Nettle: A Language for Configuring
Routing Networks

Andreas Voellmy and Paul Hudak

Yale University,
Department of Computer Science
andreas.voellmy@yale.edu, paul.hudak@yale.edu

Abstract. Interdomain routing is the task of establishing connectivity
among the independently administered networks (called autonomous sys-
tems) that constitute the Internet. The protocol used for this task is the
Border Gateway Protocol (BGP) [1], which allows autonomous systems
to independently define their own route preferences and route adver-
tisement policies. By careful design of these BGP policies, autonomous
systems can achieve a variety of objectives.

Currently available configuration and policy languages are low-level
and provide only a few basic constructs for abstraction, thus preventing
network operators from expressing their intentions naturally.

To alleviate this problem, we have designed Nettle, a domain-specific
embedded language (DSEL) for configuring BGP networks, using Haskell
[3] as the host language. The embedding in Haskell gives users compre-
hensive abstraction and calculation constructs, allowing them to clearly
describe the ideas generating their BGP policies and router configura-
tions. Furthermore, unlike previous router configuration and policy lan-
guages, Nettle allows users to both specify BGP policies at an abstract,
network-wide level, and specify vendor-specific router details in a single
uniform language.

We have built a compiler that translates Nettle programs into configu-
ration scripts for XORP [4] routers and a simulator that allows operators
to test their network configurations before deployment.

1 Introduction

Given the importance of the Internet, one would expect that it is well designed,
that the principles upon which it operates are well understood, and that failures
are due primarily to hardware crashes, network cable interruptions, and other
mechanical or electrical failures. Unfortunately, and perhaps surprisingly, this is
not the case.

The protocols that control the Internet were not designed for the way in
which it is used today, leading to non-standard usage and ad hoc extensions.
Some of the most fundamental principles upon which the Internet operates are
poorly understood, and recent attempts to understand them better have revealed
that in fact the protocols themselves permit network instabilities and outages

W.M. Taha (Ed.): DSL 2009, LNCS 5658, pp. 211 2009.
© IFIP International Federation for Information Processing 2009

212 A. Voellmy and P. Hudak

[5]. Furthermore, most of these problems are manifested not through hardware
failures, but through software bugs, logical errors, or malicious intrusions.

The Internet has grown dramatically in size since its inception. The lack of
centralized control is what has enabled this growth, and as a result the Internet is
essentially owned and operated by thousands of different organizations. Most of
these organizations (such as the many ISPs) share common goals — for example
they all want messages to reach their destinations, and they do not want message
content compromised. Because of this alignment of interests, the Internet, for
the most part, works.

But this lack of centralized control is also a source of problems. For starters,
the goals of the various entities that control the Internet are not always com-
pletely aligned. Different business models, economic incentives, engineering de-
cisions, desired traffic patterns, and so on, can lead to conflicting interests in the
control of the Internet. These conflicts in turn can lead to oscillations, deadlocks,
and other kinds of instabilities in the forwarding of messages [5].

Furthermore, the standard protocols have become increasingly complex
(mostly to accommodate the ever-increasing range of interests) and the effect of
altering various parameters is not completely understood. Even detecting errors
that lead to anomalies in Internet traffic is difficult, as they are often intermittent
and difficult to localize.

To make matters worse, the scripting languages used to specify the behaviors
of all major routers are all different, and are all astonishingly low level. Even if
one knows exactly what behavior is desired, errors in configuring the network
are quite common. The scripting languages have few useful constraints (such as
a type system), no abstraction mechanisms, poorly understood semantics, and
mediocre tools for development and testing. Indeed, it has been estimated that
almost half of all network outages are a result of network misconfigurations [6].

1.1 A Language-Centric Solution

The goal of our research is to use modern programming language ideas to help
ameliorate many of the aforementioned problems. We call our language and
accompanying tools Nettle, and we have implemented it as a domain-specific
embedded language [7] [8], using Haskell as a host. Nettle users express their
router configurations in a high-level, declarative way, and the Nettle compiler
generates the low-level scripting code for specific back-end routers (currently
XORP). This allows network operators to specify goals without becoming mired
in implementation details.
Specifically, Nettle offers the following advantages:

1. Nettle works with existing protocols and routing infrastructure; no changes
to the routers themselves are needed.

2. Nettle takes a local-network-wide view, allowing operators to specify the
entire local network routing configuration as one cohesive policy.

3. Nettle separates implementation- and hardware-specific concerns from logi-
cal routing concerns, resulting in a platform-neutral approach in which a sin-
gle policy specification can be given for a heterogenous collection of routers.

Nettle: A Language for Configuring Routing Networks 213

4. Nettle permits multiple routing policies for the same network, and provides
a flexible and safe way to merge their behaviors.

5. The embedding of Nettle in Haskell allows users to safely define their own
configuration abstractions and invent new configuration methods.

6. By defining high-level policies in Nettle, it is possible to prevent global
anomalies (such as route oscillations) if enough nodes on the Internet adopt
the same strategy.

We have implemented a compiler for Nettle that generates configuration
scripts for the XORP [4] open-source router platform. We have also implemented
a BGP network simulator that allows Nettle users to explore the behavior of their
BGP configurations under a variety of user-specified scenarios.

In the remainder of this paper we first give a brief introduction to network
routing and BGP. We then introduce Nettle’s salient features through a series
of small examples and describe a complete network configuration. We then show
how Nettle can be used to safely capture complex policy patterns as policy-
generating functions. Finally, we discuss implementation issues and briefly com-
pare Nettle with XORP and RPSL.

2 Introduction to Networks, Routing and BGP

A communication network is a distributed system that supports point-to-point
messaging among its nodes. The behavior of such a network is typically de-
composed into forwarding and routing processes. By forwarding process (routing
process), we mean the collective forwarding (routing) behavior of all the nodes,
rather than the behavior of a single process. Forwarding consists of sending
messages between nodes, whereas routing consists of establishing paths between
nodes. The relationship between forwarding and routing is that the forwarding
process uses the paths established by the routing process. The routing process
is dynamic — the paths between nodes may change over time. This is essential in
networks in which communication links and nodes can fail. In such situations,
the routing process typically responds to events by recomputing paths to avoid
failed links or nodes.

In networks that are administered by a single organization, a routing process
is typically used to compute least-cost paths among nodes, where cost is often a
communication-link metric incorporating information such as bandwidth, relia-
bility, distance or other qualities. On the other hand, networks such as the Inter-
net, which consist of many independently administered sub-networks, also need
to support point-to-point messaging. Such networks do not use a single routing
process for a variety of reasons. One reason is that different local concerns may
result in the use of different communication cost metrics. Another reason is that
while networks need to establish some global connectivity, for security reasons
they often wish to restrict visibility of their local internal structure.

