A Structured Approach to Data Reverse
Engineering of Web Applications

Roberto De Virgilio and Riccardo Torlone

Universita Roma Tre, Italy
{devirgilio,torlone}@dia.uniroma3.it

Abstract. The majority of documents on the Web are written in HTML,
constituting a huge amount of legacy data: all documents are formatted
for visual purposes only and with different styles due to diverse author-
ships and goals and this makes the process of retrieval and integration of
Web contents difficult to automate. We provide a contribution to the so-
lution of this problem by proposing a structured approach to data reverse
engineering of data-intensive Web sites. We focus on data content and on
the way in which such content is structured on the Web. We profitably use
a Web data model to describe abstract structural features of HTML pages
and propose a method for the segmentation of HT'ML documents in spe-
cial blocks grouping semantically related Web objects. We have developed
a tool based on this method that supports the identification of structure,
function, and meaning of data organized in Web object blocks. We demon-
strate with this tool the feasibility and effectiveness of our approach over
a set of real Web sites.

1 Introduction

With the growth of the Internet, Web applications have become the most impor-
tant means of electronic communication, especially for commercial enterprisers
of all kinds. Unfortunately, many Web applications are poorly documented (or
not documented at all) and poorly structured: this makes difficult the mainte-
nance and the evolution of such systems. This aspect, together with the growing
demand to reimplement and evolve legacy software systems by means of modern
Web technologies, has underscored the need for Reverse Engineering (RE) tools
and techniques for the Web. Chikofsky describes RE as “the process of analyzing
a subject system to identify the system’s components and their interrelationships
and create representations of the system in another form or at a higher level
of abstraction” [6]. The Data Reverse Engineering (DRE) emerged from the
more general problem of reverse engineering: while RE operates on each of the
three main aspects of an information system (data, process, and control), DRE
concentrates on data and on its organization. It can be defined as a collection
of methods and tools supporting the identification of structure, function, and
meaning of data in an software application. In particular, DRE aims at recov-
ering the semantics of the data, by retrieving data structures and constraints,
and relies on structured techniques to model, analyze, and understand existing

M. Gaedke, M. Grossniklaus, and O. Diaz (Eds.): ICWE 2009, LNCS 5648, pp. 91 20009.
© Springer-Verlag Berlin Heidelberg 2009

92 R. De Virgilio and R. Torlone

applications of all kinds. It is widely recognized that these techniques can greatly
assist for system maintenance, reengineering, extension, migration and integra-
tion and motivate the add-on of a framework supporting the complete process of
data reverse engineering of Web applications. In this scenario, several approaches
have been proposed to convert HTML Web pages into more or less structured
formats (e.g. XML or relational tables). Usually, these approaches leverage the
structural similarities of pages from large Web sites to automatically derive data
wrappers (see [12] for a survey). Most of them rely on hierarchy-based algorithms
that consider any two elements as belonging to the same item when their cor-
responding HTML tags are located under a common parent tag in the DOM
tree [QU16]. However, when the HTML structure of a Web page became more
complicated, an item with several elements can be extracted incorrectly: related
elements may be visually positioned closely but textually located under different
parent tags in the tree hierarchy. Moreover, the result of the reverse engineer-
ing process is a repository of data (e.g., a collection of relational tables) that
is poorly processable without user supervision mainly because they take into
account the semantics of data only to a limited extent.

In this framework, we propose a structure discovery technique that: (i) iden-
tifies blocks grouping semantically related objects occurring in Web pages, and
(ii) generates a logical schema of a Web site. The approach is based on a page
segmentation process that is inspired by a method to group elements of a Web
page in blocks according to a cognitive visual analysis [5]. Visual blocks detection
is followed by a pattern discovery technique that generates structural blocks that
are represented in a conceptual model, called Web Site Model (WSM) [9]. This
model generalizes various (data and object oriented) Web models and allows the
representation of the abstract features of HTML pages at content, navigation
and presentation levels. Content and presentation are linked to these blocks to
produce the final logical schema of the Web site.

An important aspect of our approach is that we face with a highly heteroge-
neous collection of HTML documents. Specifically, we start from the observation
that even if HTML documents are heterogeneous in terms of how topic specific
information is represented using HTML markups, usually the documents exhibit
certain domain-independent properties. In particular, an HTML document ba-
sically presents two types of elements: block elements and text elements. The
former involve the document structure (i.e. headings, ordered/unordered lists,
text containers, tables and so on), the latter refer to text inside block elements
(e.g., based on font markups). Together, these elements specify information at
different levels of abstraction. We distinguish several types of blocks due to their
functionality in the page: (i) visual or cognitive, (ii) structural and (iii) Web
object. Starting from the visual rendering of a Web page, it is straightforward
to divide the page in well-defined and well-identifiable sections according to
the cognitive perception of the user. In these wvisual blocks we identify a set of
patterns that represent structures aggregating information. Each pattern is a
collection of tags. For instance the pattern HTML-BODY-UL-LI identifies a struc-
tural block that organizes related information as a list. By grouping patterns, we

A Structured Approach to Data Reverse Engineering of Web Applications 93

identify several Web object blocks representing aggregations of information in the
page that give hints on the grouping of semantically related objects. Each Web
object block represents a particular hypertextual element that organizes and
presents a content with a specific layout. We have developed a tool, called RE-
VERSEWEB, implementing the above mentioned methods to semi-automatically
identify structure, function, and meaning of Web data organized in Web ob-
ject blocks. REVERSEWEB has been used to perform experiments on publically
available Web sites.

