
M. Gaedke, M. Grossniklaus, and O. Díaz (Eds.): ICWE 2009, LNCS 5648, pp. 16–29, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Exploring Automatic CSS Accessibility Evaluation

Amaia Aizpurua, Myriam Arrue, Markel Vigo, and Julio Abascal

Laboratory of Human-Computer Interaction for Special Needs, Informatika Fakultatea,
University of the Basque Country, Manuel Lardizabal 1, 20018 Donostia, Spain

amaia.aizpurua@ehu.es, myriam@si.ehu.es,
markel@si.ehu.es, julio@si.ehu.es

Abstract. Automatic evaluation tools are crucial for helping designers to
develop accessible web content. However, most of the existing automatic tools
are focused on evaluating the accessibility of (X)HTML code and do not
consider style sheets. CSS provides mechanisms for separating content from
display which is a requirement for accessible web documents. Although the use
of CSS has become essential, sometimes its powerful mechanisms and
functionalities may lead to a misuse. This paper presents an accessibility
evaluation framework for verifying the correct application of CSS techniques.
For this purpose, a flexible accessibility evaluation framework was selected and
adapted to incorporate CSS test cases defined in WCAG 2.0. As a result of a
detailed analysis, 6 different types of test cases were identified and a total
number of 92 test cases were accommodated into the framework. This process
has lead to obtain a flexible framework which performs more comprehensive
automatic evaluations.

1 Introduction

One of the most important issues for improving accessibility of web content is to
ensure that its structure is separated from the presentation. According to Paciello [1]
“by separating presentation from structure, specialized technologies used by people
with disabilities can easily interpret the structure and render it properly to users”.
Therefore, web designers should use appropriate mechanisms for this purpose. In this
sense, the World Wide Web Consortium (W3C)1 recommends using Cascading Style
Sheets (CSS)2.

In recent years, the use of CSS has significantly increased. Designers are supposed
to consider structure and presentation as two different aspects of web development by
properly structuring web documents using only (X)HTML mark-up and defining its
presentation in a separated CSS file. This process facilitates the development of web
documents which are more accessible, easier to maintain, possible to navigate with
screen readers, better indexed by search engine [2], etc. In addition, the use of CSS
has other advantages regarding accessibility [3]:

1 http://www.w3.org/
2 http://www.w3.org/Style/CSS/

 Exploring Automatic CSS Accessibility Evaluation 17

• Allows designers to control the spacing, alignment, positioning, etc. of
components without using (X)HTML structural elements for stylistic effects.

• Reduces required download time by preventing the use of images for positioning
content such as invisible images.

• Provides control over font size, color and style avoiding the use of images to
represent text.

• Allows users to override designers’ styles.
• Provides techniques for including orientation mechanisms such as numbers or

contextual clues, etc.

However, the use of CSS does not guarantee accessibility of web documents. For
instance, when the designer defines rigid styles may disturb with the ones defined in
users’ personal style sheets. Therefore, mechanisms for evaluating the use of CSS are
needed in order to ensure accessibility of web documents.

Web Content Accessibility Guidelines 1.0 (WCAG 1.0) [4] specify several CSS
techniques [5] which are necessary for developing accessible web documents. In
addition, the new version of this set of guidelines, WCAG 2.0 [6], defines evaluation
procedures for ensuring CSS techniques [7] are correctly used. Automatic tools able
to evaluate the correct use of these CSS techniques would be very useful as they are
an essential help for web developers. Ivory and Hearst [8] highlight some advantages
of using automatic tools:

• Evaluation process becomes less time demanding and consequently there is a
reduction in costs.

• The detected errors are more consistent.
• Possibility for predicting the effort needed in the process in terms of time and

economical costs.
• Spreads evaluation scope as it is possible to analyse diverse aspects of the

interface in less time.
• Facilitates the process to evaluators with little experience in usability and

accessibility evaluation.
• Facilitates comparing the adequacy of different user interface design alternatives.
• Facilitates incorporation of evaluation tasks during the development process.

Many automatic web accessibility evaluation tools exist though most of them focus
on (X)HTML mark-up evaluation. The existing automatic evaluation tools for CSS
are based on simple syntax verifications such as checking that relative units of
measurement are used. The main objective of this work is to extend the evaluation of
style aspects by adapting a flexible accessibility evaluation framework to incorporate
WCAG 2.0 CSS techniques. For this purpose, a thorough analysis of CSS techniques
has been done. It has been useful in order to detect similarities of these techniques
with respect of (X)HTML ones. The paper is structured as follows: section 2 is
devoted to the analysis of the CSS techniques evaluation coverage of existing
accessibility evaluation tools; section 3 describes the analysis process of CSS
techniques proposed in WCAG 2.0, in this process test cases are identified and
classified; section 4 presents the evaluation process of CSS performed by the adapted
evaluation framework; section 5 points out the limitations of current CSS evaluation
procedures and conclusions are drawn in section 6.

