
Software Security – The Dangers of Abstraction

Dieter Gollmann

Hamburg University of Technology, Hamburg, Germany
diego@tu-harburg.de

Abstract. Software insecurity can be explained as a potpourri of hack-
ing methods, ranging from the familiar, e.g. buffer overruns, to the exotic,
e.g. code insertion with Chinese characters. From such an angle software
security would just be a collection of specific countermeasures. We will
observe a common principle that can guide a structured presentation of
software security and give guidance for future research directions: There
exists a discrepancy between the abstract programming concepts used
by software developers and their concrete implementation on the given
execution platform. In support of this thesis, five case studies will be
discussed, viz characters, integers, variables, atomic transactions, and
double linked lists.

1 Introduction

Once upon a time, computer security was about access control, with authentica-
tion and authorisation as its fundamental components [12]. Internet security was
about communications security. Strong encryption was the main tool to solve
problems in this area. Today, attackers send malformed inputs to networked
applications to exploit buffer overruns, or to perform SQL injection, cross-site
scripting (XSS), or cross-site request forgery (XSRF) attacks. Access control and
encryption are of little help to defend against these current threats.

Lesson: Security is a moving target.

Software security has become our main challenge. Software is secure if it can
handle intentionally malformed input [11]. Networking software is a popular
target as it is intended to receive external input and as it involves low level ma-
nipulations of buffers. Mistakes at that level can allow an attacker to circumvent
logical access controls by manipulations at a “layer below” [9]. Web applications
are a popular target. They are intended to receive external input and are written
by a multitude of authors, many of whom have little security expertise.

1.1 Security and Reliability

Reliability deals with accidental failures that are assumed to occur according
to some given probability distribution. The probabilities for failures are given
first; then the protection mechanisms are constructed and arguments about their
efficacy can be made. To make software more reliable, it is tested against typical
usage patterns.

V. Matyáš et al. (Eds.): The Future of Identity, IFIP AICT 298, pp. 1–12, 2009.
c© IFIP International Federation for Information Processing 2009

2 D. Gollmann

It does not matter how many bugs there are, it matters how often they
are triggered.

In SQL injection attacks and the like, the attacker picks the inputs – and
their probability distribution – with the aim to penetrate security controls. In
security, the defender has to move first; the attacker picks his input to exploit
weak defences. To make software more secure, it has thus to be tested against
“untypical” usage patterns, but there are typical attack patterns.

Lesson: Measures dealing with failures that are governed by given proba-
bility distributions address reliability issues rather than security issues.

Think twice about using reputation or “trust” for security! These approaches
extrapolate future actions from past behaviour and do not capture strategic
decisions by truly malicious attackers.

2 Dangers of Abstractions

When writing code, programmers use elementary concepts like character, vari-
able, array, integer, list, data & program, address (resource locator), or atomic
transaction. These concepts have abstract meanings. For example, integers are
an infinite set with operations ‘add’ and ‘multiply’, and a ‘less or equal’ order-
ing relation. To execute a program, we need concrete implementations of these
concepts.

Abstraction hides “unnecessary” detail and is a valuable method for under-
standing complex systems. We do not have to know the inner details of a com-
puter to be able to use it. We can write software using high level languages and
graphical methods. Anthropomorphic images explain what computers do (send
mail, sign document). Software security problems typically arise when concrete
implementation and abstract intuition diverge. We will explore a few examples:

– Characters
– Integers
– Variables (buffer overruns)
– Atomic transactions
– Double linked lists

2.1 Characters

To demonstrate the pitfalls when handling characters, we take a look at a failure
of a standard defence against SQL injection attacks1. In SQL, single quotes
terminate input strings. In a typical SQL injection attack, the malicious input
1 See http://shiflett.org/blog/2006/jan/addslashes-versus-mysql-real

-escape-string; a similar problem in earlier versions of WordPress is discussed in
http://www.abelcheung.org/advisory/20071210-wordpress-charset.txt

Software Security – The Dangers of Abstraction 3

’passwordSELECT * FROM users WHERE passwd = ’a)