Instead, such networks typically deploy their own intra-network routing pro-
cess for their own nodes, and a single inter-network routing process to commu-
nicate with the rest of the network. The inter-network routing process is often

214 A. Voellmy and P. Hudak

based on a high-level policy that is not necessarily based on a least-cost algo-
rithm — it might also factor in economic incentives, traffic engineering, security
concerns, and so on. Another key aspect of the inter-domain routing process is
that it typically involves an exchange of messages that announce the availability
of routes, and these announcements carry certain attributes that allow networks
to make policy-based decisions about which routes to use.

The Internet community has established several standard protocols to imple-
ment routing processes. In Internet parlance, an intra-network routing process
is called an Interior Gateway Protocol (IGP) and two commonly used IGP pro-
tocols are Open Shortest Path First (OSPF) and Routing Information Proto-
col (RIP). The independently administered networks on the Internet are called
Autonomous Systems (ASes) and domains interchangeably. The interdomain
routing protocol in use in the Internet is Border Gateway Protocol (BGP) [1].
Autonomous systems are assigned globally unique 32-bit Autonomous System
Numbers (ASNs) by the Internet Assigned Numbers Authority (IANA). An In-
ternet Service Provider (ISP) is an AS whose primary purpose is to provide
Internet access to other ASes in exchange for payment.

2.1 BGP

BGP [1] is our main focus in this paper. BGP is essentially a routing process that
is parameterized by a policy, just as a higher-order function is parameterized by a
functional argument. In order to understand BGP policy, we need to understand
some basic networking concepts.

An TP address is a 32 bit value, commonly written as four bytes (or octets, in
Internet parlance), as in a.b.c.d. A subset of addresses, called an address prefiz,
is denoted by an address followed by a number between 0 and 32, as in a.b.c.d/e.
A prefix a.b.c.d/e corresponds to all addresses whose leftmost e bits match the
leftmost e bits of a.b.c.d. More formally, we can write a prefix a.b.c.d/e and
address w.x.y.z as sequences of bits ajas...ae and wiws...wss; the address
wWiWs . .. w3 18 contained in prefix ajas...a. if a; = w; forall 1 <i < e.

Nodes running BGP communicate by announcing routes to each other. These
route announcements carry, among other data, the following information:

1. An address prefix, representing all addresses reachable using this route;

2. A sequence of AS numbers, called the AS path, which represents the ASes
that messages will traverse when forwarded along this route;

3. Community attributes, 32-bit values that act as data used for ad-hoc com-
munication between different ASes.

BGP allows networks to assign numeric local preference attributes to routes.
These local preference values are then used as the primary criterion in the BGP
decision process, which is used to choose the best route among several to the
same prefix. The BGP decision process is a prefix-wise lexicographic ordering of
routes based on their attributes, in the following order:

1. local preference
2. shortest AS path length

Nettle: A Language for Configuring Routing Networks 215

lowest origin type

lowest MED

eBGP-learned over iBGP-learned
lowest IGP cost to border router
lowest router ID (used as a tie-breaker)

oA W

The BGP decision process roughly implements shortest AS-path routing, while
allowing networks to override this behavior by assigning non-default local pref-
erences to routes. This allows networks to implement a variety of policies. For
example, an operator may decide not to choose any paths that traverse a par-
ticular set of autonomous systems. Or they may prefer routes through peer A,
except when peer B offers a route that also goes through peer C. Or they may
want routes to some subset of destinations, such as universities, to go through
one peer, while commercial traffic goes through another peer.

BGP routers usually also support filter policies and export modifiers. Filters
are used to remove some received routes from consideration by the decision pro-
cess or to prevent some routes from being announced to peers. Export modifiers
are used to alter the attributes of routes that are announced to peers. For exam-
ple, a network may add its AS number several times to the AS path of a route
so that it appears longer.

We can organize these policies into two sorts, usage policy and advertising
policy. Usage policy governs which routes are considered and how they are chosen
for use by the network, while advertising policy governs which routes are offered
to neighboring networks and with what attributes those routes are advertised.
The usage policy determines how traffic flows out of an autonomous system,
while advertising policy influences (but does not determine) how traffic will flow
into the autonomous system. We will call a filter used to eliminate routes from
consideration in the decision process use filters and filters used to prevent route
announcements ad filters. If we represent the set of neighboring BGP routers as
P, we can write the types of the policy functions as follows:

— useFilter :: P x Route — Bool

— preference :: Route — N

adFilter :: P X Route — Bool
adModifier :: P x Route — Route

Community Attributes. Community attributes are a crucial tool allowing
networks to communicate about routes. Community attributes are 32-bit nu-
meric values, commonly written as a : b, where a,b are 16-bit values. While
there are a few community values that have an established meaning, such as the
NO_EXPORT community value, most community values are available for ad hoc
use between BGP neighbors. For example, an ISP may allow its customers to
dynamically alter the preference levels of routes announced by the customers —
these preferences are encoded as community attributes.

Internal BGP. The BGP protocol has two sub-protocols: IBGP (Internal
BGP) and EBGP (External BGP). As the names suggest, EBGP governs the

216 A. Voellmy and P. Hudak

interaction with external peers, while IBGP governs the interaction with in-
ternal BGP-speaking peers. IBGP’s primary purpose is to ensure that all the
BGP routers within an AS know the same routes and that they make decisions
consistently.

2.2 Protocol Interaction

As mentioned earlier, an AS runs an IGP to establish routes to internal nodes
and BGP to establish routes to the wider network. Routers running BGP typ-
ically run the IGP protocol also. At these routers the IGP and BGP protocols
may interact, and this interaction is called called route redistribution. Typically,
a BGP router will inject some routes into the IGP protocol so that these routes
propogate to the non-BGP speaking routers in the network. To avoid overwhelm-
ing and potentially destabilizing the IGP, BGP routers are usually configured to
advertise only a few aggregated routes, such as the default route 0.0.0.0/0.

3 Nettle Tutorial

In this section we introduce the salient features of the Nettle language, illustrat-
ing their use through small examples.

Preliminaries. Since Nettle is embedded in Haskell, it inherits the syntax of
Haskell, and gives the user access to all of the power of Haskell. We assume that
the reader is familiar with basic Haskell syntax.

Throughout this paper we have typeset some Nettle operators with more
pleasing symbols. In particular, A is written as /\ in Haskell, V as \/, > as
>>> [as//,and ||| as | |].

An IP address such as 172.160.27.15 1is written in Nettle as
address 172 160 27 15. An address prefix such as 172.160.27.15/16 is written
in Nettle as address 172 160 27 15 J/ 16, i.e. the / operator takes an address and
a length and returns a prefix.

Network operators usually write community attributes as z : y, where z is
the higher-order 16 bits and y is the lower-order 16 bits of the data field. By
convention, z is used to encode the local AS number. In Nettle we represent a
community attribute as x ::: y.

3.1 Routing Networks

A routing network consists of a collection of routers participating in one or more
routing protocols. For example, typical networks run BGP on border routers;
some internal routing protocol, such as OSFF or RIP, on all routers; and addi-
tionally configure some routes statically, that is, not learned through a dynamic
routing protocol. Currently Nettle supports only two routing protocols, BGP
and Static.

