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Abstract. In most SLAM (Simultaneous Localization and Mapping) ap-
proaches, there is only unilateral data stream from data association (DA) to state 
estimation (SE), and the SE model estimates states according to the results of 
DA. This paper focuses on the reciprocity between DA and SE, and an incre-
mental algorithm with inter-calibration between SE and DA is presented. Our 
approach uses a tree model called correspondence tree (CT) to represent the so-
lution space of data association. CT is layered according to time steps and every 
node in it is a data association hypothesis for all the measurements gotten at the 
same time step. A best-first search with limited back-tracking is designed to 
find the optimal path in CT, and a state estimation approach based on the least-
squares method is used to compute the cost of nodes in CT and update state es-
timation incrementally, so direct feedback is introduced from the SE to DA. 
With the interaction between DA and SE, and combining with tree pruning 
techniques, our approach can get accurate data association and state estimation 
for on-line SLAM applications. 

Keywords: SLAM, data association, state estimation, least-squares, backtrack-
ing search. 

1   Introduction 

The simultaneous localization and mapping (SLAM) problem requires an autonomous 
robot, moving in an unknown environment, to incrementally derive a map of the envi-
ronment only from its relative observations of the environment, and then simultane-
ously determine its own position in the map. A solution to SLAM has been seen as a 
‘holy grail’ for mobile robotics community as it provides a mean to make a robot truly 
autonomous [1-3]. 

The feature-based SLAM problem is consisted of a continuous and a discrete com-
ponent [4]. The continuous component is the state estimation (SE) problem, which 
estimates the location of individual features in the environment and the position the 
robot relative to these features. The discrete part is the data association (DA) problem 
[5], which is the problem of determining the correspondence relationships between 
observed features and landmarks in the map built thus far. Data association is very 
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important to the consistent map construction in SLAM, since incorrect data associa-
tion may make the state estimation divergent, and cause the entire SLAM process fail.  

Some approaches have been put forward to solve the data association problem in 
SLAM, and most of them are classical methods for tracking [5, 6]. The nearest 
neighbor (NN) algorithm is the simplest [7]. But in complex environment with clut-
tered features, it may accept wrong data association hypotheses, and cause the state 
estimation divergent. Many methods such as the joint compatibility test (JCBB) [8], 
the integer programming method [9] and the graph theoretic approach [10] have been 
presented to overcome this shortcoming. These methods make incremental maximum 
likelihood decisions for all the features gotten at the same time step, and could get the 
local optimal data association. More sophisticated algorithms called the multiple-
hypothesis method, such as the multi-hypothesis Kalman filter [2] and FastSLAM 
[11], generate many data association hypotheses, and later determine which is the best 
as more observes arrive. These algorithms are more robust, but need more computa-
tional overhead. Reference [4] presented a lazy data association algorithm, which 
searches the interpretation tree with backtracking to revise past data association. This 
method can find the global optimal data association, but it need calculate the inverse 
of high-dimensional matrixes. 

All above algorithms lose sight of the interaction between data association and 
state estimation. There is only data flow from the data association model to the state 
estimation process, and the state estimation process has no direct influence to the he 
data association model. In this paper we focus on the inter-calibration between data 
association and states estimation, and introduce direct feedback from the state estima-
tion process to the data association model. The data association problem is modeled 
by a tree structure, called correspondence tree (CT), and nodes in it are features ex-
tracted at-a-time with a data association hypothesis. An incremental state estimating 
approach based on the least-squares method is used, and its least-squares residual is 
used as the cost of a node in CT. A best-first backtracking search strategy to CT is 
designed to search the best data association. Because the state estimation process 
provides feedback to the data association model, and at the same time past data asso-
ciation can be revised with backtracking, it’s guaranteed that the global optimal data 
association is found. Additionally, since only a path of CT is expanded at most time, 
our method has moderate computational cost. 

