary matrix U . The m rows of U are denoted by u1, . . . , um, where each
ui is a binary vector of length n.

The correlation between a Boolean function and zero is

c(f) = c(f, 0) = 2−n (#{ξ ∈ Vn | f(ξ) = 0} − #{ξ ∈ Vn | f(ξ) �= 0})
and it is also called the correlation of f.

We say that the vector p = (p0, . . . , pM ) is a probability distribution (p.d.)
of random variable (r.v.) X and denote X ∼ p, if Pr(X = η) = pη, for all
η = 0, . . . , M . We will denote the uniform p.d. by θ. Let f : Vn → Vm and
X ∼ θ. We call the p.d. p of the r.v. Y = f(X) the p.d. of f .

Let us study some general properties of p.d.’s. Let p = (p0, . . . , pM ) and
q = (q0, . . . , qM ) be some p.d.’s of r.v.’s taking on values in a set with M + 1
elements. The Kullback-Leibler distance between p and q is defined as follows:

Definition 1. The relative entropy or Kullback-Leibler distance between p and
q is

D(p || q) =
M∑

η=0

pη log
pη

qη
, (1)

with the conventions 0 log 0/b = 0, b �= 0 and b log b/0 = ∞.
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The following property usually holds for p.d.’s related to any real ciphers, so it
will be frequently used throughout this work:

Property 1. We say that distribution p is close to q if |pη − qη| � qη, for all
η = 0, 1, . . . , M .

If p is close to q then we can approximate the Kullback-Leibler-distance between
p and q by its Taylor series. We call the first term of the series the capacity of
p and q and it is defined as follows:

Definition 2. The capacity between two p.d.’s p and q is defined by

C(p, q) =
M∑

η=0

(pη − qη)2

qη
. (2)

If q is the uniform distribution, then C(p, q) will be denoted by C(p) and called
the capacity of p.

The normed normal distribution with mean 0 and variance 1 is denoted by
N (0, 1). Its probability density function (p.d.f.) is

φ(x) =
1√
2π

e−x2/2 (3)

and the cumulative distribution function (c.d.f.) is

Φ(x) =
∫ x

−∞
φ(t) dt . (4)

The normal distribution with mean μ and variance σ2 is denoted by N (μ, σ2)
and its p.d.f. and c.d.f. are φμ,σ2 and Φμ,σ2 , respectively.

The χ2
M -distribution with M degrees of freedom has mean M and variance

2M . The non-central χ2
M (λ)-distribution with M degrees of freedom has mean

λ + M and variance 2(M + 2λ). If M > 30, we may approximate χ2
M (λ) ∼

N (λ + M, 2(M + 2λ)) [10].
Let X1, . . . , Xn be a sequence independent and identically distributed (i.i.d.)

random variables where either Xi ∼ p, for all i = 1, . . . , N (corresponding to null
hypothesis H0) or Xi ∼ q �= p, for all i = 1, . . . , N (corresponding to alternate
hypothesis H1) and let x̂1, . . . , x̂N be the empirical data. The hypothesis testing
problem is then to determine whether to accept or reject H0. The Neyman-
Pearson lemma [11] states that an optimal statistic for solving this problem, or
distinguishing between p and q, is the log-likelihood ratio defined by

LLR(q̂, p, q) =
M∑

η=0

Nq̂η log
pη

qη
, (5)

where q̂ = (q̂0, . . . , q̂M ) is the empirical p.d. calculated from the data x̂1, . . . , x̂N

by

q̂η =
1
N

#{i = 1, . . . , N | x̂i = η}.
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The distinguisher accepts H0, that is, outputs p (respectively rejects H0 or out-
puts q) if LLR(q̂, p, q) ≥ γ (< γ) where γ is the threshold that depends on the
level and the power of the test. If the power and the level of the test are equal
(as is often the case) then γ = 0.

The proof for the following result can be found in [11], see also [5].

Proposition 1. The LLR-statistic calculated from i.i.d. empirical data x̂i, i =
1, . . . , N using (5) is asymptotically normal with mean and variance Nμ0 and
Nσ2

0 (Nμ1 and Nσ2
1 , resp.) if the data is drawn from p (q, resp.). The means

and variances are given by

μ0 = D(p || q) μ1 = −D(q || p)

σ2
0 =

M∑

η=0

pη log2 pη

qη
− μ2

0 σ2
1 =

M∑

η=0

qη log2 pη

qη
− μ2

1.
(6)

Moreover, if p is close to q, we have

μ0 ≈ −μ1 ≈ 1
2
C(p, q) σ2

0 ≈ σ2
1 ≈ C(p, q). (7)

3 Advantage in Key Ranking

In a key recovery attack one is given a set of key candidates, and the problem is to
determine which key is the right one. Usually the keys are searched from the set
Vn of all 2n strings of n bits. The algorithm consists of four phases, the counting
phase, analysis phase, sorting phase and searching phase [12]. In the counting
phase one collects data from the cipher, for example, plaintext-ciphertext pairs.
In the analysis phase a real-valued statistic T is used in calculating a rank (or
“mark” [12]) T (κ) for all candidates κ ∈ Vn.