’’ OR ’1=1’SELECT * FROM users WHERE passwd = ’b)

Fig. 1. Constructing SQL queries from strings, dashed boxes represent user input; case
a) shows intended use; case b) is a SQL injection attacks that forces the WHERE clause
to evaluate to true

contains a single quote followed by code segments picked by the attacker. When
SQL statements are constructed by piecing together strings, some taken from the
user input, others from the application issuing a database query, a single quote
in user input can change the logical structure of the database query (Fig. 1 a)).
Thus, attackers may be able to issue data base queries not envisaged by the
application writer (Fig. 1 b)). As a countermeasure, the application could check
user inputs and add a slash before any single quote encountered.

GBK (Guo Biao Kuozhan) is a character set for Simplified Chinese. In GBK,
0xbf27 is not a valid multi-byte character. When processed as single-byte char-
acters, we have 0xbf followed by 0x27, a single quote. Adding a slash in front
of the single quote gives 0xbf5c27, but this happens to be the valid multi-byte
character 0xbf5c followed by a single quote. The single quote has survived!

Lesson: An operation may have different effects when observed at differ-
ent levels of abstraction.

2.2 Integers

In mathematics integers form an infinite set with addition, multiplication, and
a “less or equal” relation. On a computer system, integers are represented in
binary. The representation of an integer is a binary string of fixed length (pre-
cision), so there is only a finite number of “integers”. Programming languages
have signed and unsigned integers, short and long (and long long) integers. The
operations on these data types follo9w the rules of modular arithmetic. With
unsigned 8-bit integers we have 255 + 1 = 0, 16 · 17 = 16, and 01 = 255. With
signed 8-bit integers we have 127 + 1 = −128 and −128/− 1 = −1.

In the following loop, the counter i has the value 2k after the k-th iteration.
At the level of the mathematical abstraction, the value of i will always be strictly
greater than 0 and the loop would be infinite.

int i = 1;
while (i > 0)
{
i = i * 2;
}

Unsigned n-bit integers represent integers modulo 2n. Hence, the value of i after
n iterations is 2n mod 2n = 0; there will be a carry-overflow and the loop will
terminate. For signed integers, the carry-bit will be set after n−1 iterations and
i takes the value −2n−1.

4 D. Gollmann

In mathematics, the inequality a + b ≥ a holds for all b ≥ 0. Such obvious
“facts” are no longer true at the implementation level. Integer overflows can
in turn lead to buffer overruns. Consider the following code snippet (from an
operating system kernel system-call handler):

char buf[128];
combine(char *s1, size_t len1, char *s2, size_t len2)
{
if (len1 + len2 + 1 <= sizeof(buf)) {

strncpy(buf, s1, len1);
strncat(buf, s2, len2);
}

}

Two character strings are concatenated and stored in a 128-bit buffer. In C,
strings are zero-terminated so the program includes a check that should make
sure that the buffer is large enough to hold both strings and the terminating
zero. However, for 32-bit integers len2 = 0xFFFFFFFF results in len2 + 1 = 0.
If len1 does not exceed the length of the buffer, the buffer will be written to
while the number of bytes written can exceed the length of the buffer. The fact
that computer integers do not behave like proper integers has led to vulnerable
code more than once.

Lesson: Many programmers appear to view integers as having arbitrary
precision, rather than being fixed-sized quantities operated on with modulo
arithmetic [1].

More information on integer overflows and on C libraries that properly handle
finite precision integer arithmetic can be found e.g. in [11].

2.3 Variables

Variables are used in the abstract specification of algorithms. In the abstract
specification we might denote the data type of a variable but we are not con-
cerned with its actual representation. A buffer is the concrete implementation
of a variable. If the value assigned to a variable exceeds the size of the allo-
cated buffer, memory locations not allocated to this variable are overwritten. If
the memory location overwritten had been allocated to some other variable, the
value of that other variable can be changed. An attacker could change the value
of a protected variable A by assigning a deliberately malformed value to some
other variable B.