The paper is structured as follows. In Section 2 we present some related works.
In Section 3 we introduce the page segmentation technique to individuate visual
and structural blocks. In Section 4 we illustrate how we can identify blocks and
produce a logical description of the Web site. In Section 5 we show an architecture
of the tool and a number of experimental results and finally, in Section 6, we
sketch concluding remarks and future works.

2 Related Work

The literature proposes many methods and tools to analyze Web page structures
and layout, with different goals.

UML based approaches. The majority of Web Application reverse engineering
methodologies and tools rely on the Unified Modeling Language (UML). UML-
based techniques provide a stable, familiar environment to model components
as well as the behavior of applications. Among them, Di Lucca et al. have devel-
oped the Web Application Reverse Engineering (WARE) tool [10], a very well
documented example to RE. The approach is based on the Goals, Models and
Tools (GMT) paradigm of Benedussi and makes use of the Conallen UML ex-
tensions to represent information as package diagrams (use-case diagrams for
functional information, class-diagrams for the structure, and sequence-diagrams
for the dynamic interaction with the Web Application). Chung and Lee [7] also
adopt the Conallen extensions. They represent the Web content in terms of a
component diagram and the Web application in terms of a package diagram.
In general, all of these approaches focus on the behavior and interaction with a
Web Application, rather than on its organization.

Ontology based approaches. The basic idea of these approaches is to model a
Web application by means of an schema. Among them, Benslimane et. al [3]
and Bouchiha et. al. [4] have proposed OntoWare, whose main objective is the
generation of an ontological, conceptual representation of the application. The
authors criticize other approaches to reverse engineering because they do not
provide adequate support to knowledge representation (a position also supported
by Du Bois [I1]). The ontological approach provides a high level analysis of a
Web Application but usually depends on the specific domain of interest. In
most cases, data extraction can only be done after a user intervention aimed
at building the domain ontology by locating and naming Web information [2].

94 R. De Virgilio and R. Torlone

Usually, the ontology based approaches rely on a specific formalism to represent
the structures extracted from Web pages. Lixto [2] is a tool for the generation
of wrappers for HTML and XML documents. Patterns discovered Lixto are here
expressed in terms of a logic-based declarative language called Elog.

Source code based approaches. Ricca and Tonella have proposed ReWeb [I3], a
tool for source code analysis of Web Applications. They use a graph model to rep-
resent a Web application and focus on reachability, flow and traversal analysis.
The outcome of the analysis is a set of popup windows illustrating the evolution
of the Web Application. Vanderdonckt et al. [I5] have developed VAQUISTA,
a framework to reverse engineering the interface of Web applications. The aim
of this work is to facilitate the migration of Web Application between different
platforms. VAQUISTA performs a static analysis of HTML pages and trans-
lates them into a model describing the elements of the HTML page at different
levels of abstraction. Antoniol et. al. [I] use an RMM based methodology. The
authors apply an RE process to identify logical links which are then used to
build a Relationship Management Data Model (RMDM). From the RMDM an
Entity-Relationship model is then abstracted. This is the end point of the reverse
engineering process. In general, all of these solutions produce a logical description
of a specific aspect of a Web application (mainly related to the presentation).

3 Extraction of Page Structure
3.1 Overview

Our approach is related to recent techniques for extracting information from the
Web [12]. As for most of these proposals, we start from the observation that data
published in the pages of large sites usually (i) come from a back-end database
and (ii) are embedded within shared HTML templates. Therefore the extraction
process can rely on the inference of a description of the shared templates. Though
this approach is applicable on Web documents, it does not exploit the hypertext
structure of Web documents. Our work focuses on discovering this structure as
well. Some research efforts show that users always expect that certain functional
part of a Web page (e.g., navigational links, advertisement bar and so on) appears
at certain position of a pag. Additionally, there exist blocks of information that
involve frequent HTML elements and have a higher coherence. That it to say,
in Web pages there are many unique information features, which can be used to
help the extraction of blocks involving homogeneous information.