Nettle: A Language for Configuring Routing Networks 217

At the highest level, a Nettle program describing a BGP policy has the form:
nettleProg = routingNetwork bgpNet staticNet redistPolicy

where

1. bgpNet is a description of the BGP network.
2. staticNet is a description of the static protocol.
3. redistPolicy describes how the BGP and static protocols interact.

bgpNet is typically defined as follows:
bgpNet = bgpNetwork asNum bgpConns prefs usefilter adfilter admodifier

where:

1. asNum is the AS number of the AS whose routing is being defined.

2. bgpConns is a list of connections.

3. prefs is an assignment of preference levels, i.e. integers, to routes and is used
to determine which routes to use.

4. Given a set of routes received by a router, usefilter discards ones it doesn’t
want.

5. Given a set of routes known by a router, adfilter discards those that it does
not wish to advertise to neighbors.

6. admodifier is a function which may change attributes of a route as it is
exported; this used to influence neighbors routing decisions and to ultimately
influence incoming traffic.

In the following subsections we will see how each of these constituent pieces
is generated.

Routers. Several aspects of routing policy, such as static route announcements
and route redistribution, are specified in terms of particular routers in the net-
work. Additionally, the Nettle compiler will need router-specific details, such as
hardware configurations, in order to compile a Nettle program. Nettle programs
therefore need to know the set of routers to be configured.

In order to maintain modularity, Nettle policies are written in terms of an
abstract router type that router-specific data types implement. For example, we
can declare an abstract router r1 , implemented by a XORP router, with the
following code:

rl = router rixorp

where rizorp = zorpRouter xorpBgpld xorplInterfaces
zorpInterfaces = [ifaceEth0]
iface Eth0 = zorpInterface "eth0" "data" [vifEthOEthO]
vif EthOEth0 = let block = address 200 200 200 2 // 30

beastAddr = address 200 200 200 3
in vif "eth0" (vifAddrs (vifAddr block bcastAddr))

218 A. Voellmy and P. Hudak

Here the router function hides the specific type of router. Policy is then written
in terms of the abstract router type, as will be shown in the following sections.
This design separates router-specific details from abstract policy and allows con-
figurations to be written modularly. In particular, it allows users to change the
router platform of a router without changing any routing policy. Furthermore,
this design allows Nettle to support configurations of a heterogeneous collection
of router types within a single language.

In the following examples, we assume that we have defined routers r1, r2,
and r3.

Static Routing. Static routes are specified simply by describing the address
prefix, the next-hop router, and the router that knows of the route. For example,
the following describes a static routing configuration with three routes, known
at two routers:

staticConfig |
staticRoute r1 (address 172160 0 0 // 16) (address 63 50 128 1),
staticRoute r1 (address 218 11500 // 16) (address 63 50 128 2),
staticRoute r2 (address 172 160 00 J/ 16) (address 63 50 128 1)]

We note that a standard Haskell let expression can be used to rewrite this as:

let ip! = address 17216000 / 16
ip2 = address 218 11500 // 16
ip n = address 63 50 128 n
in staticConfig [staticRoute r1 ipl (ip 1),
staticRoute 1 ip2 (ip 2),
staticRoute 12 ipl (ip 1)]

which is arguably easier to read. Even this simple kind of abstraction is not
available in most (if any) router scripting languages.

BGP Connections. A connection specification consists of a set of
BGPConnection values. For example, the following two connections describe
external and internal connections, respectively:

connl = externalConn r1 (address 100 100 1 0) (address 100 100 1 1) 3400
conn?2 = internalConn 11 (address 130 01 4) r8 (address 1300 1 6)

The first line declares that router r1 has a BGP connection with an external
router from AS 3400 and that the address for r1 on this connection is 100.100.1.0
and the peer’s address is 100.100.1.1. The second line declares that r! and 73
are connected via IBGP using addresses 130.0.1.4 for 71 and 130.0.1.6 3.

Subsets of Routes. At the core of Nettle lies a small language of route predi-
cates for specifying sets of routes. This language is used to apply different poli-
cies to different sets of routes. The language, which is designed with an eye
towards implementation on available router platforms, consists of a set of atomic

Nettle: A Language for Configuring Routing Networks 219

predicates; a conjunction operator, A, denoting the intersection of two subsets
of routes; and a disjunction operator, V, denoting the union of two subsets of
routes. For example,

nextHopEq (address 128 32 60 1) V tagged With (5000 ::: 120)

denotes the set of routes whose next hop routers have address 128.32.60.1 or
those which are tagged with community attribute 5000:120.
Another example is:

destInSet [address 128 32 60 0 // 24, address 63 100 0 0 // 16]
A tagged WithAnyOf [5000 ::: 120, 7500 ::: 101]

which denotes the set of routes for destination prefixes 128.32.60.0/24 or
63.100.0.0/16 and which are marked with one or more of community attributes
5000:120 or 7500:101.

The asSeqln predicate allows users to specify complex conditions on BGP
routes, as in the following example which requires that routes originate at AS
7000, pass through any number of networks, and finally pass through either AS
3370 or 4010 once followed by AS 6500{]

asSeqIn (repeat (i 7000) > repeat any >
(i 33701|| 7 4010) > repeat (i 6500))

The full collection of predicates is shown in Figure [I1

Using Haskell’s standard abstraction mechanisms, this predicate language al-
lows users to write new predicates. For example, we can define a predicate that
matches a path exactly, while allowing for prepending, as follows:

pathls :: [ASNumber] — RoutePredicate BGPT
pathls zs = asSeqIn $ foldr (Aa r — repeat (i a) > r) empty xs

It is impossible to express this kind of predicate in any router scripting language
that we are aware of.

Usage and Advertising Filters. Filters play a role in both usage and ad-
vertising policy; a usage filter prevents some routes from being considered for
use, while an advertising filter prevents some routes from being advertised to
peers. Nettle allows users to declare filters based on predicates using the reject
function. For example,

reject (destEq (address 128 32 0 0 // 16))

is a filter that rejects routes to destinations 128.32.0.0/16.
Nettle also allows users to specify connection-dependent filters, i.e. maps as-
sociating BGP connections with usage (or advertising) filters. For example, the

! In this paper repeat is the kleene star operation on regular expressions, not the repeat
function in Haskell’s Prelude module.

