A Conceptual Framework for User Input
Evaluation in Rich Internet Applications

Matthias Book, Tobias Briickmann, Volker Gruhn, and Malte Hiilder

Applied Telematics/e-Business Group, University of Leipzig
Klostergasse 3, 04109 Leipzig, Germany
book,brueckmann, gruhn,huelder {@ebus.informatik.uni-leipzig.de

g pzig

Abstract. The more complex an application’s user interface is, the more
important is the need to guide users filling out the forms—typically by
highlighting invalid input, showing/hiding or enabling/disabling particu-
lar fields according to business rules. In Rich Internet Applications, these
reactions are expected to occur virtually immediately. We discuss aspects
to be considered for consistent reactions to user input, and describe how
evaluation rules can be formulated for model-driven deveIOpment

1 Introduction

The user interfaces (Uls) of web-based information systems tend to mirror the
complexity of their underlying business processes: In areas as diverse as e.g. mar-
ket research, insurance claims or reinsurance underwriting, users need to enter
a lot of structured data that must obey a variety of domain-specific constraints.

To support users in working efficiently with complex forms, Uls typically react
to input with local changes in individual UI widgets (text fields, list boxes etc.)
such as making the user aware of invalid input by highlighting affected widgets,
decreasing visual complexity by hiding unnecessary widgets, or guiding users
by enabling or disabling input in particular widgets. Rich Internet Applications
(RIAs) enable instantaneous input evaluation and interface updates, and can
thus provide immediate feedback and guidance to users.

In this paper, we discuss the aspects that influence a UI’s reaction to user input
(Sect.), and present a behavior model that includes dependencies between
UI reactions such as handling incomplete input, prioritizing validation issues,
and considering visibility in validation (Sect.). For use in practice, we briefly
describe our Cepheus framework that automatically generates evaluation logic
following this model based on rules specified by domain experts, eliminating the
need for manual implementation (Sect.). We conclude with an overview of
related work (Sect.) and a summary of our contributions (Sect. [6).

! This work was supported by a technology support grant from the European Regional
Development Fund (ERDF) and funds of the Free State of Saxony. The Applied
Telematics/e-Business Group is endowed by Deutsche Telekom AG.

M. Gaedke, M. Grossniklaus, and O. Diaz (Eds.): ICWE 2009, LNCS 5648, pp. 275-[2Z82] 2009.
© Springer-Verlag Berlin Heidelberg 2009

276 M. Book et al.

2 Specification of Input Evaluation
2.1 Interface and Data Model

A web application’s interface model is characterized foremost by the UI widgets
displayed on its pages. Often, multiple widgets will jointly describe a particular
semantic entity from the business domain (e.g. a group of radio buttons for 1-of-
n selection, or a group of text fields for entering elements of a postal address).
To model such relationships, we allow widgets to be contained in hierarchically
nested containers that also govern the layout of the interface’s pages.

To store the entered content, all widgets must be bound to variables in
the application’s data model. While widgets can only produce string input (as
this is the serialized format universally used to exchange data between web
application components), the data model’s variables have certain types (e.g.
Boolean, integer, floating-point, text, date etc.).

2.2 Evaluation Aspects and Rules

To formulate rules governing the evaluation of the information in the interface
and data model, several orthogonal aspects have to be considered: Evaluation
rules can serve different purposes—in this paper, we will focus on deciding
validity, visibility, and availability of widgets, which are usually closely tied to
Ul reactions such as highlighting violating widgets, hiding invisible widgets,
and disabling (e.g. “graying out”) unavailable widgets, respectively

At the core of each evaluation rule must be an expression that describes
the actual evaluation of certain values in order to arrive at a decision for one
of the above purposes. While such an expression may consist of nested terms
performing comparisons, arithmetic, boolean or string operations on literals or
variables from the data model, it must ultimately resolve to a boolean value
indicating the outcome of the decision.

Regardless of its purpose, any evaluation rule must relate to certain subjects
on which the respective reaction shall be effected. For increased flexibility, we
allow that subjects can not only be individual widgets, but also groups of widgets
contained directly or transitively in a particular container. Note that the subject
widgets do not necessarily need to correspond to the expression’s input variables.