To this aim we define a Data Reverse Engineering (DRE) process composed
by the following steps:

— Page Segmentation: each Web page in a Web site is segmented in several
blocks according to the visual perception of a user. Each resulting visual
block of a Web page is isolated and through an analysis of the DOM asso-
ciated with blocks, a set of structural patterns are derived. Differently from

! For more details see http://www.surl.org/

http://www.surl.org/

A Structured Approach to Data Reverse Engineering of Web Applications 95

other approaches, this step combines a computer vision approach (to under-
stand the perception of users) with a DOM structure extraction technique
(which conveys the intention of Web authors).

— Schema Discovery: the derived patterns of each Web page, grouped in visual
blocks, suggest the clustering of pages in the Web site. Each cluster repre-
sents aggregations of semantically related data and is represented by a set
of structural patterns. Usually, a wrapper is generated to automate the ex-
traction of patterns and to structure the Web content associated with them
according to a logical model (e.g, the relational model). Differently from
these solutions, in this step we make use of a conceptual model to represent
Web data at content, navigation and presentation levels. The patterns of
each cluster are mapped into constructs of this model. Finally, based on this
conceptual representation, a logical schema of the Web site is extracted.

In the rest of this section, we will describe in detail the page segmentation phase,
providing algorithms to compute the structural patterns. In the next section we
will illustrate the schema discovery technique.

3.2 Page Segmentation

We start by exploiting the semi-structured nature of Web documents described
in terms of their document object model (DOM) representation. Note that DOM
poorly reflects the actual semantic structure of a page. However the visual page
layout structuring is more suitable to suggest a semantic partitioning of a page.
Therefore, we make use of the VIPS approach (Vision-based Page Segmentation)
[5], taking advantage from DOM trees and visual cues. The main idea is that:
(i) semantically related contents are often grouped together, and (ii) the page
usually divides the content by using visual separators (such as images, lines, and
font sizes). VIPS exploits the DOM structure and the visual cues and extracts
information blocks according to the visual perception. The output of VIPS as-
sociates with each is Web page a partitioning tree structure over wisual blocks
(VBs). The resulting VBs present a high degree of coherence, meaning that they
convey homogeneous information within the page. Then we assign an XML de-
scription to the tree: each VB is identified by the path from the root of the page
in its DOM representation (considering also the available styling information
of class or id referring to the associated Cascading Style Sheet or CSS) and
is characterized by the position in the page. For instance, Figure [I] shows the
resulting partitioning tree and XML description of the home page of Ebayﬁ.

Let us consider the visual block VB2 1 of Figure [} it organizes information
using an unordered list of items. Figure 2 shows an extract of DOM and CSS
properties for VB2 1. The next phase analyzes each identified VB and discovers
repeated patterns representing aggregations of information with a shared struc-
ture. More in detail, in each VB we label any path from the root of VB to a node
using an hash code. A preorder traversal generates a sequence V' representing a
vector of hash codes, as shown in Figure 2

2 http: \www.ebay.com

http:www.ebay.com

96 R. De Virgilio and R. Torlone

</HTML-BODY-DIV.page-DIV. header>

<HTML-BODY-DIV.page-DIV.header>

<position x='0" y='0" w='100" h='20"/>

<DIV. firstColumn>

|:> |:> <position x='0' y='0' w='15' h='300"/>
</DIV. firstColumn>
<DIV.secondColumn-DIV.colContent>

@ <position x='15' y='0’ w='80" y='300"/>

</DIV.secondColumn-DIV.colContent>

@ </HTML-BODY-DIV.page-DIV.content>

Fig. 1. Visual Partitioning of a Web page

a{
padding: 0;

text-decoration: underline;
}

(29) HTML-BODY-DIV-DIV-DIV-UL-LI-DIV-SPAN
(30) HTML-BODY-DIV-DIV-DIV-UL-LI-DIV-SPAN-#text

div {
color: rgb(255,102,0);
font-size: 1lpx;

font-style: bold; (24)HTML-BODY-DIV-DIV-DIV-UL-LI

(25) HTML-BODY-DIV-DIV-DIV-UL-LI-DIV

(26) HTML-BODY-DIV-DIV-DIV-UL-LI-DIV-A
(31)HTML-BODY-DIV-DIV-DIV-UL-LI-DIV-A-#text
(24) HTML-BODY-DIV-DIV-DIV-UL-LI

(25) HTML-BODY-DIV-DIV-DIV-UL-LI-DIV
(26) HTML-BODY-DIV-DIV-DIV-UL-LI-DIV-A

D (31) HTML-BODY-DIV-DIV-DIV-UL-LI-DIV-A-#text

V = .. 29 30 24 25 26 31 24 25 26 31 ..

U

. 29 30 (24 25 26 31)* ..

Fig. 2. Pattern searching

Finally we group repeated paths that represent patterns to identify. To this aim
we use an algorithm, called path-mark that gets inspiration from the dictionary-
based compression algorithm LZW [14]. Algorithm [[]illustrates the pseudo-code
of path-mark.