220 A. Voellmy and P. Hudak

destEq :: Protocol p = AddressPrefiz — RoutePred p
destNotEq it Protocol p = AddressPrefiz — RoutePred p
destInRange :: Protocol p = AddressPrefiz — RoutePred p
destInSet it Protocol p = [AddressPrefiz | — RoutePred p
nextHopEq : Address — RoutePred BGPT
nextHopInRange :: Address — Address — RoutePred BGPT
nextHopInSet $ [Address]| — RoutePred BGPT
asSeqln : RegEzp ASNumber — RoutePred BGPT
tagged With : Community — RoutePred BGPT
tagged WithAny Of :: [Community] — RoutePred BGPT

all :: Protocol p = RoutePred p

none :: Protocol p = RoutePred p

(N) it Protocol p = RoutePred p — RoutePred p — RoutePred p
(V) it Protocol p = RoutePred p — RoutePred p — RoutePred p

Fig. 1. The language of route predicates

following usage filter rejects routes learned over connection ¢ which either (1)
are for block 128.32.0.0/16 and are tagged with community 5000:120, or (2) are
tagged with community 12345:100, while for other connections it rejects only
routes that pass through network 7000:

usefilter ¢ =
if c=cl
then reject ((destEq (address 128 3200 // 16)
A tagged With (5000 ::: 120)) V tagged With (12345 ::: 100))
else reject (asSeqln (repeat any > repeat (i 7000) > repeat any))

Route Preferences. The central part of BGP usage policy consists of route
preferences. In Nettle, users specify route preferences by giving a numerical rank,
with higher being more preferred, to sets of routes, which are specified using
route predicates. To do this we can use the route conditional expressions cond
and always. For example, the expressiorﬁ

cond (tagged With (5000 ::: 120)) 120
$ cond (tagged With (5000 ::: 100)) 100
$ cond (tagged With (5000 ::: 80)) 80
$ always 100

ranks routes with community 5000:120 at rank 120, routes not tagged with
5000:120 but tagged with 5000:100 at rank 100, and so on, until it finally matches
all remaining routes with rank 100.

2 Note that f$z = f . Using this function allows us to avoid writing some parantheses;
for example g $f $z =g (f z).

Nettle: A Language for Configuring Routing Networks 221

Route Modifiers and Guarded Route Modifiers. The central part of BGP
advertising policy consists in modifying route attributes as routes are advertised
to peers, so as to communicate intentions about routes, or influence how others
prefer routes. Intentions about routes can be communicated through the use of
community attributes, while AS path prepending can influence peers’ decisions
by increasing the apparent path length of the route. Nettle provides a small
language for expressing route modifiers. For example, the modifier:

tag (5000 ::: 130)

denotes a function mapping a BGP route to the same BGP route tagged with
community 5000:130, while the modifier:

prepend 65000

represents a function mapping a BGP route to the same BGP route with the
AS number 65000 prepended to the AS path attribute. Two route modifiers f
and g can be combined as f > g, which denotes the reverse composition of the
modifiers denoted by f and g. For example,

tag (5000 ::: 130) > prepend 65000

represents the function which associates a BGP route with the same route tagged
with community 5000:130 and with AS path prepended with AS number 65000.
Finally, route modifiers ident and unTag c¢ leave a route unchanged and remove
a community value ¢ from a route, respectively.

As with route predicates, route modifiers allow us to define new modifiers and
use them wherever route modifiers are required. For example, we can define a
modifier which prepends an AS number a specified number of times:

prepends n asn = foldr (>) ident $ replicate n (prepend asn)

Route modifiers can be combined with conditional statements to describe
guarded route modifiers. For example,

cond (taggedWith (5000 ::: 120)) (prepend 65000) (always (tag 1000 ::: 99))

is a guarded route modifier that prepends the AS number 65000 to a route only
if that route is tagged with community value 5000:120, and otherwise tags the
route with community 1000:99.

Nettle allows route modifiers to be specified per connection and represents
these as Haskell functions. For example,

adMod ¢ | c=cl = always (prepend 65000)
|c=c¢2 = always (prepends 2 65000 > tag (65000 ::: 120))
| otherwise = always ident

222 A. Voellmy and P. Hudak

Connecting Protocols. Nettle currently provides a simple mechanism for con-
necting protocols, a process also known as route redistribution, in which a subset
of routes from one protocol are introduced into another protocol at a particular
router. For example,

redistAt r1 (destEq (address 80 10 32 0 // 24)) StaticProtocol BGPProtocol

indicates that routes with destination 80.10.32.0/24 from the static protocol will
be redistributed into the BGP protocol at router r1. Multiple redistribution
statements can be combined with redists:

let p1 = redistAt r1 (destEq (address 80 10 32 0 J/ 24))
StaticProtocol BGPProtocol

redistAt 12 (destEq (address 100 10 20 0 // 24))
StaticProtocol BGPProtocol

in redists [p1,p2]

p2

3.2 Compiling to Routers

By combining routing policy with information about the specific routers in the
network, we can compile appropriate configuration files for each router. We can
compile a configuration for a router in our network with the command compile,
which returns a String value, as in the following example, which gives the con-
figuration file for r1:

compile rNet r1

Although Nettle currently only provides a compiler for XORP routers, we
ultimately intend the Nettle compiler to support all major router platforms.

3.3 Simulation

The Nettle library also provides a simple BGP simulator, whose implementation
is based on the formal BGP model of Griffin et al [9]. The simulator provides
a coarse approximation of BGP. In particular, it ignores timing details, and
rather calculates routing tables for each BGP node in a network in rounds. In
each round BGP nodes apply export policy to their best routes, exporting to
neighboring nodes, and then apply usage policy to their newly received and
currently known routes.

A significant limitation of the simulator is that it does not model IBGP and
that it only models one connection per pair of peers. Therefore in order to
simulate our Nettle BGP networks with this simulator, we need to approximate
our network with a single BGP node, preserving the connections and policies of
the original Nettle network as much as possible. Due to these limitations, the
simulator is not yet useful for simulating the behavior of most large networks.
However, for small networks which have only one connection per BGP router

Nettle: A Language for Configuring Routing Networks 223

and external peer, the simulator provides a useful tool for exploring the effects
of policies, as the example in Section (] shows.
We briefly describe how to use the simulator here. To create a simulation

bgpSimulation connGraph policyMap asNumberMap

where connGraph, of type Graph from the Data.Graph module, is the connec-
tivity graph of the nodes in the network, where our network is a single node
and nodes are identified with integers, and policyMap :: Int — SimPolicy and
asNumberMap :: Int — ASNumber are maps giving for each node identifier the
node’s policy and its AS number respectively. The library provides a function
networkToSimPolicy which calculates the simulator policy of the simulator node
representing the home network, given a routing network and a map associating
to each external node the BGP connection (part of the Nettle specification) con-
necting it to the home network. A simulation can then be run and viewed, using
the printSimulation function, whose use is shown in Section [l

4 Extended Nettle Example

We can now demonstrate a complete configuration in Nettle. The example is
taken from Zhang et al [10], a Cisco text book on BGP configuration. The exam-
ple is for the configuration of a network with AS number 300, which is “multi-
homed”, (i.e. it connects to the Internet via multiple providers), to providers
networks AS 100 and AS 200. AS 300 has 3 BGP-speaking routers, R, R2, and
RS all of which have IBGP sessions among them. Router R1 is connected to AS
100 via a high-bandwidth OC-3 (Optical Carrier, 155 Mbit/s) connection, while
R2 and R3 are links to AS 100 and AS 200 respectively over lower bandwidth
DS-3 (Digital signal, 45 Mbit/s) links. The topology is shown in Figure 2l For
the remainder of this section, we describe the policy from the point of view of
the multi-homed network.