In the sorting phase the candidates κ are sorted, i.e., ranked, according to
the statistic T . Optimally, the right key, denoted by κ0, should be at the top of
the list. If this is not the case, then one must also run through a search phase,
testing the keys in the list until κ0 is found. The goal of this paper is to find a
statistic T (κ) that is easy to compute and that is also reliable and efficient in
finding the right key.

The time complexity of the search phase, given amount N of data, was mea-
sured using a special purpose quantity “gain” in [3]. A similar but more generally
applicable concept of “advantage” was introduced by Selçuk in [8], where it was
defined as follows:

Definition 3. We say that a key recovery attack for an n-bit key achieves an
advantage of a bits over exhaustive search, if the correct key is ranked among the
top r = 2n−a out of all 2n key candidates.

Statistical tests for key recovery attacks are based on the Wrong-key Hypothesis
[13]. We state it as follows:
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Assumption 1 (Wrong-key Hypothesis). There are two p.d.’s q and q′, q �=
q′ such that for the right key κ0, the data is drawn from q and for a wrong key
κ �= κ0 the data is drawn from q′ �= q.

A real-valued statistic T is computed from q and q′, where one of these p.d.’s
may be unknown, and the purpose of a statistic T is to distinguish between q
and q′. We use DR to denote the p.d. such that T (κ0) ∼ DR. We will assume
DR = N (μR, σ2

R), with parameters μR and σR, as this will be the case with
all statistics in this paper. Then μR and σR are determined with the help of
linear cryptanalysis. We denote by DW the p.d. known based on the Wrong-key
Hypothesis such that T (κ) ∼ DW for all κ �= κ0. The p.d.f. and c.d.f. of DW are
denoted by fW and FW , respectively.

Ranking the keys κ according to T means rearranging the 2n r.v.’s T (κ), κ ∈
Vn, in decreasing order of magnitude. Writing the ordered r.v.’s as T0 ≥ T1 ≥
· · · ≥ TM , we call Ti the ith order statistic. Let us fix the advantage a such that
the right key should be among the r = 2n−a highest ranking keys. Hence, the
right key should be at least as high as the rth wrong key corresponding to Tr.
By Theorem 1. in [8] we get that the r.v. Tr is distributed as

Tr ∼ N (μa, σ2
a), where

μa = F−1
W (1 − 2−a) and σa ≈ 2−(n+a)/2

fW (μa)
.

(8)

If we now define the success probability PS of having κ0 among the r highest
ranking keys we have

PS = Pr(T (κ0) − Tr > 0) = Φ

(
μR − μa√
σ2

R + σ2
a

)
, (9)

since T (κ0) − Tr ∼ N (μR − μa, σ2
R + σ2

a).
As the data complexity N depends on the parameters μR − μa and σ2

R + σ2
a,

we can solve N from (9) as a function of a and vice versa. Hence, (9) describes
the trade-off between the data complexity N and the complexity of the search
phase.

In a block cipher, the unknown key is divided into a number of round keys
not necessarily disjoint or independent. In [3], the keys of the last round (or first
and last round) were called the outer keys and the rest of the round keys were
called inner keys. The unknown key κ may consist of outer keys, the parity bits
of inner keys or both. Traditionally, in Matsui’s Alg. 1 key parity bit(s) of the
inner keys are searched, whereas in Alg. 2. the main goal is to determine parts
of the outer keys.

4 Algorithm 2

4.1 Multidimensional Linear Approximation

Let us study a block cipher with t rounds. Let x ∈ Vn be the plaintext, y ∈ Vn

the ciphertext, K ∈ Vν the fixed round key data (the inner key) used in all but
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the last round and z = f−1
t (y, k), k ∈ Vl, the input to the last round function

ft, obtained from y by decrypting with the last round key data k (outer key).
Let m ≤ n be an integer. Using m-dimensional linear cryptanalysis one can
determine an approximation p of the p.d. of the Boolean function

x �→ Ux + Wz + V K, (10)

which defines an m-dimensional linear approximation, where U and W are m×n
matrices and V is an m×ν matrix. A way of obtaining p from the one-dimensional
correlations was presented in [4]. The linear mapping V divides the inner key
space to 2m equivalence classes g = V K ∈ Vm. Let the right last round key be
denoted by k0. Denote M = 2m − 1 from now on.