The algorithm manages a queue @ and a sequence V', and returns a map M
where each group of hash codes has assigned the number of its occurrences in
V. We generate V, initialize @) and M (lines 4 — 5) and make use of a window
(win) to scan the subsequences to analyze (line 7). win varies from one to half
of the length of V. So we extract a candidate subsequence (actual) of win length
and insert it in @ (lines 9 — 11). We compare actual with the top subsequence
(previous) in @, previously analyzed, and if they are equal we count the number
of consecutive occurrences (counter) of actual in the rest of V- moving with a win
scale. At the end we assign counter to actual in M (lines 12 —22). Otherwise we
extract another subsequence and iterate the algorithm from the line 8. Referring

A Structured Approach to Data Reverse Engineering of Web Applications 97

Algorithm 1. Path-Mark

: Input: A visual block VB
Output: A Map of occurring patterns in VB, each one related to its occurrences
begin
V «— HASHPREORDER(VB) // V is a sequence
EMPTY (M), EMPTY (Q) // M is a map and Q a queue
seq length «— LENGTH(V)
for win from 1 to °°9 l;”gm do

for index from 0 to seq length — win do

previous «— DEQUEUE(Q)

10: actual «— SUBSEQUENCE(V,index, index + win)
11: ENQUEUE(Q, actual)
12: if actual = previous then
13: counter «— counter + 1
14: internal «— index + win
15: while internal < seq length do
16: next «— SUBSEQUENCE(V,internal, internal + win)
17: if actual = next then counter < counter + 1
18: elseI NSERT (M, actual, counter)
19: end if
20: internal < internal + win
21: end while
22: end if
23: end for
24: end for
25: return M
26: end

win = 4
1 1

29 30 24 25,26 31 24 25 26 311 29 30 24 25 2631 24 25 26,31 1 29 30 24 25 26 3]1 24 25 26 3i
S ——— 1 1

1 1
enqueue :: gz dcqucuc 1 enqueue :; ;2 dcqucuc 1 enqueue gi' ;'; dcqucuc
25 24 > : > 26 25 > : > 25 26
26 25 31 26 26 31

1 1
- - *

Fig. 3. An execution of Path-Mark

to the example of Figure Bl we show an execution of the algorithm in Figure [
with win = 4.

Our algorithm returns a grouping such as: (. . ., 29, 30, (24, 25, 26, 31)*, . ..). This
means that (24, 25,26, 31) is a repeated path HTML-BODY-DIV-DIV-DIV-UL-LI-DIV-A
that presents a pattern UL-LI-DIV-A, where HTML-BODY-DIV-DIV-DIV is the root of
the container VB2 1.

4 Schema Discovery

In the previous section we have presented a technique to segment a Web page
into structural blocks representing aggregations of semantically related data. The
following step consists of generating a logical schema matching the discovered
patterns making use of the Web Site Model described in [9].

To this purpose, we get inspiration from the idea of Crescenzi et al. []]: a Web
page p can be considered as a couple {ID,V B}, where ID is an identifier and
V' B is the set of visual blocks, resulting by the VIPS segmentation. Each V B; is

98 R. De Virgilio and R. Torlone

UL-LI-DIV-SPAN
UL-LI-DIV-A

Fig. 4. From pages to clusters

a collection of patterns pty, pta, .. ., identified by the path-mark algorithm shown
in the previous section. So we define the page schema of a Web page p as the
union of all patterns occurring in each visual block. Then we call link collection
in a Web page p all node-to-link patterns together with all the URLs that share
that pattern. For instance consider the Web pages Pagel, Page2 and Page3 in
left side of Figure @ They are described in terms of a tree of visual blocks. Each
block is associated with a set of patterns, identified by Algorithm 1. Both Page2
and Page8 have a page schema described by the set {DIV-FORM, UL-LI-DIV-A}
and the link collection {UL-LI-DIV-A{urly, urls, ...}}. Pagel is associated with
the link collection {UL-LI-DIV-A{Page2, Page3, ...}}.

We can establish a partial ordering between page schemas by introducing
the notions of subsumption and distance. Given two page schemas ps; and pss,
we say that ps; is subsumed by psa, ps; < pss, if each pattern pt in ps; also
occurs in pss. The distance between two page schemas is defined as the normal-
ized cardinality of the symmetric set difference between the two schemas. Let
us consider again ps; and pss, then dist(psi,ps2) = |(p5171|’;jl)8;’;j‘|'7p51)|. Note
that if ps; = ps2 (that is, the schemas coincide), then dist(ps1,ps2) = 0. If
ps1 N psz = () (the schemas are disjoint), then dist(psi, ps2) = 1. Based on the
notions of page schema, subsumption and distance we then define a notion of
cluster as a collection of page schemas: a cluster is a tree { N¢, Ec, rc} where (i)
N¢ is a set of nodes representing page schemas, (ii) Ec¢ is a set of edges (n;, n;)
such that n; < n;, and (iii) ro is the root. In a cluster, a page schemas ps; is
parent of a page schema ps; if ps; <ps;, therefore the root of a cluster represents
the most general page schema in the cluster. Each page schema is associated with
a set of Web pages that match with it. To maintain clusters we use a thresh-
old dt. Given a cluster C' and a page schema ps and the set of associated pages, ps