Our intention is that most traffic should flow over the OC-3 link to AS 100,
while traffic to destinations that are customers of AS 200 should flow over the
DS-3 link to AS 200. This policy will achieve some load balancing while also
favoring short routes to customers of AS 200. We also plan for some failure
scenarios: if the OC-3 link should fail, we would like to roughly balance traffic
over the two DS-3 links; if the DS-3 to AS 200 fails, all traffic should flow over
the OC-3, whereas if the DS-3 link to AS 100 fails, traffic should be unaffected.

In order to achieve these outbound traffic goals, we first request default and
partial routes from both providers, meaning that our providers will advertise a
default route to the Internet as well as more specific routes to their customers
We can then implement our preference policy with two preference levels, which
we will call high and low. We assign routes traversing the OC-3 link the high
preference, and all other routes the low preference.

3 This request is not part of BGP; this request is made by informal communication
among the networks’ administrators.

224 A. Voellmy and P. Hudak

Home: AS 300

“Interna)

! Internal 0c-3
B “Internal \DS-3

IDS-3

B: A 200

Fig. 2. The BGP connections for example 1

With this policy, we will never use a route traversing the DS-3 to AS 100 when
the OC-3 is working, because 1) we assume that any route advertised by AS 100
will be advertised on both of its links to us and 2) we give a higher preference
to routes over the OC-3 link. We will also never use a route traversing the DS-3
link to AS 200 when a route to the same prefix is available over AS 100. We will
only use a route traversing the DS-3 to AS 200 when the prefix of that route
is not announced by AS 100; this will only be the case when the prefix is for a
customer of AS 200 that is also not a customer of AS 100.

We are more limited in our ability to influence inbound traffic patterns. To
do this we must manipulate how our routes are advertised in order to influence
the decisions that AS 100 and AS 200 make. To influence AS 100’s traffic to the
OC-3 link, we can prepend our AS number onto routes we advertise across the
DS-3 link to AS 100. Assuming that AS 100 does not have explicit preferences
set for routes, this will cause AS 100 to prefer the apparently shorter path to us
over the OC-3. In order to discourage peers of AS 200 from choosing the route
to us through AS 200, we prepend our AS number twice on the link to AS 200.
However, in the situation Zhang et al [10] suppose, this amount of prepending
causes AS 200 itself (as opposed to its neighbors) to choose the route to us
through AS 100 and so the local traffic from AS 200 does not flow over the
link with AS 200. To remedy this situation, we take advantage of policies which
are knowr{] be in place at AS 200. AS 200 has configured policies that assigns
routes having community values 200:80, 200:100, and 200:120 the preferences
80, 100, and 120 respectively. By advertising routes to AS 200 with community
attribute 200:120, we can cause AS 200 to prefer the direct route to us, while

4 Knowledge of such policies is communicated in an ad-hoc fashion by neighboring
network administrators.

Nettle: A Language for Configuring Routing Networks 225

import Nettle. Network
home = 300; asA = 100; asB = 200

connl?2 = internalConn r1 (address 130 0 1 4) r2 (address 130 0 2 5)
connl3 = internalConn r1 (address 130 0 1 4) r8 (address 130 0 3 4)
conn23 = internalConn r2 (address 130 0 2 6) r8 (address 130 0 3 5)

conn A OC3 = externalConn r1 (address 100 100 100 0)
(address 100 100 100 1) asA

conn A DS3 = externalConn r2 (address 100 100 150 0)
(address 100 100 150 1) asA

conn B DS3 = externalConn r8 (address 200 200 200 0)
(address 200 200 200 1) asB

conns = [connl12, connl8, conn23, conn A OC3,conn A DS3,conn B DS3]

staticNet = staticConfig [route r1, route r2, route r3|
where route r = staticRoute r (address 172 160 0 0 // 16)
(localAddr conn B DS3)
redistPolicy = redist [nofilter r | r — [rl,r2,13]]
where nofilter r = redistAt r all StaticProtocol BGP Protocol
martians = [address 0 0 00/8, address10 0 00/ 8,
address 172 0 00/ 12, address 192168 00 / 16,
address 127 0 00/8, address 16925400 / 16,
address 192 0 20/ 24,address2240 00/ 3,
address 172 16000 / 16]

adMod ¢ | ¢ = conn A DS8 = cond all (prepend home) (always ident)
| ¢ = conn B DS8 = cond all
(tag (200 ::: 120) > prepends 2 home)
(always ident)
| otherwise = always ident
adFilter = const $ reject $ destNotEq homeBlock
where homeBlock = address 172 160 00 / 16
net = routingNetwork bgpNet staticNet redistPolicy
where bgpNet = bgpNetwork home conns prefs usefilter adFilter adMod
prefs = cond (nextHopEq (peerAddr conn A OCS8)) high
(always low)

usefilter = const $ reject $ destInSet martians
high =120
low =100

Fig. 3. The Nettle configuration for the Zhang et al [I0] example; the definitions of
the router details r1,72,r8 are omitted

still prepending our AS number twice, thereby making the route appear long for
peers of AS 200.

Finally, we declare use and ad filters. The use filter is a defensive measure
which prevents us from accepting routes which are known to be incorrect. The
ad filter ensures that we only advertise our own address block and do not inad-
vertently enable our providers to transit traffic through our network.

226 A. Voellmy and P. Hudak

The Nettle code for this example, omitting the router-specific details, is shown
in Figure[3

We can use the simulator to check our understanding of the policy. We set
up a simulation in which AS 100 announces only the default route, and AS
200 announces the default route and two more specific routes: one for destina-
tion 20.20.20.0/24 and another to destination 10.0.0.0/7. We expect that the
10.0.0.0/7 route will be filtered by our martian filter. In addition, we expect the
default route over the OC-3 link to be preferred. We also check that we don’t
inadvertently provide transit traffic to our providers by exporting one provider’s
routes to the other. The simulation output, shown in Figure @ confirms our
understanding.

printSimulation sim
(Node = 1, AS = 300):

(0.0.0.0 // 0, 100.100.100.1, [100], 120, [
(20.20.20.0 // 24, 200.200.200.1, [200,7763],100, [1)
(172.160.0.0 // 16, 200.200.200.0, [], 0, [

(Node = 2, AS = 100):
(172.160.0. / 16, 100.100.100.0, [300],0, [1)
(0.0.0. / 0, 100.150.150.88, [], 0, D

(Node = 3, AS = 100):
(172.160.0.0 // 16, 100.100.150.0 ,[300,300]1,0, [1)
(0.0.0.0 // 0, 100.100.150.23,[], 0, [

(Node = 4, AS = 200):

(172.160.0.0 // 16, 200.200.200.0 ,[300,300,300],0, [Community 200 120])
(0.0.0.0 // 0, 10.23.140.223,[], o, M
(20.20.20.0 // 24, 10.23.140.223,[7763], 0, [
(10.0.0.0 // 7, 10.23.140.223,[7763], 0, [

Fig. 4. A sample simulation for the policy of Section [4]

5 Nettle as a Basis for User-Defined Policy Languages

The most compelling advantage of Nettle, we believe, is its ability to serve as
the basis for the development of higher-level and more specific configuration
schemes or patterns. In this section we demonstrate two such schemes that can
be precisely expressed in Nettle. These examples illustrate how Nettle enables
policy to be written abstractly and at a high-level. Though it is possible to write
policy-generating scripts in other languages, the Nettle language offers safety
guarantees: if the policy-generating functions type check, then we are sure that
the policies they generate will be free from many simple errors. This simple,
but substantial verification may allow authors of such functions to write policy-
generators more quickly and be more confident in the correctness of the resulting
policy.