In the counting phase we draw N data pairs (x̂i, ŷi), i = 1, . . . , N. In the
analysis phase, for each last round key k, we first calculate ẑk

i = f−1
t (ŷi, k), i =

1, . . . , N. Then, for each k, we calculate the empirical p.d. q̂k = (q̂k
0 , . . . , q̂k

M ),
where

q̂k
η =

1
N

#{i = 1, . . . , N |Ux̂i + Wẑk
i = η}. (11)

If we use the wrong key k �= k0 to decrypt ŷi, i = 1, . . . , N , it means we es-
sentially encrypt over one more round and the resulting data will be more uni-
formly distributed. This heuristics is behind the original Wrong-key Randomi-
sation Hypothesis [14], which in our case means that the data Ux̂i + Wẑk

i , i =
1, . . . , N, k �= k0 is drawn i.i.d. from the uniform distribution.

When decrypting with the correct key k0 the data Ux̂i + Wẑk0
i + g, i =

1, . . . , N , where g is an unknown inner key class, is drawn i.i.d. from p. This
means that the data Ux̂i + Wẑk0

i , i = 1, . . . , N is drawn i.i.d. from a fixed
permutation of p denoted by pg. These permuted p.d.’s have the property that
pg

η⊕h = pg⊕h
η , for all g, η, h ∈ Vm, and consequently

D(pg || θ) = D(p || θ) and C(p) = C(pg) for all g ∈ Vm. (12)

Moreover, D(p || ph) = D(pg || ph⊕g), for all h, g ∈ Vm, from which it follows that

min
g′ �=g

D(pg || pg′
) = min

h �=0
D(p || ph), (13)

which is a constant value for all g ∈ Vm. We will denote this value by Dmin(p)
and assume in the sequel that Dmin(p) �= 0 without restriction: We can unite
the key classes for which the Kullback-Leibler distance is zero. Then we just
have m′ < 2m key classes whose Kullback-Leibler distance from each other is
non-zero. The corresponding minimum capacity minh �=0 C(p, ph) is denoted by
Cmin(p).

4.2 Key Ranking in One-Dimensional Alg. 2

Key ranking and advantage in the one-dimensional case, m = 1, of Alg. 2 was
studied in [8]. We will present it here briefly for completeness. Let c > 0 be
the correlation of (10) (the calculations are similar if c < 0) and let ĉk be the
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empirical correlation calculated from the data. The statistic used in ranking
the keys is then s(k) = |ĉk|. The r.v. ĉk0 is binomially distributed with mean
μR = c and variance σ2

R = (1 − c2)/N ≈ 1/N . The wrong key r.v.’s ĉk, k �= k0,
are binomially distributed with mean μW = 0 (following Assumption 1) and
variance σ2

W = σ2
R. Since N is large, we can approximate s(k0) ∼ N (μR, σ2

R) and
s(k) ∼ FN (μW , σ2

W ), where FN is the folded normal distribution, see Appendix
A in [8]. Now we can proceed as in [8]. We get that, with given success probability
PS and advantage a, the data complexity is

N =
(Φ−1(PS) + Φ−1(1 − 2−a−1))2

c2
. (14)

4.3 Different Scenarios in Multiple Dimensions

When considering generalisation of Alg.2 to the case, where multiple linear ap-
proximations are used, different approaches are possible. In a previous work by
Biryukov, et al., [3], a number of selected one-dimensional linear approximations
with high bias are taken into account simultaneously under the assumption that
they are statistically independent. As we will show later in Sect. 5.3, the statis-
tic used in [3] is essentially a goodness-of-fit test based on least squares and
searches simultaneously the key parts k0 and g0 which give the best fit with the
theoretically estimated correlations.

The approaches taken in [5] for linear distinguishing and later in [4] for Alg.
1 do not need assumptions about independence of the linear approximations as
they are based on the p.d. of the multidimensional linear approximation (10).
When using the multidimensional p.d., basically two different standard statistical
methods can be used:

– Goodness-of-fit (usually based on χ2-statistic) and
– Distinguishing of an unknown p.d. from a given set of p.d.’s (usually based

on LLR-statistic)

The goodness-of-fit approach is a straightforward generalisation of one-
dimensional Alg. 2. It can be used in searching for κ = k. It measures whether
the data is drawn from the uniform (wrong) distribution, or not, by measuring
the deviation from the uniform distribution. It ranks highest the key candidate
whose empirical distribution is farthest away from the uniform distribution. The
statistic does not depend on the inner key class g. Information about p.d. p is
required only for measuring the strength of the test. We will study this method
in Sect. 5.1. After the right round key k is found, one can use the data derived
in Alg. 2 in any form of Alg. 1 for finding the inner key class g. In this manner,
the χ2-approach allows separating between Alg. 1 and Alg. 2.