For the purpose of input validation, we must consider several additional char-
acteristics. First, we can distinguish several levels of validation that depend on
each other: The most basic level is checking for the existence of any input in
a required field. Next, the technical check concerns whether a particular input
string can be converted to the associated variable’s type. Finally, performing
any domain-specific validation of the input is only sensible if the previous two
validation levels were satisfied.

2 We can also conceive other purposes of user input evaluation, such as deciding on
navigation options. However, we will focus on the above-mentioned purposes here
since their reactions are more interrelated with each other, and they pose more
interesting challenges in RIAs as they may impact a page’s Document Object Model
immediately, as opposed to navigation choices.

A Conceptual Framework for User Input Evaluation 277

Our experience shows that in practice, it may be inconvenient or even impos-
sible for the user to satisfy all validation rules immediately—rather, we identified
four common triggers upon which different sets of validation rules can be sensi-
bly checked and enforced: Validation may occur upon a widget’s “blurring” (i.e.
losing focus) when the cursor is moved to another widget; upon leaving a page
in order to jump to the next or previous page in the dialog; upon saving the
data entered so far as a draft version, in order to prevent data loss or continue
working on the dialog at a later time; and finally upon committing all entered
data in order to complete a task in a business process. By staging the validation
through associating rules with appropriate triggers, developers can strike a bal-
ance between business requirements and usability considerations, ensuring data
integrity while maintaining users’ flexibility in working with the application.

In a similar vein, experience shows that typically not all rule violations are
equally serious: Depending on the business semantics of a rule, developers may
choose to associate a certain severity to it. We distinguish informative, warning
and error rules in our evaluation specification, in order to tailor the interface’s
reactions to different severities, as we will see in the following section.

When formulating input evaluation rules, developers need to specify all of the
above aspects (expression, subjects, level, trigger and severity) for the purpose of
validation. In visibility and availability rules, only the expression and subjects
must be specified, as their evaluation is always triggered immediately upon a
widget’s blurring, and we cannot distinguish different levels and severities.

3 Behavior of Input Evaluation

Having introduced the elements of input evaluation rules that developers need to
specify at design-time, we will now discuss how these static specifications govern
the dynamic behavior of an application at run-time, and how different rules affect
each other. Anytime an evaluation is triggered, we need to (1) update the data
model with the contents of those widgets that are technically valid; (2) validate
the data model according to domain rules, and update the list of known issues;
and (3) update the UI to reflect visibility, availability and issues of widgets.

In the following subsections, we will describe these steps in more detail. In
this process, three data structures will be dynamically updated at run-time: The
contents currently entered into the widgets of the interface model, the values
currently stored in the variables of the data model, and the identified issues, i.e.
the subset of all validation rules that are currently violated by any given input.

3.1 Data Model Update

Any time an evaluation is triggered (i.e. upon leaving a field or a page, or before
saving or committing the dialog’s data), we first need to update the data model
according to the contents entered into the widgets affected by the trigger. The
evaluation logic needs to implement the following algorithm for this purpose:

278 M. Book et al.

IF a widget is visible AND contains input THEN
IF the input has the expected type THEN
store the input in the variable associated with the widget
ELSE leave the associated variable’s current value unchanged
ELSE render the associated variable undefined

This way, we ensure that input is only included in the data model if its type is ac-
tually suitable for storage there; that incorrect input cannot overwrite previously
stored data; and that any absence of input is reflected in the data model.

3.2 Data Model Validation

In the previous step, we have ensured that only technically sound input (i.e.
input of the proper type) is accepted into the application’s data model. Now, we
still need to check if that data complies with the existence and domain-specific
rules, and potentially signal any validation issues.

Existence Validation. When checking existence validation rules, we must not
just check for the presence of content in a widget, but also take into account
whether that widget is actually visible: We define that an existence rule is satis-
fied iff the respective widget contains input or is invisible. By taking the visibility
into account when checking required fields, we eliminate the need for the devel-
oper to explicitly specify this connection in every rule, as it would be nonsensical
to require input in a field we have hidden.