Unintentional buffer overruns crash software, and have been a focus for relia-
bility testing. Intentional buffer overruns are a concern if an attacker can modify
security relevant data. Attractive targets are return addresses specifying next
method to be executed and security settings.

Software Security – The Dangers of Abstraction 5

Historic Perspective. Since the contribution by Aleph One [15], buffer over-
runs have been extensively studied in the literature on software security, see
e.g. [11,17,8]. We leave a detailed treatment of buffer overrun attacks to these
sources and only give a brief historic perspective. Our first example from the
1980s relates to Digital’s VMS operating system. The login procedure had the
option of logging in to a particular machine by entering

username/DEVICE =<machine>.

In one version of VWS the length of the argument machine was not checked. A
device name of more than 132 bytes overwrote the privilege mask of the process
started by login. Users could thus set their own privileges. Our second example
is the Morris worm from 1988 that exploited a buffer overrun in the fingerd
daemon [7].

Lesson: Buffer overruns predate Windows.

For a recent case of a buffer overrun attack, we refer to a heap-based buffer
overrun in µTorrent 1.6 allowing remote attackers to execute arbitrary code via
a torrent file with a crafted announce header (CVE-2007-0927). µTorrent is a
widely used lightweight torrent client. There is no automatic patching system
and many of its users are “security-unaware” and do not use – or even disable –
anti virus software. Hence, this case could have a higher damage potential than
some operating system vulnerabilities.

Lesson: Buffer overrun attacks are moving to the application layer.

Defences against buffer overrun attacks come in various shapes. When devel-
oping code in la language like C, be careful and check how much you are writing
to a buffer. The integrity of the return address can be protected by canaries
[6] or by split control and data stacks [13,18]. The latter defences maintain the
logical separation between code and data in the machine architecture. Shellcode
insertion on the stack can be prevented by making the stack non executable. Fi-
nally, you can leave memory management to others and use a type safe language
like Java.

Storage Residues. Buffer overrun attacks overwrite sensitive variables. There
is a dual security problem, viz a process reading variables that it not yet had
assigned a value to. In a multi-process system, several processes are running at
the same time but only one is active. When a new process becomes active it
gets access to resources (memory positions) used by the previous process. This
is known as object reuse. Storage residues are data left behind in the memory
area allocated to the new process. This is a security problem if sensitive data
have been left. Operating systems thus usually allow a process only to read from
memory it has written to.

To illustrate we summarize the Sun tarball story [10]. A tarball is an archive
file produced by the tar utility. Some time in 1993 it was discovered that tarballs

6 D. Gollmann

produced under Solaris 2.0 contained parts of the password file. The following
explanation emerged. The tar utility copied material in 512-byte blocks from
disk to archive in a read/write cycle using a buffer. This buffer was not zeroed
before data was read in. Thus, there could be a storage residue; if the last chunk
of the file did not fill the buffer the previous content was read out. These memory
positions happened to always hold a part of the password file.

This behaviour was caused by the following sequence of actions. During the
read/write cycle tar looked up information about the user running the program.
Therefore /etc/passwd was put on the heap. After checking the user the buffer
for /etc/passwdwas freed, but not zeroed. tar happened to be the next program
getting this memory space, so memory residues were still there. The problem had
not occurred in previous versions because the check of the user had happened
earlier in the program. While fixing a bug, some code was removed and the
vulnerability was exposed.

Are storage residues always a problem? Not so long ago, during a code review
of Linux sources a read of an uninitialized variable was discovered in OpenSSL
code. The offending line was commented out. After some delay in time, it was
observed that the OpenSSL key generation algorithm produced predictable keys;
the uninitialized variable had intentionally been used to provide randomness.

Lesson: In security, there are no correct answers.

2.4 Atomic Transactions

A race condition occurs when multiple transactions access shared data in a way
that the overall results depend on the sequence of accesses. This can happen
when multiple processes access the same variable. In multi-threaded processes,
as in Java servlets, race conditions can occur between threads in a process.