2   Formulation of SLAM 

In this section we present the formulation of the SLAM problem with unknown data 
association. This paper uses the same mathematical framework and notations as that 
adopted in [7]. We are interested in the maximum a posterior (MAP) estimation for 
the entire robot trajectory { }iX x� , 1i M∈ …  and the map of landmarks { }jL l� , 

1j N∈ … , given the measurements { }kZ z� , 1k K∈ …  and the control inputs,  

{ },iU u� with unknown data association { }kC c� . If kc n= , the measurement kz  

corresponds to landmark .nl  Let ( , )X LΘ� , and then the SLAM problem with unknown 

data association can be formulated as the following optimization problem: 
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{ }* *

, , ,
, arg max ( | , , ) arg max ( , | , , ) .

C X L C

C P Z U C P X L Z U C
Θ

Θ Θ =�  (1) 

In (1), the solution space of C is discrete, while ’s is continuous. Direct method sol’s is continuous. Direct method solv-
ing (1) is to solve the sub-problem maxP( |Z,U,C) for every value of C by traversing 
the whole solution space of C. This method is impractical, because the solution space 
of C will grow exponentially with the increas of measurements and landmarks. Most 
approaches solve (1) in two steps. Firstly, calculating a sub-optimal value of C by 
solving the following equation: 

* arg max ( | , , ).
C

C P Z U C≈ Θ  (2) 

This is the data association problem. And then a state estimation problem with 
known data association is solved: 

* *arg max ( | , , ).P Z U C
Θ

Θ = Θ  (3) 

3   Data Association 

3.1   Correspondence Tree 

Every value of C represents a correspondence relationship between Z and L. Let ci 
denotes the data association of the measurements zi gotten at time step i, and 

{ },t iC c�  { }t iZ z� , i=1…t. The solution space of tC can been represented as a 

correspondence tree (CT) of t levels, as shown in Fig.1. The tree has a null root, level i 

 

 

Fig. 1. An example of correspondence tree. i
jc is the jth possible data association for the observa-

tions zi at time step i, and ni is the number of possible data associations for the observations zi. 
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corresponds to measurement zi and every node ci corresponds to a data association 
hypothesis of zi then a path from the root to a node in level i corresponds to a data 
association hypothesis of Zi as shown by red lines in Fig.1. 

The CT tree is layered according to time steps, so it is more preferable than the inter-
pretation tree [12] to represent the data association problem in SLAM. The incremental 
maximum likelihood data association approaches, such as the joint compatibility test [8] 
and the graph theoretic approach [10], choose the best data association of zt based on the 
data association of zt-1 and then freeze it forever, that is 

1ˆˆ arg max ( | , , , ).
t

t t t

c

c P Z U C c−= Θ  (4) 

In nature, these methods are hill-climbing searching to CT, which is a greedy tree 
searching method, and can only find a local optimal solution. Multiple-hypothesis 
methods actually are breadth-first searching to CT, so they could find the global op-
timal solution. But because these methods need to expand and save the whole or most 
parts of CT, their computation complex is very high. 

3.2   Limited Backtracking Data Association 

From above analysis we know that tree searching methods can be used to solve the 
data association problem. We take 

( ) min log ( | , , )t tc P Z U CΓ = − Θ  (5) 

as the evaluation function to calculate the cost of node ct. In fact, this function calculates 
the cost of path Ct to which ct belongs. The cost presents the desirability of expanding 
node ct, and the node with the least cost will be expanded first. Fig. 2 illustrates the 
basic idea of our searching strategy: our approach maintains an H-layered path above a  
 
 

 