Domain-Specific Validation. When checking domain-specific properties, we
need to arrive at a validation result in a way that takes both business rules and
usability factors into account: In complex forms, subjects to which the validation
pertains may be invisible, or variables on which the validation depends may
still be undefined as the user makes his way through the form. We therefore
define that a domain-specific validation rule is satisfied iff its expression evaluates
to true or all its subjects are invisible. In evaluating the rule’s expression, we
should strive to arrive at a meaningful result even if some of the input variables
are still undefined. In our model, any non-Boolean term that encounters an
undefined parameter will therefore return an “undefined” result. In a Boolean
OR term, meanwhile, we consider undefined parameters as false values, and in a
Boolean AND term, as true values, in order to let the result depend only on the
other operand, thereby neutralizing the undefined part of the expression. This
way, a term that returns an undefined result due to missing input parameters
has no effect, so any empty widgets are not validated until they are filled—
a behavior that we would intuitively expect from a dialog that is not yet filled
completely. (Of course, an empty widget declared as required input would already
be reported as invalid by the existence rules discussed before.)

Issue Tracking. To react to all validation issues consistently, regardless of when
they occurred, we keep track of all rule violations in a central set. Anytime an
evaluation is triggered, we perform the following two updates on this set:

A Conceptual Framework for User Input Evaluation 279

1. add rules just found to be violated upon this triggering occasion
2. remove rules found to satisfied

By considering the triggering occasion when adding, but not when removing
issues, we ensure that rule violations are not admonished until the time deemed
appropriate by the developer, but that they are removed immediately when
the violation is remedied. We found this behavior more intuitive for users than
maintaining an old error message until the next trigger occasion, even when the
user had already fixed the problem.

3.3 User Interface Reaction

Finally, our behavior model must define how the UI reacts to the various condi-
tions that arise from validation results, visibility and availability of widgets:

Issue Notifications. We found it intuitive to signal validation issues in two ways:
At the top of each page, the UI displays a concise list of human-readable expla-
nations for all violations that were identified on the current and other pages. In
case a particular set of subjects violates several rules, we display only the most se-
vere issue to reduce clutter. To further aid the user in identifying invalid input, we
highlight the respective widgets in a color corresponding to the severity (e.g. red
for errors, orange for warnings, blue for information). Two relationships influence
this coloring scheme: Firstly, if the subject of a rule is not an individual widget,
but a container, the issue is assumed to apply to all directly and transitively con-
tained widgets, which are all colored accordingly. Secondly, if a subject is affected
by several issues (through several rules or inclusion in an affected container), it
will be colored according to the most severe issue applying to it.

Visibility. In formulating the evaluation algorithms earlier, we have already
relied on an indication of whether a particular subject is currently visible, but
still need to define precisely how that decision is made: For any given subject (i.e.
widget or container), we define that it is visible iff all visibility rules applying
directly to it are satisfied, and if the container that it is contained in is visible.
Note that this condition implies transitive dependency on the visibility of all
containers in a subject’s nesting hierarchy, allowing developers to conveniently
hide or show whole groups of semantically related widgets if necessary.

Availability. Whether a widget is “grayed out” or editable is determined by
availability rules that are specified and evaluated analogously to visibility rules.
While visibility affects the data model, availability is a pure interface reaction
that does not affect how data is validated or stored. The navigation buttons
found on each page (typically, for navigating forward and backward in a dialog
wizard, saving a draft of the current data, or committing it for further processing)
are a special case insofar as they are implicitly associated with availability rules
that do not need to be specified by developers: While a page contains validation
errors triggered by leaving a field, the “previous page” and “next page” buttons
are unavailable; while errors triggered by leaving a page are present, the “save

280 M. Book et al.

draft” button is unavailable; and during the presence of errors triggered by trying
to save a draft, the “commit” button is unavailable, to prevent entering, storing
or committing invalid input.