A transaction is atomic if it is either executed in its entirety or if it has no effect
at all. Access to a protected resource is fitting example for a transaction that
should be executed atomically. The operating system first checks whether the
access request is permitted; only in case of a positive outcome will the resource
be made available to the requestor. If an attacker could change an essential
parameter, e.g. a pointer to the resource, between those two steps, she could
get access to a resource other than the one the initial check was performed for.
Time-of-check-to-time-of use (TOCTTOU) is a well known security issue, as are
access()/open() races in Unix [2].

For our illustrating example, we go further back in time to CTSS, one of
the early time-sharing operating systems. One morning, users logging on to this
system had the password file shown as the message of the day. The explanation
was a race condition [5]. On CTSS, every user had a unique home directory.
When a user invoked the editor, a scratch file with fixed name SCRATCH was
created in this directory. At some point in time, the system was modified so
that several users could work concurrently system manager. Later, the following
occurred.

Software Security – The Dangers of Abstraction 7

unused

bk

fd

size

prev size

free chunk

user data

size

prev size

allocated chunk

Fig. 2. Chunks in Doug Lea malloc

1. System manager A starts editing the message of the day, so SCRATCH in
the system manager’s directory contains this message.

2. System manager B starts editing the password file; now SCRATCH in the
system manager’s directory holds the password file.

3. System manager A saves the message of the day from SCRATCH, displaying
the password file.

To defend against attacks exploiting race conditions enforce atomicity, e.g. through
locks, so other processes areprevented from changing security relevant parameters.
For more information on race conditions, on methods for scanning code for such
vulnerabilities, and on possible countermeasures, see e.g. [4,14,3,16]. Finally, note
that in Java it is the programmer’s task to deal with race conditions by suitable
synchronization of concurrent accesses.

2.5 Double-Linked Lists

There exist attacks more sophisticated than simple buffer overruns that exploit
features of Unix memory management to overwrite arbitrary pointers. Our ex-
planations will be based on Doug Lea malloc. Memory is divided into chunks. A
chunk contains user data and control data. The control data include a boundary
tag that gives the size of the chunk and the size of the previous chunk in memory.
Chunks are allocated with malloc() and deallocated with free(). Free chunks
are placed in bins. A bin is a double linked list, where chunks are ordered in
increasing size. Free chunks contain boundary tags and forward and backward
pointer to their neighbours in the bin (Fig. 2).

The size of a chunk is given in bytes, but chunk sizes are always multiples of
8 bytes. Thus, the three least significant bits of size are not used and have been
designated for control flags:

– 0x1: PREV INUSE – indicates that the previous chunk in memory is free;
– 0x2: IS MAPPED
– Some libraries also use the third bit.

There should be no adjacent free chunks in memory. Hence, when a chunk is
freed and a neighbouring chunk is free, both chunks are coalesced into a single
chunk. Chunks are taken out of a bin with the unlink utility:

8 D. Gollmann

size 0x0

prev size

unused

bk

fd

size
prev size

user data

size
prev size

�
fake
chunk F1

�
�

fake
chunk F1

�
�

chunk A

�

Fig. 3. Exploiting unlink after a buffer overrun

#define unlink(P, BK, FD)
{
[1] FD = P->fd;
[2] BK = P->bk;
[3] FD->bk = BK;
[4] BK->fd = FD;
}

unlink saves the pointers in chunk P to FD and BK. It then updates the
backward pointer of the next chunk in the list: the address located at FD plus 12
bytes (offset of the bk field in the boundary tag) is overwritten with value stored
in BK. Finally, the forward pointer of the previous chunk in the list is updated.

To demonstrate how unlink can be used to overwrite arbitrary pointers, we
sketch a hypothetical buffer overrun attack [8]. Assume chunk A has a buffer
overrun vulnerability; A is allocated. The attack is launched by overwriting the
adjacent chunk B with fake chunks. These fake chunks are constructed so that
there seems to be a free chunk next to A (Fig. 3).

Now free chunk A. The PREV INUSE flag in chunk F2 had been set so that
F1 is marked as free. A will be coalesced with the adjacent ‘free’ chunk and the
fake chunk F1 will be unlinked. Running unlink(F1,FD,BK) will add a 12 byte
offset to the address given as the fd pointer in F1, overwriting this address with
the value given as the bk pointer in F1. The attacker controls the values in F1
and thus can overwrite a pointer of her choice with a value of her choice.