18 A. Aizpurua et al.

2 Related Work

There are numerous accessibility evaluation tools. Diverse ways for classifying them
can be found in the literature [8, 9, 10, 11]. For instance, they can be classified in two
groups, remote or local, based on the location they are executed, on the local
computer or on a server respectively. Other [12] studied the coverage of several
evaluation tools in all the stages of the development process: specification, design,
implementation and post-implementation.

However, the most relevant aspect of tools considered for this research work is
their coverage of CSS techniques when evaluating web accessibility. W3C-Web
Accessibility Initiative (WAI)3 maintains a complete list of available evaluation tools4
and it is possible to search for tools with specific characteristics, for instance their
coverage of CSS techniques. According to this list there are 18 tools which meet the
specified search criteria: they are free software and evaluate the accessibility of CSS
based on WCAG 1.0. Some of them are specific tools which are focused on CSS
evaluation while others are accessibility general tools which check some CSS
techniques in addition to (X)HTML techniques. Nevertheless, most of them only
incorporate a few aspects of CSS; for instance the W3C CSS Validation Service5 is a
specific tool which checks style sheets against the grammar, properties and values
defined in the corresponding CSS specification. The CSS Analyser6 tool by Juicy
Studio checks the validity of the given CSS as well as the color contrast and the use of
relative units. Hera7 is an online general accessibility tool based on techniques defined
in WCAG 1.0 and also checks some CSS related techniques from checkpoints such as
“3.2: Create documents that validate to published formal grammars”, “3.3: Use style
sheets to control layout and presentation” or “3.4: Use relative rather than absolute
units in markup language attribute values and style sheet property value”. The
evaluated aspects regarding CSS are basically related to checking the use of style
sheets in the evaluated web page, validating its syntax against the corresponding
formal grammar and verifying the use of relative units.

The aim of this research work is to extend the CSS techniques verified by
automatic tools incorporating them into general accessibility evaluation tools in order
to perform more comprehensive evaluations. There are several accessibility
evaluation tools which are interesting to incorporate new techniques as they do not
have to be recoded. They are based on flexible guidelines definition language which
provides mechanisms for specifying testing cases. AccessEnable [13] and Kwaresmi
[14, 15] are two examples. AccessEnable is a commercial tool which is not longer
supported, whereas the GDL guidelines definition language used by Kwaresmi has
been recently revised [16]. The locally executable version of TAW8 offers several
functionalities for defining personalized tests but they are limited to some regular
expressions not sufficiently complete for accommodating CSS techniques testing

3 http://www.w3.org/WAI/
4 http://www.w3.org/WAI/ER/tools/Overview
5 http://jigsaw.w3.org/css-validator/
6 http://juicystudio.com/services/csstest.php#csscheck
7 http://www.sidar.org/hera/
8 http://www.tawdis.net

 Exploring Automatic CSS Accessibility Evaluation 19

cases. More recently, Leporini et al. [17] have developed a new evaluation tool
MAGENTA which is based on Guidelines Abstraction Language, GAL. Abascal et al.
[18] proposed in 2004 the evaluation tool EvalAccess. Recently, the language for
guidelines definition used by the tool, UGL (Unified Guidelines Language), was
extended and revised in order to accommodate different types of sets of guidelines
[19]. This framework has been selected for this research work since its proved
flexibility. As far as the evaluation logic of evaluation tools is concerned, there is a
growing trend towards using XML technology. XML query languages are very
powerful due to their expressiveness and flexibility. Takata et al. [20] proposed a
pseudo-XQuery language for accessibility evaluation purposes and XPath/XQuery
sentences are defined to check WCAG guidelines in [21]. The use of this technology
makes the implementation of the evaluation logic easier and, as a result, many lines of
source code are saved.

3 Incorporating CSS into Accessibility Evaluation Process

The process described by Vanderdonckt in [22] has been taken as the basis of this
work. The principal steps of the process are the following:

• Gather, combine and compile accessibility guidelines from different sources in
order to develop a complete set of guidelines.

• Classify and order the obtained set of guidelines in one organizational
framework.

• Develop a computational representation of the set of guidelines so guidelines can
be specified and manipulated by software components.