Nettle: A Language for Configuring Routing Networks 227

5.1 Hierarchical BGP in Nettle

Gao and Rexford [11] found that commercial relationships between networks on
the Internet are roughly of two types: customer-provider relationships and peer
relationships. In a customer-provider relationship, one network (the customer)
pays the other (the provider) to connect them to the rest of the Internet. In a peer
relationship, two networks agree to allow traffic to and from customers of the
networks to pass directly between the networks, without payment. These rela-
tionships strongly constrain BGP policy in two ways. On the one hand, providers
are obliged to support traffic to and from customers. On the other hand networks
have an incentive to use customer-learned routes, since using such routes incurs
no cost and since customers may pay by amount of data transmitted. These
constraints, as described in Griffin et al. [9] can be summarized as follows:

1. Customer routes must be preferred to peer routes, and customer and peer
routes must be preferred over provider routes.

2. Customer routes are be advertised to all neighbors, whereas peer and
provider routes can only be shared with customers.

Hierarchical BGP (HBGP) is an idealized model of BGP in which networks
relate in the two ways described above and follow the guidelines described. Griffin
et al. [9] have shown that these guidelines, if followed by all networks on the
Internet, would guarantee the abscence of many routing anomalies, including
global routing oscillations.

We can express both of these guidelines in Haskell functions that generate
Nettle policy given the classification of peerings into HBGP relationship types,
and indeed, we have implemented such functions in the Nettle. HBGP module.
We will need to generate both preferences and advertising filters to implement
these guidelines, and we do so with the following two functions:

hbgpAdFilter :: [(ASNumber, Peer Type)] — BGPConnection r
— Filter BGPT

hbgpPrefs :: [(ASNumber, PeerType)] — PartialOrder ASNumber
— Cond BGPT Preference

where we use the following enumerated type to stand for the HBGP relationship
types:

data PeerType = Customer | Peer | Provider

The HBGP preference guidelines do not constrain preferences among neigh-
bors of a given relationship type and we take advantage of this by having the
hbgpPreference function also take a PartialOrder ASNumber argument, which
represents route preferences among the neighbors. The function will attempt to
satisfy both the HBGP preference constraint and the given partial order, and
will report an error if these are incompatible. We omit the implementation of
these functions here, but we show how these can be used to easily create a Nettle
configuration that follows HBGP guidelines.

228 A. Voellmy and P. Hudak

In this example, we show only the preference and advertising filter components
of the policy for a network with several customers and peers, and one provider.
First, we we define the set of external network numbers and a map to classify
external neighbors into HBGP peer types:

home = 100; custl = 200; cust2 = 300; cust3 = 400
cust4 = 500; peer1 = 600; peer2 = 700; prov = 800

pTypes = [(custl, Customer), (cust2, Customer), (cust3, Customer),
(cust4, Customer), (peerl, Peer), (peer2, Peer), (prov, Provider)]

We can then easily define our preferences to be HBGP compatible preferences,
where we also give our preference of networks:

prefs = hbgpPrefs pTypes basicPrefs
where basicPrefs = [(cust1, cust2), (custl, custs), (cust3, custs),
(peer2, peerl), (prov, prov)]

We also add the HBGP advertising filters to our policy:
adFilter = hbgpAdFilter peerTyping
Compiling our example for a single Xorp router gives a configuration file

roughly 400 lines long, much of it consisting of preference setting commands,
such as:

term impterm13 {

from {
as-path: "~200/|(200 [0-9][0-9]*([0-9][0-9]*)*)$"
}
then {
localpref: 105
}
}
term imptermid {
from {
as-path: "~300/ (300 [0-9][0-9]*([0-9][0-9]*)*)$"
}
then {
localpref: 104
}
}

as well as export filters implementing the HBGP scope preferences, such as:

term expterm7 {

to {
neighbor: 130.6.1.1
as-path: "~700| (700 [0-9][0-9]*([0-9][0-9]*)=*)$"
}

Nettle: A Language for Configuring Routing Networks 229

then {
reject
}
}
term expterm8 {
to {
neighbor: 130.6.1.1
as-path: "~800| (800 [0-9][0-9]*([0-9][0-9]*)*)$"
}
then {
reject
}
}

This example illustrates the utility of Nettle in capturing configuration pat-
terns and thus enabling network configurations to be specified more succinctly
and at a higher level of abstraction.

5.2 Dynamically Adjustable Customer Policy

Providers often receive requests from customers to modify their policy in order
to achieve some customer objective. Furthermore, the customer may alter their
objective at a later date, and request another change in provider policy. In
order to avoid having to repeatedly update their configurations, and thereby
increase the risks of introducing accidental errors, providers often provide a
way for customers to dynamically alter provider policy. This is typically done
through the use of the community attribute. Providers typically configure policies
to match on particular community values, which when matched perform some
operation, such as setting the preference level of the route to a particular value,
or influencing the advertisement of the route. The network configured in Section
M made use of such a policy when announcing routes to AS 200 by tagging these
routes with an appropriate community value.

Zhang et al. [T0] describe four commonly occurring types of dynamically ad-
justable policies used by ISP’s. These policy types allow customers to do the
following:

Adjust preference levels of announced routes.

Suppress advertisement of routes to peers by peer type.

Suppress advertisement of routes to peers by peer AS number.

Prepend ISP AS Number to routes announced to peers with a certain AS
Number.

o=

To allow a customer to adjust preference levels, an ISP with AS Number 1000
could add policy to match routes having community attributes 1000:80, 1000:90,
... 1000:120 and set the local preference to 80, 90,..., 120, respectively. To suppress
by peer type, AS 1000 could add filters matching community values 1000:210,
1000:220, and 1000:230 where these filters cause matching routes not to be adver-
tised to providers, peers, or customers, respectively. To suppress by AS number,

230 A. Voellmy and P. Hudak

AS 1000 could add a filter for every neighboring network, with AS number A,
matching community 65000:A and suppressing advertisement to A upon match-
ing. To achieve dynamically adjustable prepending, AS 1000 would add a filters
for every neighboring network, with AS number A, of the following form: match
comunity 65x00:A, where x is a digit from 0-9, and upon matching, prepend
1000 to the AS path x times.