A Structured Approach to Data Reverse Engineering of Web Applications 99

can be inserted in C if dist(ps,r¢) is lower than the given threshold dfl. For
instance, in right side of Figure [there are the clustering of Pagel, Page2 and
Page3. Now we can define also a notion of cluster link: given a cluster C; and
one of its pattern node-to-link pt, consider the link collections of the Web pages
in C associated with pt. We say that there exists a cluster link L between Cj
and the cluster Cy if there are links in the link collections associated to pt that
point to pages in Cs.

A relevant step in schema discovery is the computation of a useful partition
of Web pages in clusters, such that pages in the same cluster are structurally
homogeneous. Whereupon a crawler navigates a Web site starting from the home
page and an agglomerative clustering algorithm groups pages into classes. We
have designed an algorithm that builds a set of clusters incrementally. Algorithm
2] shows the pseudo code.

Algorithm 2. Compute Clusters

Require: n: max size of selected links subset

Require: dt: distance threshold for candidate selection
1: Input: Starting Web page po

2: Output: the set of Clusters C'L

3: begin

4: EMPTY (CL),EMPTY (Q) // CL is a set and Q a queue

5: INSERT (po,CL,dt)

6: Q — LINKCOLLECTION (po)

7: while Q is not empty do

8 lc — DEQUEUE(Q)

9: W — PAGES(lc,n)

10: H—0

11: while W is not empty do

12: W — {p}

13: INSERT (p,CL,dt)

14: HULINKCOLLECTION (p)
15: end while

16: while H is not empty do

17: H—{i}

18: ENQUEUE(Q,Ic")

19: end while
20: end while
21: return CL
22: end

The input of the algorithm is the home page py of the Web site, which is the
first member of the first cluster in the set CL (line 5). The output is the set of
computed clusters CL. From py we extract its link collections, and push them
into a priority queue @ (line 6). Then, the algorithm iterates until the queue is
empty. At each iteration a link collection lc is extracted from @ (line 8), and
a subset W of the pages (n) pointed by its links is fetched (line 9}4. Then the
pages in W are grouped according to their schemas (lines 11-15). The function
INSERT (p,CL,dt) inserts a page p into a cluster of C'L all the pages whose page
schema has a distance from the root rc lower than the threshold dt. Basically,
we extract the page schema ps of p, by using the path-mark algorithm, and select

3 On the basis of our experiments, we have set dt = 0.4.
4 We assume that is sufficient to follow a subset of the potentially large set of links to
determine the properties of the entire collection.

100 R. De Virgilio and R. Torlone

the cluster C' in C'L whose root has the minimum distance from ps (lower than
dt). If there is no cluster satisfying these properties, we add to C'L a new cluster
having ps as root.

Starting from the root of C, we insert ps (and p) into C as follows: (i) if there
is no child n of the root r¢ of C such that n < ps, then (a) ps becomes the
child of r¢, and (b) each child n of r¢ such that p <n becomes child of ps; (ii)
otherwise, we insert ps in the sub-tree of C' having as root the child n of r& such
that (a) n < ps, and (b) the distance between ps and n is minimum. Once ps
has be inserted in C, we move each n”” such that (i) ps <n” and (ii) n” is at the
same level of ps, as a child of ps.

Then, we extract the link collections of p and update the queue @ (lines
16-19). In this process we assume that the links that belong to the same link
collection lead to pages that are similar in structure or with minor differences
in their schemas. Then we assign a priority to link collections by visiting the
fewest possible pages: an higher priority is given to link collections that have
many instances of outgoing links from the cluster. This means that long lists in
a page are likely to point pages with similar content (this is particularly true
when they are generated by a program), and therefore the next set of pages will
provide an high support to discover another cluster.

The final step of the schema discovery process consists of representing each
cluster according to our Web Site Model (WSM) [9]. The idea is to identify a
set of container tags representing candidates to be mapped. In particular we
refer to HTML tags that bring to information content in a Web page such as
UL, TABLE,DIV,BODY,. ... Each pattern rooted in a tag container will be translated
into a metacontainer using a particular navigational structure (Index, Guided
Tour or Entry). We fix a set of heuristics for each construct of our model. Re-
ferring to the example of Figure 2] we map the pattern UL-LI-DIV-A into an Inde
because we have a heuristic that maps a pattern UL-LI-#-A with an Index. Each
metacontainer is identified by the path from the root to the container tag in
the DOM and presents several properties representing the occurring patterns
into the block. Then, we organize the data content according to the information
content associated to each pattern, and the presentation according to the style
properties associated in the Cascading Style Sheet, organized then in WOTs.
The root of each cluster is the representative page schema to describe in WSM.
As a example, Figure B shows the Web object blocks associated with the root
of cluster C7 shown in Figure @ and the corresponding implementation in a
relational DBMS.