Fig. 2. A example of best-first with limit backtracking search. (a) At time step t, a backtracking 
appears; (b) When the node with least cost is in level t, the searching at time step t stops, and 
the H-layered path (real line) is saved. At time step t+1, the node with least cost is in level t is 
expand first.  
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node in the deepest level at the moment, at the same time the entire frontier of the path 
is also saved. At time step t, after new measurements zt arrives, the node with the least 
cost in level t-1 will be expanded first to produce all of its children nodes, all children 
nodes are assessed and their costs are saved. Then all frontier nodes in the H-layered 
path are compared: if the frontier node with the least cost is among those new children 
nodes, the searching stops, the children node with the least cost will be expanded first 
at the time step 1,t +  the new H-layered path with its frontier are memorized and other 
nodes in CT are abandoned (dashed nodes in Fig. 2); If a frontier node not in level t 
has a lower cost than the least one of those children nodes, the algorithm will back-
track to this frontier node and expand it, and such procedure will go on until the fron-
tier node with least cost is in level t. Then the frontier node will be expanded first at 
the time step 1,t +  the new H-layered path its frontier above the node are memorized, 
and other nodes in CT are also abandoned. 

The reasons why a path of H layer is kept are that: 

• Since the cost of nodes increase monotonically with the depth of CT, if we main-
tain the whole optimal path, when CT is expanded deep enough, it’s possible that 
the cost of an early frontier node is lower than the current frontier node of the op-
timal path, and then meaningless backtracking will appear;  

• It’s shown that good data association for a measurement can be obtained in a few 
time steps, and in some circumstance it only needs 2 time steps to get a near opti-
mum solution [6], so we needn’t keep the whole path, and for most circumstance, 
H=5 is enough.  

In fact, our approach is a best-first search with limit backtracking. It’s well known 
that in a limited tree, if the cost of nodes increase monotonically with the depth of the 
path which it belongs to, best-first searching with backtracking is certain to find the 
global optimal path. In addition, our searching method needn’t expand the whole CT, 
and only needs to keep one path at most time, so it has moderate computational cost. 

4   SLAM as a Least-Squares Problem 

According to the Bayesian networks model, the SLAM problem with known data 
association C’ can be formulated by the following equation [12]: 

0 1
1 1

( , , , | ) ( ) ( | , ) ( | , ),
k k

M K

i i i k i c
i k

P X L Z U C P x P x x u P z x l−
= =

′ = ∏ ∏  (6) 

where P(x0) is a prior on the initial state, P(xi|xi-1,ui) is the robot motion model, and 
( | , )

k kk i cP z x l is the landmark measurement model. The MAP estimate Θ* can be 

obtained by minimizing the negative log of the joint probability of (6): 

* arg max ( , | , , ) arg min log ( , , , | ).P X L Z U C P X L Z U C
Θ Θ

′ ′Θ = = −  (7) 

It’s assumed that the motion and measurement noises are Gaussian. The motion model 
is defined by 1( , )i i i i ix f x u ω−= + , where (0, ).i iNω Λ∼ The landmark measurement 
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model is defined by ( , ) ,
k kk k i j kz h x l υ= +  where (0, ).k kNυ ∑∼  Combining them with 

(7), leads to the following least-squares problem: 

* 2 2
1

1 1

arg min || ( , ) || || ( , ) ||
i k k k

M K

i i i i k k i j
i k

x f x u z h x l− Λ ∑
Θ = =

⎧ ⎫Θ = − + −⎨ ⎬
⎩ ⎭
∑ ∑  (8) 

where 
2 1 / 2 / 2 / 2 2

2|| || ( ) ( ) || ||T T T T Te e e e e e− − − −
∑ ∑ = ∑ ∑ = ∑�  (9) 

is squared Mahalanobis distance given a covariance matrix Σ. 
Linearizing the non-linear items in (8), we can obtain the following linear problem: 

* 1 2 2
1

1 1

arg min || || || || ,k k

i k k k

M K
i ji i

i i i i i k i k j k
i k

F x G x a H x J l cδ δ δ δ δ−
− Λ ∑

Θ = =

⎧ ⎫Θ = + − + + −⎨ ⎬
⎩ ⎭
∑ ∑  (10) 

where 1,i
iF − ,ki

kH and kj
kJ are Jacobians of fi and kh , i

iG I= , and ia and kc are odometry 

and observation measurement prediction error. According to (9), we can eliminate 

iΛ and k∑ from (10), and obtain a standard linear least-squares problem: 