4 Implementation

The input evaluation logic described in the previous section was implemented in
our Cepheus framework that generates presentation, validation and persistence
logic from models created by domain experts in a visual editor. As Fig. [l shows,
views (based on the ICEfaces framework [I]) and evaluation rules are derived
from the specifications at deploy-time. At run-time, the views will trigger val-
idation, visibility and availability checks based on the specified rules and the
values entered into the data model, and update the presentation accordingly by
highlighting, showing, hiding or graying out the GUI widgets.

generated from

v v v y

Validation | Visibility | Availability

Specifi-
cation

uses Data Model

T Expression Resolver
i subset of |

generated from uses

Fig. 1. Architectural overview of input evaluation in Cepheus

The screenshot in Fig. 2 illustrates an example system’s behavior, where the
visibility of the last three questions depends on the answer to the first question,
and the allowed expenses have been limited to a certain amount that is exceeded
here. Any changes in the input fields that affect the visibility or validation rules
are immediately reflected in the user interface.

At this time, we have only anecdotal data about the time and effort savings
that can be gained when using the Cepheus editor and framework instead of
manual implementation. Initial experiences from employing a Cepheus prototype
in an industry project from the market research sector (which is characterized
by the need for frequent roll-outs of new web-based questionnaires) back our
expectations that enabling domain experts to specify user interface layout and
validation directly can reduce the time to market, since no transfer of domain
knowledge to application programmers is required. Regarding performance im-
plications, we do not expect a significant impact since all necessary rule-checking
code is generated at deploy-time, so no expensive parsing occurs at run-time.

5 Related Work

Virtually all approaches for modeling and developing web applications provide
means for realizing some form of input validation. To name just a few, in

A Conceptual Framework for User Input Evaluation 281

Overnight expenses required?, overnight expenses, expenses acknowledged : Expenses higher than 61.36 EUR

Overnight expenses required? & yes ¢ no

free accommodation available O yes O no
overnight expenses 1223 |EUR
expenses acknowledged |

Fig. 2. Screenshot excerpt from a Cepheus-based application

WebML [2], validity predicates are properties of entry units in the hypertext
model, using an expression language that supports comparisons of input fields
with constants or other field contents. UWE [3] enables designers to specify when
and where fields should be validated in its process flow and process structure
models, but leaves the actual implementation of these rules to the developer.
OO-H [4] provides means for validating the type of input fields; its “visible” and
“hidden” attributes however have slightly different semantics from our approach.

Recently, these approaches have also been extended to support the modeling
of RIAs: Comai and Toffetti Carughi [5] discussed how to extend WebML to
capture more fine-grained user interaction with page elements; Melid et al. [0]
introduced corresponding structural and behavioral models in OOH4RIA; and
Preciado et al. [7] combined UWE with the RUX-Method, an approach that fo-
cuses especially on the spatial, temporal and interaction aspects of Rich Internet
Applications [8]. However, the validation models do not seem to have changed
in the extension of these approaches’ scopes.

Looking at representatives of popular web application frameworks, Struts pro-
vides a number of built-in validators for simple type and range checking, and
allows the formulation of more flexible expressions in the validator.xml file
[9). In Spring, developers can provide custom validation classes implementing
the Validator interface [I0]. The Seam framework [I1] relies on constraints de-
fined in the data model using the Hibernate Validator. Common AJAX frame-
works such as ICEfaces [12] or RichFaces [I3] typically provide means for adding
validation rules at different points in the request lifecycle as well.

While all approaches provide hooks for validation rules, their actual formula-
tion is typically so technical that it requires a developer’s rather than a domain
expert’s skills. In particular, any interdependencies between rules (e.g. visibility
vs. validation, or the handling of different issue severities), are not supported by
these models and frameworks themselves, but must be implemented explicitly.

6 Conclusion

In this paper, we identified several aspects that have to be considered in the eval-
uation of user input in RIAs for the purpose of technical and domain-specific
input validation, widget visibility and availability. We have shown how these
aspects are entwined with each other, and how they are incorporated in the
Cepheus framework that generates user input evaluation logic automatically,

282 M. Book et al.

based on specifications that can be visually modeled by domain experts without
the need for programmer assistance. We expect this approach to reduce imple-
mentation and maintenance efforts for RIAs considerably, and are striving to
obtain more practical evidence to support this hypothesis.