The LLR-method uses the information about the p.d. related to the inner key
class also in Alg. 2. In this sense, it is similar to the method of [3], where the
Alg. 1 and Alg. 2 were combined together for finding both the outer and inner
round keys. As we noted in Sect. 2, the LLR-statistic is the optimal distinguisher
between two known p.d.’s. If we knew the right inner key class g0, we could simply
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use the empirical p.d.’s q̂k for distinguishing pg0 and the uniform distribution
and then choose the k for which this distinguisher is strongest [5]. In practice,
the correct inner key class g0 is unknown when running Alg. 2 for finding the
last round key.

Our approach is the following. In [7] it was described how one can use LLR
to distinguish one known p.d. from a set of p.d.’s. We will use this distinguisher
for distinguishing θ from the given set pg, g ∈ Vm. In the setting of Alg. 2, we
can expect that for the right k0, it should be possible to clearly conclude that
the data (x̂i, ŷi), i = 1, . . . , N, yields data (x̂i, ẑ

k0
i ), i = 1, . . . , N, which follows

a p.d. pg, for some g ∈ Vm, rather than the uniform distribution. On the other
hand, for the wrong k �= k0, the data follows the uniform distribution, rather
than any pg, g ∈ Vm.

To distinguish k0 from the wrong key candidates we determine, for each round
key candidate k, the inner key class g, for which the LLR-statistic is the largest
with the given data. The right key k0 is expected to have g0 such that the LLR-
statistic with this pair (k0, g0) is larger than for any other pair (k, g) �= (k0, g0).
In this manner, we also recover g0 in addition to k0. The LLR-method is studied
in Sect. 6.

5 The χ2-Method

This method separates the Alg. 1. and Alg. 2 such that the latter does not need
any information of p. Both methods are interpreted as goodness-of-fit problems,
for which the natural choice of ranking statistic is χ2. We will show how to find
the last round key k with Alg. 2 first.

5.1 Algorithm 2 with χ2

Given empirical p.d. q̂k, we can calculate the χ2-statistic from the data as

S(k) = 2mN

M∑

η=0

(q̂k
η − 2−m)2, (15)

where M = 2m − 1 is the number of degrees of freedom. The statistic can
be interpreted as the l2-distance between the empirical p.d. and the uniform
distribution. By Assumption 1, the right round key should produce data that is
farthest away from the uniform distribution and we will choose the round key k
for which the statistic (15) is largest. Obviously, if m = 1, we get the statistic
(ĉk)2.

According to [15] the r.v. S(k0) is distributed approximately as

S(k0) ∼ χ2
M (NC(pg0 )) = χ2

M (NC(p)), (16)

because of the symmetry property (12). Hence, we may approximate the distribu-
tion by a normal distribution with μR = M +NC(p) and σ2

R = 2(M +2NC(p)).
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The parameters do not depend on g0 or k0. For the wrong keys k �= k0, we obtain
by [15] that

S(k) ∼ χ2
M (0) = χ2

M , (17)

so that μW = M and σ2
W = 2M . The mean and variance in (8) are μa =

σW b + M =
√

2Mb + M and σ2
a = 2−(l+a)/2σ2

W /φ(b) � σ2
0 . Now we can solve

N from (9) and get that the data complexity is proportional to

Nχ2 =
β(M, b, PS)

C(p)
, b = Φ−1(1 − 2−a), (18)

where β(M, b, PS) is a parameter that depends on M, b and PS . Assuming large
b, that is, large advantage a and large PS , we can approximate β by

β = 2
√

Mb + 4Φ−2(2PS − 1). (19)

Note that the normal approximation of the wrong-key distribution is valid only
when m > 5, that is, when the approximation of χ2-distribution by a normal
distribution is valid. It is not possible to perform the theoretical calculations for
small m as the χ2-distribution does not have a simple asymptotic form in that
case and we cannot determine fW and FW in (8). Since our χ2-statistic reduces
to the square of s(k) that was used by Selçuk, the theoretical distributions differ
from our calculations and we get a slightly different formula for the advantage.
Despite this difference, the methods are equivalent for m = 1.

Keeping the capacity constant, it seems that the data complexity increases
exponentially as 2m/2 as the dimension m of the linear approximation increases
and is sufficiently large. Hence, in order to strengthen the attack, the capacity
should increase faster than 2m/2 when the m is increased. This is a very strong
condition and it suggests that in applications, only approximations with small m
should be used with χ2-attack. The experimental results for different m presented
in Sect. 8 as well as the theoretical curves depicted in Fig. 5(a) suggest that
increasing m in the χ2-method does not necessarily mean improved performance
for Alg. 2.