As it can be observed, this process is focused on a complete analysis of sets of
guidelines in order to obtain a computational representation flexible enough to
accommodate different types of guidelines. In this case, different sets of guidelines
have been analysed in order to detect the CSS techniques defined. This process is not
simple as guidelines may have different formats, may contain different information
and may be described with different level of detail [23, 24]. However, it has been
simplified as the recently released WCAG 2.0 determines the exact evaluation
procedure for each CSS technique. Depending of their evaluation procedure CSS
techniques can be classified in three groups:

• Automatic tests: these problems should not require human judgment to check
their validity. Therefore, their evaluation can be completely automatic.

• Manual or semi-automatic tests: human judgment is necessary to check potential
problems associated to particular fragments of code implementing the page.

• Generic problems: human judgment is necessary to check potential problems that
cannot be associated to any code fragments.

EvalAccess framework can manage these three types of tests. However, the most
important types of tests are those that its evaluation can be totally or partially
automated.

As a result of the analysis, 22 CSS techniques have been detected. 13 of those can
be automatically or semi-automatically evaluated whereas 8 specify generic problems

20 A. Aizpurua et al.

independent of any CSS code fragment and require human judgment. In addition,
there is one CSS technique9 which has no available tests. For the automatic and semi-
automatic techniques a number of 92 test cases have been identified. Those test cases
can be classified in 6 different types shown in Table 1.

Table 1. The detected different types of test cases for CSS techniques in WCAG 2.0

Id. Test case name Description Example
1 Selector warning Using a selector may cause

accessibility problems and have to
be tested manually

WCAG 2.0 – C15 technique

A :focus

2 Property
warning

Using a property may cause
accessibility problems and have to
be tested manually

WCAG 2.0 – C25 technique

*{color, background-
color}

3 Determined
value

The value of a property has to be
one of some specifically defined

WCAG 2.0 – C13 technique

*{font-size: xx-small,
x-small, small, medium,
large, x-large, xx-
large, larger, smaller}

4 Determined Part
of Value

The value of a property must contain
a determined value

WCAG 2.0 – C12 technique

*{font-size: *%}

5 Value between

two values
The value of a property must be
between to values

WCAG 2.0 – C21 technique

P{line-height: 150% -
200%}

6 Avoid
determined part
of value

Avoid a determined value for a
property

WCAG 2.0 – C20 technique

DIV {width: cm, mm, in,
pt, pc, px }

The detected test cases can be easily represented by UGL, the guidelines

specification language used by EvalAccess. This ensures a straightforward process for
accommodating the new test cases into the evaluation framework simply by defining
each one and incorporating this definition in UGL to the repository of EvalAccess.
However, each test case type requires the specification of one XQuery template. The
evaluation engine of EvalAccess will match the UGL document of each test case with
the corresponding XQuery template. These templates will be completed with the
necessary information contained in the UGL document. These completed XQuery
templates will be those directly applicable evaluation queries which will be used by
the evaluation engine.

9 http://www.w3.org/TR/WCAG20-TECHS/css.html#C18

 Exploring Automatic CSS Accessibility Evaluation 21

Figure 1 shows the XQuery template corresponding to test case no. 6 completed with
the necessary information for the evaluation of the test case included as an example.

let $r:=//rule return(
if($r/selector='div') then
(let $p:= $r/declaration_block/declaration/property return(
if($p='width') then(
for $v in $s/descendant::value return(
if((contains($v/text(), 'cm') or contains($v/text(), 'mm') or
contains($v/text(), 'in') or contains($v/text(), 'pt') or
contains($v/text(), 'pc') or contains($v/text(), 'px'))) then
('warn')
else ())) else ())) else ())

Fig. 1. XQuery template for CSS test-case no. 6 “Avoid determined part of value”

Note that some details of the XQuery sentence related to the results are omitted in
order to enhance readability.

4 Evaluation Process of CSS Techniques

Figure 2 depicts the evaluation process of CSS techniques included in EvalAccess
framework. Each component block in Figure 2 is described below:

1. The CSS Code Retriever obtains the content of a style sheet from the WWW.
The obtained CSS code is then converted into XML. This pre-processing of
CSS code is necessary since EvalAccess framework is prepared to evaluate
(X)HTML code parsed into XML. For this purpose, a XML Schema for
parsing CSS code has been developed.

Fig. 2. Evaluation process included in EvalAccess for verifying CSS techniques

22 A. Aizpurua et al.

2. The necessary XQuery templates are matched and completed with the
information contained in UGL. This process leads to obtain all the XQuery
sentences to be applied in the evaluation process.

3. The code of the style sheet in XML format is evaluated against the XQuery
sentences. As a result, detailed evaluation report, which contains information
regarding errors, warnings, etc., is obtained. Since reports are formatted
according to a specific XML Schema, they can be also exploited by external
applications.