5 Experimental Results

On the basis of the methodologies and techniques above described, we have
designed a tool for data reverse engineering of data intensive Web applications
called REVERSEWEB. Figure [f] shows the architecture of the tool.

The main modules of the tool are; (i) a PreProcessor (PP) and (ii) a Se-
mantic Engine (SE). The PP module is responsible to communicate with the

A Structured Approach to Data Reverse Engineering of Web Applications 101

Linkers

1 ComplexContainers 1 T EEE PR UL-LI-DIV-SPAN

1 Py— . 1 UL-LI-DIV-A

. 0ID Name Navigational 0ID Name Container \ 1

1 5 | pagel 2 1!

1 2 Linkerl 1 Cl o I

! b Linker! !

| L L I [HTML-BODY-DIV-DIV-DIV] |

| Indexes 1 : Pagel] Property: [UL-LI-DIV-A] :

1] leccccaaaa i

1 | oD Name Property Type | Value | Wot |I I l l-
U) N

: 1 | HIML-BODY-DIV-DIV-DIV | UL-LI-DIV-A | Text | Antiques [20 : | Text :

1| t | &#mw-BoDY-DIV-DIV-DIV | UL-LI-DIV-A | Text Art 20 |1 : oID Color Font-size | Font-style |l

: 1 | ®TML-BODY-DIV-DIV-DIV | UL-LI-DIV-A | Text | Business | 20 : 1| 20| rop(255,102,0) 11px bold :

1 1! 1

1 11 1

| Links I ! nink 1

1 [- - 1

| | o1 | Name Type Source | Destination | Wot |1 |om padding Text-decoration 1

1 3 Linkl | Non-Contextual 2 4 20 1 : 20 0 underline :

1 |

1 1! 1

e T T T/ B 1

Fig. 5. An example of Web object blocks

Pre-Processor Semantic Engine

BlockProcessor

Page Collector

=
| - MetaContainer
Provider

Cleaning

Crawler

MetaContainer]
Plugins

Fig. 6. The Architecture of REVERSEWEB

crawler, to process a Web page by using a cleaner (Tidy available at http://
tidy.sourceforge.net/) and a DOM traverser, and to produce a structural seg-
mentation of the page. This segmentation is supported by a Feature Provider
that selects in a repository the segmentation feature to apply (i.e. VIPS and
Path-Mark). This choice makes the segmentation step modular and extensible.
The resulting XML description (as shown in Section 3.2) is taken as input by the
SE module that is responsible to map discovered patterns to metaconstructs of
our Web Site Model. The Block Processor supports the Page Collector to pro-
duce and manage the clusters of pages. The resulting set of clusters are taken as
input by the MetaContainer Provider component that processes the representa-
tive page schemas, maps single pattern to a construct by using a repository of
Plugins, containing the different heuristics, and returns the final logical schema.

REVERSEWEB has a Java implementation. The crawling is multi-threading
makes use of an internal browser. The GUI has been realized with the SWT
toolkiiﬁ), which has been designed to provide an efficient and portable access

® http://www.eclipse.org/swt/

http://tidy.sourceforge.net/
http://tidy.sourceforge.net/
http://www.eclipse.org/swt/

102 R. De Virgilio and R. Torlone

Table 1. Experimental Results on 1000 pages

DIA EBAY BUY WORD NBA
R .total (sec) 1050,80 2209,39 4589,95 1045,51 1232,68
R .avg (sec) 1,05 2,30 7,57 1,06 1,25
Page dim 471 1108 2054 477 1827
BF dim 179 631 1047 171 804
DRE quality 0,38 0,57 0,51 0,36 0,44

to the user-interface facilities provided by the operating system on which it
is implemented, and the NetBeans Visual Graph Library]. All algorithms and
heuristics have been implemented in Java. The CSS steady state Libraryﬁ has
been used to parse the presentation properties of a page

Plenty of experiments have been done to evaluate the performance of our
framework using an Apple computer xServer, equipped with an Intel Core 2
Duo 1.86 Ghz processor, a 4 GB RAM, and a 500 GB HDD Serial ATA. These
experiments rely on crawling 1000 pages and producing the logical page schemas
of the following Web sites:

1. DIA, the Department of Informatics and Automation of Roma Tre University
(http://web.dia.uniroma3.it/), and WORD, the Dictionary translator Web
Site (http://www.wordreference. com);