It is easy to see that such policy will dramatically increase the size of the
router configurations with many simple definitions and that writing these by
hand will substantially increase the likelihood of introducing errors into configu-
rations. A better solution is to capture these configuration patterns as functions
producing Nettle expressions, and instantiating these patterns in configurations
by calling these functions. Indeed, we have done exactly this in the module
Nettle. DynamicCustomerPolicy.

We define a function adjustable Prefs which returns customer-adjustable Nettle
preferences, given a list of preference levels which may be set. An example is

adjustablePrefs homeASNum custASNum (always 100) [80,100,120]

which denotes preference policy which allows customer number custNum to adjust
the preference level of their routes among 80, 100, and 120 by tagging their routes
with communities homeASNum:::80, homeASNum:::100, and homeASNum:::120
respectively, and otherwise defaults to preference level 100. The implementation
of adjustablePrefs is relatively straightforward, so we show it here:

adjustablePrefs cust home prefElse prefLevels =
foldr f prefElse prefLevels
where f p e = cond (routeFrom cust A tagged With (home ::: p)) p e
routeFrom asn = asSeqIn (repeat (i asn) > repeat any)

The routeFrom cust predicate ensures that only the specified customer can ad-
just their own routes.

We can accomplish dynamic prepending with the adjustablePrepending func-
tion, and an example of its use is the following:

adjustablePrepending homeNum custNum [(91,1),(92,2), (93, 3),(94,4)]
[44000, 13092, 6231] (always ident)

which denotes connection-dependent advertising modifier policy which allows
customer custNum to adjust the prepending done by the provider network when
advertising to networks 44000, 13092, and 6231 such that communities 91:44000,
92:44000, ..., 94:44000, 91:13092, ... , 94:6231 correspond to prepending 1, 2,
3, and 4 times, to the specified network, respectively. The implementation of
adjustablePrepending is more involved than for adjustablePrefs, but is nonethe-
less not too complicated:

adjustablePrepending home cust octetsAndTimes nets gmodFElse conn =
if peerASNum conn ‘member nets

Nettle: A Language for Configuring Routing Networks 231

then foldr f gmodElse octetsAndTimes
else gmodElse
where f (0,t) e = cond (routeFrom cust
A taggedWith (o ::: (peerASNum conn)))
(prepends t home) e

6 Implementation

We have implemented the Nettle language as an domain-specific embedded lan-
guage (DSEL) hosted in Haskell. The embedding confers significant benefits
on Nettle, the most important of these being safe, comprehensive and uni-
form abstraction mechanisms and powerful calculation abilities. The examples in
Sections Bl @ and [illustrate how we can take advantage of these to write policy
in a high-level and safe way.

We also take advantage of Haskell’s type system, in particular its support for
phantom types, generalized algebraic data types, type classes, and existentially
qualified types to ensure that Nettle programs satisfy a number of logical con-
straints. An example of this is the design of the RoutePred a datatype, which
carries a phantom type indicating the type of routes being predicated over. This
phantom type prevents users from combining predicates over incompatible route
types. For instance, it would be incorrect to intersect a predicate over static
routes with a predicate over BGP routes, and our combinators appropriately
prevent this. As more protocols are added to Nettle, it will become increasingly
important to ensure predicates are constructed in sensible ways.

The phantom type of RoutePred a is used again when constructing route re-
distribution policies. As explained above, route redistribution injects some subset
of routes, denoted by a route predicate, from one protocol to another. A route re-
distribution policy is then essentially specified by naming the exporting and im-
porting protocols as well as a predicate over routes of the exporting protocol.

A network configuration may include several redistribution policies and we
would like to collect these into a single list. However, since each of these policies
may have predicates of different types, we need to hide the types in a quantified
type. On the other hand, the Nettle-to-XORP compiler will need to know the ex-
porting and importing protocols in order to generate correct code. To accomplish
this we need to package the route redistribution policy with values indicating the
exporting and importing protocols. In doing this, we want to ensure that these
values correspond with the predicates appropriately. We accomplish all this by
creating a type, whose values represent protocols and whose type also carries
the protocol information:

data ProtocolValue a where
BGPProtocol :: ProtocolValue BGPT
StaticProtocol :: ProtocolValue StaticT

We then use this in our definition of route redistribution policies:

data RedistPolicy = forall a b
RedistPolicy (RoutePred a) (ProtocolValue a) (ProtocolValue b)

232 A. Voellmy and P. Hudak

With these types, we can hide the predicate type in the redistribution policy so
that it can be collected in a list, while providing values which can be used by the
compiler by pattern matching against the constructors of the ProtocolValue a
type. The phantom types ensure that the compiler will never be given an incom-
patible protocol value and route predicate. For example,
RedistPolicy (tagged With (1000:::200)) BGPProtocol StaticProtocol type checks,
whereas RedistPolicy (taggedWith (1000 ::: 200)) StaticProtocol BGPProtocol
does not.

Furthermore, we take advantage of Haskell’s type class mechanism to im-
plement overloaded operators, thereby simplifying the syntax of Nettle. Two
examples of this are the sequential composition operator > and the Boolean
operators V and A. Sequential composition is used to denote concatenation of
regular expressions as well as function composition of route modifiers. In this
case we have made the appropriate data types instances of the Data.Monoid
type class and made > synonymous with the mappend function of this type
class. The Boolean operations are defined in the Boolean type class and both
route predicates and route predicate-valued functions are made instances of this,
where for the latter the operations are defined pointwise, as follows:

class Boolean b where
(V) =b—=b—1b
(A) =b—b—b
all b
none :: b
instance Protocol p = Boolean (r — RoutePred p) where
bIVbI2Z=Ar—01rVb2r
bIND2Z=Ar—= bl rANDV2 T
all = const all
none = conset none

7 Related Work

In analyzing BGP policy, Caeser and Rexford [12] emphasize the need for lan-
guages which express BGP policies more directly and allow for the expression
of common policy patterns and Ramachandran [13] and Griffin [9] make con-
tributions in how such languages should be constructed. Several other efforts,
including the path vector algebra approach of Sobrinho [14] and Griffin [I5]
and the “Declarative Networking” approach of Loo et al [16] are promising ap-
proaches to this problem. These approaches differ from Nettle’s approach in that
they give languages for expressing both a protocol and a policy, whereas Nettle
focuses solely on the kinds of policies supported by the current BGP protocol.
In that regard, Nettle is much more closely related to configuration and policy
languages such as XORP and RPSL, and in the following sections we describe
the relationship of Nettle to those languages.

Nettle: A Language for Configuring Routing Networks 233

7.1 XORP

XORP routers are configured using a XORP configuration file. Unlike Nettle,
which describes an entire network in a single program (though not necessarily
a single file), XORP requires one file per router, and these files contain both
router details such as details about network interfaces, and BGP routing policy.
Policy is divided into “import” and “export” policy, which are similar to Nettle’s
usage and advertising policy. These import and export policies in turn consist
of a sequence of guarded actions, similar to Nettle.