Since 2−a = Φ(−b) ≈ 1/
√

2πe−b2/2, we can solve a from (18) as a function of
N and we have proved the following theorem that can be used in describing the
relationship between the data complexity and the search phase:

Theorem 1. Suppose the cipher satisfies Assumption 1 where q′ = θ and the
p.d.’s pg, g ∈ Vm and θ are close to each other. Then the advantage of the
χ2-method using statistic (15) is given by

aχ2 =
(NC(p) − 4ϕ)2

4M
, ϕ = Φ−2(2PS − 1), M = 2m − 1, (20)

where PS (> 0.5) is the probability of success, N is the amount of data used in
the attack and C(p) and m (≥ 5) are the capacity and the dimension of the linear
approximation (10), respectively.
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While (20) and (18) depend on the theoretical distribution p, the actual χ2-
statistic (15) is independent of p. Hence, we do not need to know p accurately
to realise the attack, we only need to find an approximation (10) that deviates
as much as possible from the uniform distribution. On the other hand, if we use
time and effort for computing an approximation of the theoretical p.d. and if we
may assume that the approximation is accurate, we would also like to exploit
this knowledge for finding the right inner key class with Alg. 1. As noted in [9],
there are several ways to realising a multidimensional Alg. 1. Next we discuss
Alg. 1 as a χ2-based goodness-of-fit problem.

5.2 Algorithm 1 with χ2

Suppose that we have obtained an empirical distribution q̂ of data that can be
used for determining the inner key class g0 using Alg. 1. For example, we have
successfully run Alg. 2 and found the correct last round key k0 and set q̂ = q̂k0 .

One approach is to consider Alg. 1 as a goodness-of-fit problem, where one
determines, for each g, whether the empirical p.d. q̂ follows pg or not. The χ2-
based ranking statistic is then

SAlg1(g) = N

M∑

η=0

(q̂k0
η − pg

η)2

pg
η

, (21)

which should be small for g0 and large for the wrong inner key classes g �= g0.
In [9] it is shown that the data complexity of finding g0 with given success
probability PS is

NAlg 1,χ2 =
4m − 4γS + 2

√
2M(m− γS)

Cmin(p)
, (22)

where γS = ln(
√

2π ln P−1
S ).

5.3 Combined Method and Discussion

The sums of squares of correlations used in [3] are closely related to the sums
of squares (15) and (21). Indeed, we could define a combined χ2-statistic B by
considering the sum of the statistics from (15) and (21) and setting

B(k, g) =
∑

k′ �=k

S(k) + SAlg 1(k, g), (23)

where SAlg 1(k, g) is the statistic (21) calculated from the empirical p.d. q̂k, k ∈
Vl. If we approximate the denominators in (21) by 2−m and scaling by 2mN we
obtain from B(k, g) the statistic

B′(k, g) =
∑

k′ �=k

||q̂k′ − θ||22 + ||q̂k − pg||22. (24)

This statistic is closely related to the one used in [3].
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∑

k′ �=k

||ĉk′ ||22 + ||ĉk − cg||22. (25)

Indeed, if in (25) all correlation vectors ĉk and cg contain correlations from
all linear approximations then (25) becomes the same as 2mB′(k, g) as can be
seen using Parseval’s theorem. Initially, in the theoretical derivation of (25) only
linearly and statistically independent approximations were included in the cor-
relation vectors. However, in Sect. 3.4 of [3] it was proposed to take into account
all linear approximations with strong correlations when forming the statistic
(25) in practice. In practical experiments by Collard, et al. [16] this heuristic
enhancement was demonstrated to improve the results. In this paper, we have
shown how to remove the assumption about independence of the linear approx-
imations and that all linear approximations that have sufficient contribution to
the capacity (cf. discussion in Sect. 5.1) can and should be included.

Other possibilities for combining Alg. 1 and Alg. 2 based on χ2 or its variants
are also possible, with different weights on the terms of the sum in (24), for
instance. However, the mathematically more straightforward way is to use the
pure χ2-method defined by (15) and (21), as its statistical behaviour is well-
known. An even more efficient method can be developed based on LLR as will
be shown next.

6 The LLR-Method

This method is also based on the same heuristic as the Wrong-key Hypothesis:
For k �= k0, the distribution of the data should look uniform and for k0 it should
look like pg0 , for some g0. Hence, for each k, the problem is to distinguish the
uniform distribution from the discrete and known set pg, g ∈ Vm. Let us use
the notation L(k, g) = LLR(q̂k, pg, θ). We propose to use the following ranking
statistic

L(k) = max
g∈Vm

L(k, g). (26)

Now k0 should be the key for which this maximum over g’s is the largest and
ideally, the maximum should be achieved when g = g0. While the symmetry
property (12) allows one to develop statistical theory without knowing g0, in
practice one must search through Vl for k0 and Vm for g0 even if we are only
interested in determining k0.