It is not necessary to have a buffer overrun to exploit unlink. To see how,
we have to take a closer look at free(). Memory is deallocated with void
free (void *ptr) where *ptr must have been returned by a previous call to
malloc(), calloc() or realloc(). If ptr is null, no operation is performed.

Software Security – The Dangers of Abstraction 9

fake
free chunk

chunk A
storage residue

chunk B allocated

large

free
chunk

chunk A

chunk A allocated

Fig. 4. Double free vulnerability

The behaviour is undefined if free(ptr) has already been called. Exactly this
situation is the root of so-called double-free vulnerabilities.

Double free attacks exploit programs where memory is deallocated without
setting the respective pointer to null. They only work if current memory usage
is favourable to the attacker, but of course attackers can make their own luck.
The vulnerable program allocates a memory block A that has to be adjacent to
free memory (Fig. 4 left). When A is freed, forward or backward consolidation
will create a larger block. Then the attacker allocates a larger block B hoping
to get space just freed. In this case, a fake free chunk is written into B adja-
cent to the storage residue of A (Fig. 4 right). When free(A) is called again,
consolidation with the fake chunk will overwrite a target address in the way de-
scribed above. Double free vulnerabilities have been found in zlib (CA-2002-07),
MySQL, Internet Explorer, Linux CVS, and MIT Kerberos 5.

Uninitialized memory corruption is a similar attack method. An exploitable
vulnerability has been reported for the Heimdal FTPD server (CVE-2007-5939).
In the code given in figure 5 ticketfile is declared but not initialized2. If
pw is equal to null the program will jump to label fail and the uninitialized
ticketfile will be freed. In this case the behaviour of free() is undefined and
the attacker can try to manipulate the memory layout so that free() is applied
to a pointer suitably prepared by the attacker.

We could treat double free and uninitialized memory corruption vulnerabilities
as control flow problems. In the first case, memory deallocation is not performed
completely; in the second case, memory allocation has not been completed be-
fore the memory is freed. The problems can be removed by tidying up memory
allocation and deallocation.

We could also try to make unlink more secure. This utility is intended for
taking elements out of a double linked list. The attacks violate this abstraction
applying unlink to chunks that are not part of a double link list. As a defence –
implemented e.g. in glibc 2.3.5 – one could check that the argument of unlink
is part of a double linked list and meets other assumptions of Doug Lea malloc.

2 See http://archives.neohapsis.com/archives/fulldisclosure/2007-12/

0175.html

10 D. Gollmann

int gss_userok(void *app_data, char *username)

{

...

if (data->delegated_cred_handle != GSS_C_NO_CREDENTIAL) {

krb5_ccache ccache = NULL;

char* ticketfile;

struct passwd *pw;

pw = getpwnam(username);

if (pw == NULL) {

ret = 1;

goto fail;

}

...

fail:

if (ccache)

krb5_cc_close(gssapi_krb5_context, ccache);

free(ticketfile);

}

...

}

Fig. 5. Code segment from Heimdal FTPD

– check for membership in a double linked list locally with
!(p->fd->bk == p->bk->fd == p).

– Check if the first element in the bin is the one being added.
– Check if chunks are larger or equal to minimal size (16 bytes) and smaller

than the memory allocated up to now.

3 Conclusion

Software security is not just about buffer overruns, and we have only just scratch-
ed the surface. There is more to it than just discrepancies between source code
and object code, take integer overflows as an example. There are no quick fixes
like avoiding unsafe C functions or by writing code only in type safe languages.
Indeed, software security cannot be solved entirely at the level of the program-
ming language. Programmers can make logical errors when the implementations
of the abstractions they are using behave in unexpected ways. When security
research tries to get ahead of the next reported vulnerability, it might well sys-
tematically compare programming concepts with their implementations.