* 2
2arg min || || .A b

θ
θ θ= −  (11) 

Please see [12] and [13] for more detail derivation.  
This standard least-squares problem can be solved by the QR matrix factorization 

of the Jocobian m nA ×∈\ : 

,
0

R
A Q

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
 (12) 

where m mQ ×∈\ is orthogonal, and n nR ×∈\ is upper triangular. Multiplying with the 

orthogonal matrix QT doesn’t change the norm: 
2 2 2 2
2 2 2 2|| || || || || || || || ,T TA b Q A Q b R d eθ θ θ− = − = − +  (13) 

so the solution of R dθ = is the least-squares solution of (11), where [ , ]T Td e Q b� , 

and 2
2|| ||e  is the residual of the least-squares problem (11): 

2 2
2 2|| || min || || min log ( | , , ).e A b P Z U Cθ ′= − = − Θ  (14) 

According to (5), we take 2
2|| ||E e� as the cost of the final node of the path C′ . So 

there will be direct interaction and reciprocal promotion between data association and 
state estimation: the state estimation provides direct feedback to select the best data 
association, and the best data association will lead to more precise state estimation. 

5   Incremental SLAM Algorithm 

For real-time application, it needs the SLAM algorithm rapidly calculate the costs of 
nodes i.e. the residual of the least-squares problem (11). In this section, we present 
such an incremental SLAM algorithm. 
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Fig. 3. The illustration of variables set V and S. Vo is the center of V, RV is its radius, and r is 
the maximum perception radius of sensors.  

5.1   Variable Ordering 

We divide the variables in Θ={X, L} into a static set S and a variable set V: 

S VΘ = ∪  (15) 

The set V includes all variables that close to the robot’s current position. For example, 
in Fig. 3, V={l8, l9, l10, l11, l12, l13, x5, x6, x7, x8}, and S={ l1, l2, l3, l4, l5, l6, l7,x1, x2, x3, 
x4}. Let Vo denote the center of V, which is one of the robot positions on its trajectory, 
and RV denote the radius of V. When the robot’s current position is far away from Vo: 

ˆ|| ||t o Vx V R r− > − , (16) 

we set ˆtx as the new center of V, where r is the maximum perception radius of sensors. 

All variables whose distance from the new Vo is smaller than RV will compose the new 
V, and other variables left compose S. In our approach, RV is chosen carefully so that V 
includes all variables related to the saved H-layered path of CT up to current time step. 

For the SLAM problem, the Jacobian matrix A in (11) is sparse [12]. The QR factoriza-
tion of A will lead to non-zero fill-ins for matrix R. However, such fill-ins can be avoided 
through column reordering of A. Since finding an optimal ordering is NP-hard, various 
approximate algorithms have been developed, and among them the approximate minimum 
degree (AMD) works well [14]. In our algorithm, A is ordered in the following way: 

• S is put in the front of A and V follows: 

[ ]S VA A A= , (17) 

• Every time Vo changes, we use AMD to column order AS and AV for the new S and V. 
• At time steps that Vo isn’t changed, the current pose and new landmarks are put 

into V, and ordered at the end of AV. The current pose is in front of new landmarks. 
• We row order A according to time, and early equations are ordered on the top. At 

every time steps, the motion model equations are ordered ahead of measure-ments 
and old landmarks’ measurements are ordered ahead of those of new landmarks. 