We assume that the p.d.’s pg and θ are all close to each other. Using Theorem
1 and property (12) we can state Assumption 1 as follows: For the right pair k0

and g0

L(k0, g0) ∼ N (NμR, Nσ2
R), where μR =

1
2
C(p) and σ2

R = C(p), (27)

and for k �= k0 and any g ∈ Vm

L(k, g) ∼ N (NμW , Nσ2
W ), where μW = −1

2
C(p) and σ2

W = C(p). (28)
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Hence, μR, σ2
R, μW and σ2

W do not depend on g ∈ Vm. For fixed k �= k0, the
r.v.’s L(k, g) for k �= k0 are identically normally distributed with mean μW and
variance σ2

W . We will assume that they are statistically independent to sim-
plify calculations. In particular, the assumption about statistical independence
of L(k, g) for different g does not mean that the linear approximations should
be statistically independent. The statistic itself does not depend on this as-
sumption1. Moreover, the theoretical results obtained this way are a little more
pessimistic that those obtained by empirical tests, as shown in Sect. 8. Hence,
these calculations give a theoretical model that can be used in describing how
the method behaves especially compared to other methods. Assuming that for
each k �= k0, the r.v.’s L(k, g)’s are independent, we obtain that the c.d.f. of
their maximum is given by [17]

FW (x) = ΦNμW ,Nσ2
W

(x)M+1 (29)

and p.d.f. is
fw(x) = (M + 1)ΦNμW ,Nσ2

W
(x)MφμW ,σ2

W
(x). (30)

Let us fix the advantage a such that r = 2l−a. The mean μa of the rth wrong
key statistic Lr can now be calculated from (8) to be

μa = NμW +
√

NσW b = −1/2NC(p) +
√

NC(p)b,

b = Φ−1( M+1
√

1 − 2−a),
(31)

and the variance is

σ2
a =

2−l−aσ2
W

(M + 1)2(1 − 2−a)2(1−1/(M+1))φ2(b)
� σ2

0 . (32)

Let
P1 = Pr(L(k0, g0) > max

g �=g0
L(k0, g)) (33)

be the the probability that given k0, we choose g0, i.e., the probability of success
of Alg. 1. Let

P2 = Pr(L(k0) > Lr) (34)

be the probability that we rank k0, paired with any g ∈ Vm, among the r highest
ranking keys. Finally, let

P12 = Pr(L(k0) > Lr |L(k0, g0) > max
g �=g0

L(k0, g)) (35)

be the probability that we rank k0 among the r highest ranking keys provided
that we pair g0 with k0. Then

P2 = P12P1 + Pr(L(k0) > Lr |L(k0) = LLR(k0, p
g, θ), g �= g0)(1 − P1)

≥ P12P1.
(36)

1 See for example [17] for calculating the c.d.f. of the maximum of dependent and
identically distributed r.v.’s, when M ≥ 100. The theoretical predictions calculated
that way are slightly more pessimistic than the ones obtained in Theorem 2.
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If we pair k0 with g �= g0 then L(k0) ≥ L(k0, g0) for a fixed empirical p.d. q̂k0 , so
that k0 gets ranked higher than by using the correct g0. Hence, assuming that k0

gets paired with g0 only decreases P2 so the corresponding estimate of the data
complexity gets larger. Let N1, N2 and N12 be the data complexities needed to
achieve success probabilities P1, P2 and P12, respectively.

We can calculate P12 using (27), (28) and (9) to obtain

P12 = Φ(
μR − μW − σwb

σR
) = Φ(

√
N12C(p) − b), b = Φ−1( M+1

√
1 − 2−a). (37)

Hence, the data complexity is proportional to

N12 =
(
Φ−1(P12) + b

)2
/C(p), (38)

which can be used in approximating an upper bound for N2. We can approximate
Φ(b) = M+1

√
1 − 2−a ≈ 1 − 2−m−a such that a ≈ b2/2 − m and we can solve the

advantage a as a function of N12 ≈ N2 from (38). We get the following theorem:

Theorem 2. Suppose the cipher satisfies Assumption 1 where q′ = θ and the
p.d.’s pg, g ∈ Vm and θ are close to each other. Then the advantage of the
LLR-method for finding the last round key k0 is given by

aLLR = (
√

NC(p) − Φ−1(P12))2/2 − m ≈ NC(p) − m. (39)

Here N is the amount of data used in the attack, P12 (> 0.5) is the probability
of success and C(p) and m are the capacity and the dimensions of the linear
approximation (10), respectively.

Theorem 2 now gives the trade-off between the search phase and the data com-
plexity of the algorithm. With fixed N and capacity C(p), the advantage de-
creases linearly with m whereas in (20) the logarithm of advantage decreases
linearly with m. For fixed m and p, the advantage of the LLR-method seems to
be larger than the advantage of the χ2-method. The experimental comparison
of the methods is presented Sect. 8

In [4] it is shown that the data complexity of Alg. 1 for finding the right inner
key class g0 is proportional to

N1 =
16m ln 2 − 16P ′

1

C(p)
, (40)

where P ′
1 = ln(

√
2π ln P−1

1 ). If we want to be certain that we have paired the
right inner key class g0 with k0, the data complexity is given by

NLLR = max(N1, N2) ∝ m

C(p)
. (41)

The data complexity N1 is an overestimate for the actual data complexity of
Alg. 1 [9] so in practice, N2 dominates.