Xorp provides some limited facilities for naming and reusing elements. For ex-
ample, it provides a construct for creating and naming sets of network prefixes
that can be referred to in policies and it provides the ability to name a con-
junction of basic predicates (XORP calls these “policy subroutines”) for reuse.
In contrast, Nettle provides much more extensive ability to name arbitrary pol-
icy components, as the above tutorial has demonstrated. The following Nettle
example illustrates naming route modifiers, a simple form of naming which is
currently not possible in XORP:

m1 = tag (5000 ::: 130)
m2 = prepend 65000

m8 = unTag (5000 ::: 90)
f=ml > m2

g=ml > m3

Even more importantly, XORP does not provide any functional abstractions.
This prevents users from expressing their policy patterns in a reusable way and
prevents users from designing their own higher-level policy languages or policy
calculation methods.

7.2 RPSL

Routing Policy Specification Language (RPSL) is a stand-alone BGP policy
language which, like Nettle, takes a network-wide view of BGP configuration.
Like XORP it provides several constructs for naming policy elements, such as
sets of routes and filters. Like XORP it does not provide comprehensive naming
or functional abstraction.

Like Nettle, RPSL is vendor neutral and can be used to generate router con-
figuration files. The RtConfig tool[I7] generates a router configuration file from
RPSL policy and script file containing router-specific information. Essentially,
the RtConfig script file is a vendor-specific router configuration file with spe-
cial commands inserted which instruct RtConfig to insert information from the
RPSL policy. While this does manage to separate router specific details from
BGP policy, it has the disadvantage that router-specific details are external to
the language and there are therefore no mechanisms for reusing parts of these
router-specific configurations or abstracting the patterns which generate them.
In contrast, Nettle separates policy from router details, yet embeds both within
a single language, Haskell, which gives users a uniform tool for manipulating
both policy and router details.

234 A. Voellmy and P. Hudak

8 Limitations and Future Work

Nettle currently only supports BGP and static routing. In order to be a practical
alternative to vendor-specific router configuration scripts, Nettle will need to add
support for the most common IGPs, such as RIP and OSPF. Nettle is also miss-
ing some BGP features commonly supported on all major platforms, including
setting and testing the MED attribute and supporting route aggregation.

More significantly, while Nettle provides greater expressiveness than other
routing configuration languages, it is still fairly low-level and does not fully
address the issue of configuration correctness. For example, in the extended ex-
ample of Section M, the intended network behavior and the assumptions made
of the network are expressed informally. The BGP configurations which achieve
these objectives do not directly express the intentions, and the correctness of the
configurations can only be judged with respect to those intentions. Furthermore,
the assumptions about the network are essential in reasoning about the correct-
ness of the configurations. We conclude that further work is needed in order to
address the issue of policy correctness.

Acknowledgements. Thanks to Vijay Ramachandran, whose work on network
routing policy inspired this effort. Thanks also to the anonymous reviewers who
supplied helpful feedback on an earlier draft of this paper. This research was
supported in part by NSF grant CCF-0728443 and DARPA grant STTR ST061-
002 (a subcontract from Galois, Inc.).

References

1. Rekhter, Y., Li, T., Hares, S.: A Border Gateway Protocol 4. Internet Engineering
Task Force (2006)

2. Alaettinoglu, C., Villamizar, C., Gerich, E., Kessens, D., Meyer, D., Bates, T., Kar-
renberg, D., Terpstra, M.: Routing Policy Specification Language (RPSL). Internet
Engineering Task Force (June 1999)

3. Peyton Jones, S., et al.: The Haskell 98 language and libraries: The revised report.
Journal of Functional Programming 13(1), 0-255 (2003)

4. XORP, Inc.: Extensible Open Routing Platform, XORP User Manual, Version 1.6
(January 2009)

5. Varadhan, K., Govindan, R., Estrin, D.: Persistent route oscillations in inter-
domain routing. Computer Networks 32(1), 1-16 (2000)

6. Mahajan, R., Wetherall, D., Anderson, T.: Understanding BGP misconfiguration.
SIGCOMM Comput. Commun. Rev. 32(4), 3-16 (2002)

7. Hudak, P.: Building domain specific embedded languages. ACM Computing Sur-
veys 28A (December 1996) (electronic)

8. Hudak, P.: Modular domain specific languages and tools. In: Proceedings of Fifth
International Conference on Software Reuse, pp. 134-142. IEEE Computer Society,
Los Alamitos (1998)

9. Griffin, T.G., Jaggard, A.D., Ramachandran, V.: Design principles of policy lan-
guages for path vector protocols. In: SIGCOMM 2003: Proceedings of the 2003
conference on Applications, technologies, architectures, and protocols for computer
communications, pp. 61-72. ACM, New York (2003)

10.
11.

12.

13.

14.

15.

16.

17.

Nettle: A Language for Configuring Routing Networks 235

Zhang, R., Bartell, M.: BGP Design and Implementation. Cisco Press (2003)
Gao, L., Rexford, J.: Stable internet routing without global coordination. SIG-
METRICS Perform. Eval. Rev. 28(1), 307-317 (2000)

Caesar, M., Rexford, J.: BGP routing policies in isp networks. IEEE Network 19(6),
5-11 (2005)

Ramachandran, V.: Foundations of Inter-Domain Routing. PhD thesis, Yale Uni-
versity (May 2005)

Sobrinho, J.L.: Network routing with path vector protocols: theory and applica-
tions. In: SIGCOMM 2003: Proceedings of the 2003 conference on Applications,
technologies, architectures, and protocols for computer communications, pp. 49-60.
ACM, New York (2003)

Griffin, T.G., Sobrinho, J.L.: Metarouting. In: SIGCOMM 2005: Proceedings of
the 2005 conference on Applications, technologies, architectures, and protocols for
computer communications, pp. 1-12. ACM, New York (2005)

Thau, B., Joseph, L., Hellerstein, M., Stoica, I., Ramakrishnan, R.: Declarative
routing: Extensible routing with declarative queries. In: Proceedings of ACM SIG-
COMM 2005 (2005)

Meyers, D., Schmitz, J., Orange, C., Prior, M., Alaettinoglu, C.: Using RPSL in
Practice. Internet Engineering Task Force (August 1999)

	Nettle: A Language for Configuring Routing Networks
	Introduction
	A Language-Centric Solution

	Introduction to Networks, Routing and BGP
	BGP
	Protocol Interaction

	Nettle Tutorial
	Routing Networks
	Compiling to Routers
	Simulation

	Extended Nettle Example
	Nettle as a Basis for User-Defined Policy Languages
	Hierarchical BGP in Nettle
	Dynamically Adjustable Customer Policy

	Implementation
	Related Work
	XORP
	RPSL

	Limitations and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