2. BUY (http://www.buy.com) and EBAY (http://www.ebay.com), two famous
e-commerce Web sites;

3. NBA (http://www.nba.com), a well known basketball Web site.

We measured the average elapsed time to produce a logical schema and the
accuracy of the result. In the table 1, for each Web site we show (i) the real time
in seconds (R. total) to produce a logical schema, (ii) the average time in seconds
(R. avg) to reverse a Web page, (iii) the average page dimension (Page dim) in
terms of number of nodes in the DOM, (iv) the average amount of nodes in the
DOM of the Web page, involved in the Web object blocks (correctly computed)
of the final page schema (BF dim) and (v) the DRE quality. The DRE quality
measures the accuracy to determine a correct set of Web object blocks as fol-
lows. We have adopted the following performance measure: P, = 7 elgl;;;dff dim
where Pageg;m is the retrieved portion of a Web site and BFy;,, is the relevant
portion. Basically, P, is the fraction of the Web site portion retrieved that is not
relevant to the schema information need. In other words P, is the fraction of the
Web site portion containing Web content that user will not query.

Then, we define the DRE quality results as: DREgyq1ity = 1 — Pr. This coeffi-
cient measures the effectiveness of the resulting logical schema. It compares the
average amount of nodes involved in the final schema with the average number

5 http://graph.netbeans.org/

" http://cssparser. sourceforge.net/

8 More details on REVERSEWEB can be found at http://mais.dia.uniroma3.it/
ReverseWeb, where an alpha version of the tool is publically available.

http://web.dia.uniroma3.it/
http://www.wordreference.com
http://www.buy.com
http://www.ebay.com
http://www.nba.com
http://graph.netbeans.org/
http://cssparser.sourceforge.net/
http://mais.dia.uniroma3.it/ReverseWeb
http://mais.dia.uniroma3.it/ReverseWeb

A Structured Approach to Data Reverse Engineering of Web Applications 103

of nodes for page. More specifically, the percentage of DOM nodes in a page
involved in the final schema. This coefficient is in a range [0,1]. If DRE quality is
too close to zero, this means that the system was not able to identify significant
blocks. Conversely, if the DRE quality is too close to one, the system had diffi-
culties to prune unmeaningly blocks. We have experimentally determined that
the best values of DRE quality are in the range [0.2,0.6].

The table provides interesting information about the structure of the analyzed
Web sites. DIA, WORD and NBA present the lowest values of R. total. This is
a consequence of the regular structure and homogeneity of information blocks
in the pages. Moreover they present an optimal DRE quality. EBAY and BUY
have higher elapsed times, due to their irregular structure of pages, relevant
heterogeneity of published information and great amount of non informative
nodes (e.g. banner, spots, and so on), typical in e-commerce Web sites. These
results are supported also by diagrams: Figure [7] illustrates the number of Web
object blocks and the average elapsed time with respect to the increasing number
of DOM nodes in a Web page for the Web sites BUY and NBA. They underline
the effectiveness and the add-on of our framework. In Figure[7lis shown the trend
of the number of Web object blocks with respect to the increasing number of
page nodes. NBA presents an average of 5 blocks for page. This implies that the
Web site presents a regular (and complex) structure. The regularity of the site
is due to common structure of the published information (regarding basketball
teams) and this is close to the reality. This regularity is also supported by the
stable average of the elapsed time, shown in Figure [l Conversely, BUY presents
a variable structure of pages with an increasing trend of Web object blocks and

http://www.nba.com http:/www.nba.com
=5 10
& 0
b
8
S4 2,
§ E
by 56 m
3 £s
£ £
8 3
&2 T,
15 |
! 0
0o ° 8 g8 § 8 g 8 § 8 8
o 2 2 & & 8 g 2
A T e pagenodes o T v r o n° page nodes
8 8 8 8 8 8 8 8 8
3 8 3 8 8 8 8 8 3
http:/www.buy.com http:/www.buy.com
Fo 120
&
@ 100
Ho)
3 3
8] 80
S0 e
s £ 60
° £
20 £
2 g 40
& 3
10 : 20
0 0+
° 3 3 3 3 3 3 3 3 3
° g 8 g 8 g8 8 8 8 =8 g &8 8 & §E &8 § & §
B 8 8 8 2 e & g 8 8 g 2
- ~n° pagehodes & a & ¥ = n° page nodes
Average Elapsed Time Number of Web Entity Blocks

Fig. 7. Average elapsed time and Number of Web object blocks

104 R. De Virgilio and R. Torlone

http://www.nba.com http://www.buy.com

o DRE guality_
2 o
DRE quality
o o
S

© s > s > $
N} O 3 O ANy ANy
o & & & rf:@ @“Q < N N > A S

n° page nodes n° page nodes

Fig. 8. DRE quality

elapsed times. This is due to the different structure of published information with
(i.e., very different products such as art, Hi-Tech and so on). The DRE quality is
very good in all Web sites. It presents the best values for DTA, WORD and NBA,
over which REVERSEWEB worked linearly. In Figure 8 we present the trend of
DRE quality with respect to the increasing number of visited nodes. NBA starts
with high values, due to the initial computation of clusters. However, as the
number of visited nodes increases, the performance improves and converges to an
average of 0,44. BUY has an average of 0,51. In summary, plenty of experiments
have confirmed the effectiveness of our framework to detect the organization of
a Web site.