222 M. Hermelin, J.Y. Cho, and K. Nyberg

7 Algorithms and Complexities

For comparing the two methods, LLR and χ2, we are interested in the complexi-
ties of the first two phases of the Alg. 2 since the sorting and searching phase do
not depend on the chosen statistic. The counting phase is done on-line and all
the other phases can be done off-line. However, we have not followed this division
[12] in our implementation, as we do part of the analysis phase on-line. We will
divide the algorithm in two phases as follows: In the on-line phase, depicted in
Fig. 1, we calculate the empirical p.d.’s for the round key candidates. The marks
S(k) for the χ2-method and L(k) for the LLR-method are then assigned to the
keys in the off-line phase. The off-line phases for χ2-method and LLR-method
are depicted in Fig. 2 and Fig. 4, respectively. After the keys k are each given
the mark, they can be ranked according to the mark. If we wish to recover g0

with χ2-method, we also need to store, in addition to the marks, the empiri-
cal p.d.’s qk. Given qk0 , one can use the multidimensional Alg. 1 described in
Fig. 3 for finding g0 off-line. The version of Alg. 1 is based on LLR. Obviously,
one could use some other method, e.g. use the χ2-based ranking statistic (21),
which gives similar results in practice even if the LLR-based method is more
powerful in theory [9].

initialise 2l × 2m counters F (k, η), k = 0, . . . , 2l − 1, η = 0, . . . , M ;
for i = 1, . . . , N do

for candidates k = 0, . . . , 2l − 1 do

decrypt the ciphertext partially: ẑk
i = f−1(ŷi, k);

for j = 1, . . . , m do

calculate bit ηj = uj · x̂i ⊕ wj · ẑk
i ;

end

increment counter F (k, η) = #{i |Ux̂i + Wẑk
i = η}, where η is the

vector (η1, . . . , ηm) interpreted as an integer;
end

end

Fig. 1. On-line phase of Matsui’s Alg. 2 in multiple dimensions

Input: table F (k, η), k = 0, . . . , 2l − 1, η = 0, . . . , M ;
for k = 0, . . . , 2l − 1 do

compute S(k) =
∑M

η=0(F (k, η)/N − 2−m)2;

if wish to recover g0 then
store (S(k), F (k, 0), . . . , F (k, M));

else
store S(k);

end

end

Fig. 2. Off-line phase of Alg. 2 using χ2-method
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Table 1. Data, time and memory complexities of the χ2- and LLR-method

On-line Off-line
χ2 for k0 χ2 for k0, g0 LLR χ2 for k0 χ2 for k0, g0 LLR

Data Nχ2 Nχ2 NLLR – – –
Time Nχ22lm Nχ22lm NLLR2lm 2l+m 2l+m 2l+m

Memory 2l+m 2l+m 2l+m 2l 2m max(2l, 2m) 2m max(2l, 2m)

Input: counter values F (k0, 0), . . . , F (k0, M);
compute the theoretical distribution of m-dimensional approximations for each
value of 2m inner key classes and store them in a 2m × 2m table
P (g, η), g = 0, . . . , M, η = 0, . . . , M ;
for inner key classes g = 0, . . . , M do

calculate G(g) =
∑M

η=0 F (k0, η) log P (g, η);

end
Output: g0 such that maxg∈Vm G(g) = G(g0)

Fig. 3. Matsui’s Alg. 1 in multiple dimensions (using LLR)

Input: table F (k, η), k = 0, . . . , 2l − 1, η = 0, . . . , M ;
compute the theoretical distribution of m-dimensional approximations for each
value of 2m inner key classes and store them in a 2m × 2m table
P (g, η), g = 0, . . . , M, η = 0, . . . , M ;
for k = 0, . . . , 2l − 1 do

for g = 0, . . . , M do
L(k, g) = LLR(q̂k, pg, θ), where q̂k

η = F (k, η)/N ;
end
store L(k) = maxg∈Vm L(k, g);

end

Fig. 4. Off-line phase of Alg. 2 using LLR-method

The data, time and memory complexities for on-line and off-line phase for both
methods are shown in Table 1. Given success probability PS and advantage a,
the data complexity Nχ2 is given by (18). If we want to recover g0 also, then
theoretically, data complexity N1 given by (40) is needed to successfully run
Alg. 1 given in Fig. 3. As noted in [9], the theoretical value N1 is an overestimate
and the total data complexity in practice is probably dominated by the data
complexity Nχ2 of ranking k0 high enough. Nevertheless, the data complexity of
the LLR-method is smaller than the χ2-method.