When a problem area becomes known, tools and libraries can help dealing
with the issues arising, but these tools and libraries have to be used. It is a
technical challenge to develop useful and efficient tools. It is an organisational

Software Security – The Dangers of Abstraction 11

and motivational challenge to get those tools adopted. This challenge is not
made easier by the fact that the focus of attacks is moving from operating
systems to applications. Cross-site scripting was the at number one in the 2007
OWASP Top Ten Vulnerabilities3. In the CVE database, cross-site scripting was
at number one in 2005, and SQL injection at number two in 2006. There are
better chances reaching the software experts writing systems code than reaching
the many application experts writing application code.

Final lesson: Security research will stay in business . . .

References

1. Ashcraft, K., Engler, D.: Using programmer-written compiler extensions to catch
security holes. In: Proceedings of the 2002 IEEE Symposium on Security and Pri-
vacy, pp. 143–159 (2002)

2. Bishop, M., Dilger, M.M.: Checking for race conditions in file accesses. Computing
Systems 9(2), 131–152 (1996)

3. Borisov, N., Johnson, R., Sastry, N., Wagner, D.: Fixing races for fun and profit:
How to abuse atime. In: 14th USENIX Security Symposium, pp. 164–173 (2005)

4. Chen, H., Wagner, D.: MOPS: an infrastructure for examining security properties.
In: 9th ACM Conference on Computer and Communications Security, pp. 235–244.
Springer, Heidelberg (2002)

5. Corbato, F.J.: On building systems that will fail. Communications of the
ACM 34(9), 72–81 (1991)

6. Cowan, C., Pu, C., Maier, D., Walpole, J., Bakke, P., Beattie, S., Grier, A., Wagle,
P., Zhang, Q., Hinton, H.: StackGuard: Automatic adaptive detection and pre-
vention of buffer-overflow attacks. In: Proceedings of the 7th USENIX Security
Symposium, pp. 63–78 (1998)

7. Eichin, M.W., Rochlis, J.A.: With microscope and tweezers: An analysis of the
Internet virus of November 1988. In: Proceedings of the 1989 IEEE Symposium on
Security and Privacy, pp. 326–343 (1989)

8. Foster, J.C.: Buffer Overflow Attacks. Syngress Publishing, Rockland (2005)
9. Gollmann, D.: Computer Security, 2nd edn. John Wiley & Sons, Chichester (2006)

10. Graff, M.G., van Wyk, K.R.: Secure Coding. O’Reilly & Associates, Sebastopol
(2003)

11. Howard, M., LeBlanc, D.: Writing Secure Code, 2nd edn. Microsoft Press, Redmond
(2002)

12. Lampson, B., Abadi, M., Burrows, M., Wobber, E.: Authentication in distributed
systems: Theory and practice. ACM Transactions on Computer Systems 10(4),
265–310 (1992)

13. Lee, R.B., Karig, D.K., McGregor, J.P., Shi, Z.: Enlisting hardware architecture to
thwart malicious code injection. In: Hutter, D., Müller, G., Stephan, W., Ullmann,
M. (eds.) Security in Pervasive Computing. LNCS, vol. 2802, pp. 237–252. Springer,
Heidelberg (2004)

14. Lhee, K.-s., Chapin, S.J.: Detection of file-based race conditions. International
Journal of Information Security 4(1-2), 105–119 (2005)

3 See http://www.owasp.org/index.php/Top 10 2007

12 D. Gollmann

15. Aleph One: Smashing the stack for fun and profit. Phrack Magazine, 49 (1996)
16. Uppuluri, P., Joshi, U., Ray, A.: Preventing race condition attacks on filesystem.

In: SAC 2005 (2005) (invited talk)
17. Viega, J., McGraw, G.: Building Secure Software. Addison-Wesley, Boston (2001)
18. Xu, J., Kalbarczyk, Z., Patel, S., Iyer, R.K.: Architecture support for defending

against buffer overflow attacks. In: Proceedings of the EASY-2 Workshop (2002)

	Software Security – The Dangers of Abstraction
	Introduction
	Security and Reliability

	Dangers of Abstractions
	Characters
	Integers
	Variables
	Atomic Transactions
	Double-Linked Lists

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