Fig. 4 depicts the row and column ordering of the Jacobian matrix A in the SLAM 
scene shown in Fig. 3, and the side number is the row order of A, the 16th and 17th row 
are the equations relating to variables in V and S, and are the links between V and S. 
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Fig. 4. The row and column ordering of the Jacobian matrix A in the SLAM scene shown in 
Fig. 3. On the top is the column order of variables and the side number is the row order.  The 
16th and 17th row are the equations relating to variables in V and S. The shadowed part is related 
to the saved H-layered path of CT.  

The above column ordering will reduce fill-ins to R, and the row ordering will facili-
tate the backtracking search of our data association algorithm. Because we row order A 
according to time steps, equations that related to the saved H-layered path of CT is at 
the bottom of A. For example, the shadowed part in Fig. 4 is related to a 3-layered path. 

5.2   Incremental State Estimation  

Since V includes all variables related to the saved H-layered path of CT up to current 
time step, the calculation of the costs of nodes in the backtracking search to CT only 
relates to variables inside V. Assuming that the optimal data association up to time 
step t has been found, and after QR factorization, the equations only including vari-
ables in V is ,t t t

V VR V dδ = with a least-squares residual 2
2|| ||t tE e= , i.e. the cost of the 

last node in the saved optimal path of CT, where .t t t
V V VR Q A=  

At time step t+1, the last node of the saved optimal path is first expanded according 
to zt+1’s association hypotheses. Let c’ be one children nodes. According to c’, we 
divide zt+1 into two parts: measurements from old landmarks and others from new 
landmarks. Following the variables ordering rules in section 5.1, we can get the fol-
lowing equations: 

1

0 0

0

0 .

0

0 00

t t
V V

t
x

old told Lold

new new new Lnew
t

R d

G VF b

H xJ b

H J L b

e

δ
δ
δ

+

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎛ ⎞⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟=⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (18) 
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We denote (18) as 1 1 1t t t
VA V bδ+ + += . It’s easy to verify that new landmark measure-

ments have no influence to the cost of c’. The QR factorization of the coefficient ma-
trix in (18) can be obtained by eliminating lower diagonal non-zeroes of F, G, Jold and 
Hold row-by-row through Givens rotations [13], and then we will get  

11

0

0 0

t t
V Vt

x x
tt

R T d
V

R d
x

e

δ
δ ++

⎛ ⎞⎛ ⎞
⎛ ⎞ ⎜ ⎟⎜ ⎟ =⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠

 (19) 

Thus the least-squares residual of (18) is 

1 2 2 2
2 1 2 1 2|| || || || || || .t t t

t tE e e E e+
+ += + = +  (20) 

Apparently 1t tE E+ ≥ , and the costs of nodes in CT increase monotonically, so our 
algorithm can find the global optimal path of CT. Equation (20) shows that the cost of 
children nodes can be incrementally computed from its parent’s cost. After the opti-
mal node in level t+1is founded, the estimation update of variables in V can be ob-
tained by back-substitution [13].  

Above computation is enclosed in V, so our algorithm has O(n2) time complex, 
where n is the size of V. Since the size of V is limited and relatively small, our algo-
rithm has a moderate computation cost. 

5.3   Pruning 

In our approach the following techniques are adapted to prune those branches in CT 
with little chance to be expanded: 

• A range W around the current robot position is set. Landmarks out of the range 
will not be considered in the expanding of nodes in CT. W is decided by RW= r+ρ, 
where RW is the radius of W, r is sensors’ maximum perception radius, and ρ>0 is 
a compensator for errors. 

• A gate is applied to every landmark in W. Only measurements that are close 
enough to the prediction position of a landmark are considered as possible candi-
dates to be associated with the landmark. The gate is given by [9]: 

1T
jk jk j jksτ υ υ ε−= < , 1 ; 1 ,j N k K= =… …  (21) 

where ˆjk k jz zυ = − is the innovation and js is it’s covariance. jkτ is a squared Maha-

lanobis distance between kz and ˆ ,jz  and follows the 2χ distribution. If a measure-

ment is out of the gate of all landmarks, it matches a new landmark. 
• For a new landmark, a punishment ε i.e. the gate in (21) is added to the cost of its 

corresponding node in CT, since new landmarks will give zero residual.  