6 Conclusions and Future Work

In this paper we have addressed the issue to Data Reverse Engineering (DRE) of
data-intensive Web Applications. DRE evolved from the more generic reverse en-
gineering process, concentrating on the data of the application and on its organiza-
tion. We have presented an approach to the identification of structure, function,
and meaning of data in a Web site. The approach relies on a number of struc-
tured techniques (such as page segmentation) and model-based methods aimed
at building a conceptual representation of the existing applications. Moreover, we
have evaluated the effectiveness of our approach by implementing a tool, called
REVERSEWEB, and facing several experiments on different Web sites.

There are several interesting future directions. We are currently trying to
improve the segmentation step, by introducing new features in the preprocessing
phase. We intend to introduce a notion of polymorphism to optimize the mapping
between patterns and Web object blocks. Finally we plan to refine the clustering
technique by introducing a distance notion between pages and exploiting this
information in the segmentation phase.

References

1. Antoniol, G., Canfora, G., Casazza, G., De Lucia, A.: Web Site Reengineering
using RMM. In: Proc. of Int. Workshop on Web Site Evolution, Zurich, Switzerland
(2000)

10.

11.

12.

13.

14.

15.

16.

A Structured Approach to Data Reverse Engineering of Web Applications 105

. Baumgartner, R., Flesca, S., Gottlob, G.: Visual Web Information Extraction with

Lixto. In: Proc. of the 27th Int. Conf. on Very Large Data Bases (VLDB 2007),
Roma, Italy (2001)

. Benslimane, S.M., Benslimane, D., Malki, M., Amghar, Y., Hassane, H.S.: Acquir-

ing owl ontologies from data-intensive web sites. In: Proc. of Int. Conf. on Web
Engineering (ICWE 2006), Palo Alto, California, USA (2006)

. Bouchiha, D., Malki, M., Benslimane, S.M.: Ontology based Web Application Re-

verse Engineering Approach. INFOCOMP Journal of Computer Science 6(1), 37-46
(2007)

. Cai, D., Yu, S., Wen, J.R., Ma, W.Y.: Extracting Content Structure for Web Pages

based on Visual Representation. In: Zhou, X., Zhang, Y., Orlowska, M.E. (eds.)
APWeb 2003. LNCS, vol. 2642, pp. 406-417. Springer, Heidelberg (2003)

. Chikofsky, E.J., Cross, J.H.: Reverse Engineering and Design Recovery: A Taxon-

omy. IEEE Software 7(1), 13-17 (1990)

. Chung, S., Lee, Y.S.: Reverse Software Engineering with UML for Web Site Main-

tenance. In: Proc. of the 1th Int. Conf. on Web Information Systems Engineering
(WISE 2000), Hong Kong, China (2000)

. Crescenzi, V., Merialdo, P., Missier, P.: Clustering Web pages based on their struc-

ture. Data Knowl. Eng. 54(3), 279-299 (2005)

. De Virgilio, R., Torlone, R.: A Meta-model Approach to the Management of Hy-

pertexts in Web Information Systems. In: ER Workshops (WISM 2008) (2008)
Di Lucca, G.A., Fasolino, A.R., Tramontana, P.: Reverse engineering Web appli-
cations: the WARE approach. Journal of Software Maintenance 16(1-2), 71-101
(2004)

Du Bois, B.: Towards a Reverse Engineering Ontology. In: Proc. of the 2th Int.
Workshop on Empirical Studies in Reverse Engineering (WESRE 2006), Benevento,
Italy (2006)

Laender, A., Ribeiro-Neto, B., Da Silva, A., Teixeira, J.S.: A brief survey of web
data extraction tools. ACM SIGMOD Record 31(2), 84-93 (2002)

Ricca, F., Tonella, P.: Understanding and Restructuring Web Sites with ReWeb.
IEEE Multimedia 8(2), 40-51 (2001)

Tao, T., Mukherjee, A.: LZW Based Compressed Pattern Matching. In: Proc. of
the 14th Data Compression Conf (DCC 2004), Snowbird, UT, USA (2004)
Vanderdonckt, J., Bouillon, L., Souchon, N.: Flexible reverse engineering of Web
Pages with VAQUISTA. In: Proc. of the 8th Working Conf. on Reverse Engineering
(WCRE 2001), Stuttgart, Germany (2001)

Wong, T.-L., Lam, W.: Adapting web information extraction knowledge via mining
site-invariant and site-dependent features. ACM Transactions on Internet Technol-
ogy 7(1), 6 (2007)

	A Structured Approach to Data Reverse Engineering of Web Applications
	Introduction
	Related Work
	Extraction of Page Structure
	Overview
	Page Segmentation

	Schema Discovery
	Experimental Results
	Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