Otherwise, the complexities for the LLR-method are mostly the same as for
χ2-method provided that m is not much larger than l which is usually the case.
Thus, we recommend using the LLR-method rather than χ2-method unless there
is great uncertainty about the validity of the approximative p.d p of the linear
relation (10).
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In some situations it may also be advantageous to combine the different meth-
ods. For example, one may want to first find, say, r best round keys by χ2, such
that the data complexity Nχ2 is given by (18), where the advantage is a = l− r.
Then one can proceed by applying the LLR-method to the remaining r keys,
thus reducing the size of the round key space to be less than 2l. Other simi-
lar variants are possible. Their usefulness depends on the cipher that is being
studied.

8 Experiments

The purpose of the experiments was to test the accuracy of the derived statistical
models and to demonstrate the better performance of the LLR-based method
in practice. Similarly as in previous experiment on multiple linear cryptanalysis,
see [16] and [3], the Serpent block cipher was used as a test-bed. The structure
of Serpent is described, for example, in [18]. We have searched for a 12-bit part
of the fifth round key based on m linear approximations with different m. Each
experiment was performed for 16 different keys.

We calculated the capacities for the approximation (10) over 4-round Serpent
for different m. Practical experiments were used in confirming that Cmin(p) ≈
C(p) and especially Cmin(p) �= 0. We also saw that |pg

η − pg′
η | < 1

150pg
η, for all

g, g′ and η ∈ Vm. Hence, pg’s can be considered to be close to each other and θ.
The theoretical advantage of the χ2-method predicted in (20) has been plotted

as a function of data complexity in Fig. 5(a). The figure shows that increasing
m larger than 4, the attack is weakened. This suggests using m = 4 base ap-
proximations in the χ2-attack. Since we should have m at least 5 for the normal
approximation of χ2

M to hold, the theoretical calculations do not necessarily hold
for small m. However, the experiments, presented in Fig. 5(b), seem to confirm
the theory for m = 1 and m = 4, too. The most efficient attack is obtained by
using m = 4 equations. Increasing m (and hence, the time and memory com-
plexities of the attack, see Table 1) actually weakens the attack. The optimal
choice of m depends on the cipher. However, the theoretical calculations suggest
that using m ≥ 5 is usually not advantageous.

The reason is the χ2-squared statistic itself: it only measures if the data follows
a certain distribution, the uniform distribution in this case. The more approx-
imations we use, the larger the distributions become and the more uncertainty
we have about the “fitting” of the data. Small errors in experiments generate
large errors in χ2 as the fluctuations from the relative frequency 2−m become
more significant.

The theoretical advantage of the LLR-method (39) is plotted against the data
complexity in Fig. 5(c) for different m. The empirical advantages for several
different m are shown in Fig. 5(d). Unlike for χ2 we see that the method can be
strengthened by increasing m, until the increase in the capacity C(p) becomes
negligible compared to increase in m. For 4-round Serpent, this happens when
m ≈ 12.

Experimental results presented in Figures 5(d) and 5(b) confirm the theoreti-
cal prediction that the LLR-method is more powerful than the χ2-method. Also
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(b) Empirical advantage for χ2-method
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(c) Theoretical advantage for LLR-method
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(d) Empirical advantage for LLR-method
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(e) Empirical and theoretical advantage for
χ2 for m = 1 and m = 4
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(f) Empirical and theoretical advantage for
LLR for m = 1 and m = 12

Fig. 5. Theoretical and empirical advantages for χ2- and LLR-method for different m
and PS = P12 = 0.95
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the theoretical and empirical curves seem to agree nicely. For example, the full
advantage of 12 bits with m = 7 achieved at log N = 27.5 for LLR whereas
χ2-method needs about log N = 28. Moreover, the LLR can be strengthened by
increasing m. For m = 12, the empirical logarithmic data complexity is about
26.5.

9 Conclusions

There are several approaches of realising Matsui’s Alg. 2 using multiple linear
approximations. In this paper, methods based on two standard statistics, LLR
and χ2, were studied. Selçuk’s theory of advantage describing the trade-off be-
tween data complexity and search phase was extended to multiple dimensions.
The advantages of the two methods in key ranking were then determined. A
description of the multidimensional Alg. 2 for both methods was given so that
their performance measured in time, memory and data could be compared.

The χ2-statistic, based on the classic goodness-of-fit test, was observed to
perform poorly for large dimensions m of linear approximation, whereas the
LLR-statistic, an optimal statistic for testing two known hypotheses, was shown
to improve with the dimension m of the linear approximation much further. In
particular, the advantage of using multiple linear approximations instead of just
one is significant and of real practical importance if LLR-statistic is used in
Alg. 2. In general, it was shown that the LLR-method is usually more advan-
tageous compared to the χ2-method. As long as there is no significant error,
stemming from the linear hull-effect, for example, in determining the approxi-
mate p.d. of the multidimensional linear approximation, we recommend to use
the LLR-method proposed in this paper rather than the χ2-method.
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