During the pruning procedure, covariance matrices of variables are needed. In our 
approach, the efficient method presented in [14] is applied. 
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6   Experiment Results 

The algorithm presented in this paper was tested with simulation experiments and a 
real robot experiment dataset. In these experiments, we have compared our algorithm 
with EKF-based SLAM [15] using the nearest neighbor and the joint compatibility 
branch and bound (JCBB)[8] data association. The experiment results have shown 
that our algorithm is more accurate. 

6.1   Simulation 

In order to evaluate our approach, a simulation environment with about 200 land-
marks has been created as shown in Fig. 5(a), and significant motion and measure-
ment noise have been added.  
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Fig. 5. (a). A typical simulation experiment scene. (b). The estimated robot trajectory and 2-
sigma ellipses of landmark locations for the ‘sjursflat’ dataset with our algorithm. 

For 20 times we applied EKF-based SLAM with NN and JCBB data association 
and our algorithm to perform the SLAM process respectively. Every time, we 
changed the landmarks positions randomly and some landmarks were significantly 
close to each other. In the experiments, we saved a 5-layered path of the CT tree, and 
the gate for pruning was 6.63ε = with a probability of 0.99 for a measurement to 
match a close landmark. The correct data association rates of every algorithm are 
shown in Table. 1. Our algorithm had finished all the experiments, and the correct 
data association rate was 96.8%. Backtracking search had occurred for 157 times. The 
wrong data associations appeared to landmarks far from the robots, and only observed 
for one or two times with high measurement noise. The correct data association rate 
for the EKF-based SLAM with NN was 79.6%. When landmarks were too closed, the 
NN algorithm failed. The correct data association rate for the EKF-based SLAM with 
JCBB was 85.3%, and when landmarks were too closed, it worked better than the NN 
algorithm, but when there is large motion error and landmarks have similar deploy-
ments it may accept wrong data association. But our algorithm will accept such wrong 
data association temporally, and the revise it after several time steps. 
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Table 1. Comparison of correct data association rate (CDAT) of different algorithm 

 Our algorithm NN JCBB 

CDAT(%) 96.8 79.6 85.3 

6.2   Sjursflat Dataset 

The ‘sjursflat’ dataset shows the ground floor of Sjur Vestli’s house, recording using 
a SmartRob 2 with a forward looking SICK LMS200, which has been distributed with 
‘the CAS Robot Navigation Toolbox’ [16].  

In our experiment, the same parameters were used as simulations, and a beacon-
based slam was done. There were 283 time steps and 20 landmarks were estimated. Our 
algorithm had gotten similar results as the EKF-based method in [16], and Fig. 6 shows 
the resulting trajectory and map. In this experiment, our data association algorithm  
had degenerated as an incremental maximum likelihood method, and no backtracking 
had appeared, because landmarks were not close to each other, but our algorithm had 
matched all the 615 measurements, while the NN algorithm matched 609 measure-
ments, for ambiguous associations were ignored. 

7   Conclusion 

The SLAM problem includes two parts: data association and state estimation. Former 
algorithms deal with them separately. This paper presents a new on-line algorithm for 
the SLAM problem. The characteristic of our approach is that there is direct interac-
tion between data association and state estimation. The state estimation process 
evaluates every data association hypothesis, and provides direct feedback to the data 
association model. At the same time the data association model can revise incorrect 
former data association by backtracking the correspondence tree when a potential 
better state estimation is proposed. We have evaluated our algorithm by simulations 
and a real robot dataset, and compared it with the classical methods. Experiment re-
sults have validated the high accuracy of our algorithm. 

We have just essentially invalidated our approach. In the future work, we will try 
to use this method in SLAM for the RoboCup Rescue Competition. 
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