References

1. ICEsoft Technologies, Inc.: ICEFaces, http://www.icefaces.org

2. Ceri, S., Fraternali, P., Bongio, A.: Web Modeling Language (WebML): a modeling
language for designing Web sites. Computer Networks 33, 137-157 (2000)

3. Koch, N., Kraus, A.: The expressive power of UML-based web engineering. In:
IWWOST 2002: Proc. 2nd Intl. Workshop on Web-oriented Software Technology,
pp. 105-119 (2002), http://www.dsic.upv.es/~west/iwwost02/papers/koch.pdf

4. Gémez, J., Cachero, C., Pastor, O.: Conceptual modeling of device-independent
web applications. IEEE Multimedia 8(2), 26-39 (2001)

5. Comai, S., Carughi, G.T.: A behavioral model for Rich Internet Applications. In:
Baresi, L., Fraternali, P., Houben, G.-J. (eds.) ICWE 2007. LNCS, vol. 4607, pp.
364-369. Springer, Heidelberg (2007)

6. Melid, S., Gémez, J., Pérez, S., Diaz, O.: A model-driven development for GWT-
based Rich Internet Applications with OOH4RIA. In: ICWE 2008: Proc. 8th Intl.
Conf. on Web Engineering, pp. 13-23. IEEE Computer Society Press, Los Alamitos
(2008)

7. Preciado, J.C., Linaje, M., Morales-Chaparro, R., et al.: Designing Rich Inter-
net Applications combining UWE and RUX-Method. In: ICWE 2008: Proc. 8th
Intl. Conf. on Web Engineering, pp. 148-154. IEEE Computer Society Press, Los
Alamitos (2008)

8. Linaje, M., Preciado, J.C., Sdnchez-Figueroa, F.: A method for model based design
of Rich Internet Application interactive user interfaces. In: Baresi, L., Fraternali,
P., Houben, G.-J. (eds.) ICWE 2007. LNCS, vol. 4607, pp. 226-241. Springer,
Heidelberg (2007)

9. Apache Software Foundation: Struts Validator Guide,
http://struts.apache.org/1.2.4/userGuide/dev_validator.html

10. SpringSource: Validation, Data-binding, the BeanWrapper, and PropertyEditors,
http://static.springframework.org/spring/docs/2.0.x/reference/
validation.html

11. Red Hat Middleware, LLC: JSF form validation in Seam,
http://docs. jboss.org/seam/1.1GA/reference/en/html/validation.html

12. ICEsoft Technologies, Inc.: How to Use Validators,
http://facestutorials.icefaces.org/tutorial/validators-tutorial.html

13. Red Hat Middleware, LLC: rich:ajaxValidator,
http://www.jboss.org/file-access/default/members/jbossrichfaces/
freezone/docs/devguide/en/html/ajaxValidator.html

http://www.icefaces.org
http://www.dsic.upv.es/~west/iwwost02/papers/koch.pdf
http://struts.apache.org/1.2.4/userGuide/dev_validator.html
http://static.springframework.org/spring/docs/2.0.x/reference/validation.html
http://static.springframework.org/spring/docs/2.0.x/reference/validation.html
http://docs.jboss.org/seam/1.1GA/reference/en/html/validation.html
http://facestutorials.icefaces.org/tutorial/validators-tutorial.html
http://www.jboss.org/file-access/default/members/jbossrichfaces/freezone/docs/devguide/en/html/ajaxValidator.html
http://www.jboss.org/file-access/default/members/jbossrichfaces/freezone/docs/devguide/en/html/ajaxValidator.html

	A Conceptual Framework for User Input Evaluation in Rich Internet Applications
	Introduction
	Specification of Input Evaluation
	Interface and Data Model
	Evaluation Aspects and Rules

	Behavior of Input Evaluation
	Data Model Update
	Data Model Validation
	User Interface Reaction

	Implementation
	Related Work
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