Figure 3 shows the defined XML Schema for representing the content of style
sheets. As it can be appreciated, style sheets consist of a set of style rules which
contains a selector and a declaration block. The last one will gather the attributes and
the corresponding values that are defined for the selector element.

Fig. 3. XML Schema developed for parsing CSS code into XML

4.1 Example of the Evaluation Process

This section presents a detailed description of each necessary step in the evaluation
process. For this purpose, a CSS code fragment has been selected as an example for
illustrating the developed evaluation process. Figure 4 shows the CSS code fragment.

div{
 width: 350px;
 margin: 1em 0 1em 0;
}
#tag p{
 text-align: justify;

font-size:10px;
 font-weight: bold;

background-color: #FFFFFF;
}

Fig. 4. An example of CSS code

As mentioned above, EvalAccess framework transforms the CSS code into XML
based on the developed XML Schema. The XML file corresponding to the example
CSS code (Figure 4) can be found in Figure 5.

 Exploring Automatic CSS Accessibility Evaluation 23

<?xml version="1.0"?>
<css xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="file:///c:/schemaCSS.xsd">

<rule_set title="C:\style">
<rule>

 <selector>div</selector>
 <declaration_block>
 <declaration>
 <property>width</property>
 <value>350px</value>
 </declaration>

<declaration>
 <property>margin</property>
 <value>1em</value>

<value>0</value>
<value>1em</value>
<value>0</value>

 </declaration>
 </declaration_block>

</rule>
 <rule>

 <selector>#tag p</selector>
 <declaration_block>
 <declaration>
 <property>text-align</property>
 <value>justify</value>
 </declaration>
 <declaration>
 <property>font-size</property>
 <value>10px</value>
 </declaration>

<declaration>
 <property>font-weight</property>
 <value>bold</value>
 </declaration>

<declaration>
 <property>background-color</property>
 <value>#FFFFFF</value>
 </declaration>
 </declaration_block>
 </rule>

</rule_set>
</css>

Fig. 5. XML representation of the CSS code in Figure 4

As it can be observed, the CSS code is analysed in order to detect the selectors and
all the rules in terms of attributes and values applied to them. This information is
inserted in a XML file. This XML transformation facilitates the application of the
CSS test cases defined in the evaluation framework.

The 92 CSS test cases identified in WCAG 2.0 document are stored in UGL format
in a repository. In this way, incorporation of new test cases or new versions of
existing ones is quite straightforward.

Next figures, Figure 6, 7 and 8, show the UGL definition of different CSS test
cases applied in the evaluation process and the generated XQuery sentences based on

24 A. Aizpurua et al.

<techniques id="C12">
<type>CSS</type>
<title>Using percent for font sizes</title>
<description>The value of the property must contain a
determined part of value
</description>
<test_case>
<type>4</type>
<evaluation_type>auto</evaluation_type>
<evaluation_result>[error]</evaluation_result>
<element>

<label>#tag p</label>
<attribute>

<atb>[font-size]</atb>
<test_a>value</test_a>
<content analysis="=">[*%]</content>

</attribute>
</element>

</test_case>
</techniques>

for $d in //rule/declaration_block/declaration return
if($d/property = "font-size") then
return
 if(not(contains(($d/value), "%")))
 then ("error")
 else ()

Fig. 6. One test case for verifying WCAG 2.0 C12 CSS technique specified in UGL and the
corresponding XQuery sentence

appropriate XQuery templates directly applied to the XML file containing the CSS
code fragment.

Figure 6 contains the UGL specification of one test case for CSS technique C12
defined in WCAG 2.0. All the necessary information for completing the
corresponding XQuery template is included in this specification. UGL provides
mechanisms for determining the correspondence of one CSS test case with its XQuery
template (type attribute of the test_case element). In this case, the corresponding
XQuery template is the one defined for CSS test case type no.4 “Determined Part of
Value” (see Table 1).

Figure 7 shows the UGL file and the generated XQuery sentence for the evaluation
of one test case of WCAG 2.0 C19 CSS technique. The XQuery sentence is generated
by including the necessary data in the XQuery template corresponding to CSS test
case type no.3 “Determined value” (see Table 1).

Figure 8 shows UGL specification and XQuery sentence for verifying one of the
test cases of WCAG 2.0 C25 CSS technique. XQuery sentence is generated by
including the necessary data in the XQuery template corresponding to CSS test case
type no.2 “Property warning” (see Table 1). In this case, a warning will be created if
the XQuery sentence is proved to be true as the test case is of semi-automatic type.
This is defined in UGL by evaluation_result attribute of test_case element.

 Exploring Automatic CSS Accessibility Evaluation 25

<techniques id="C19">
<type>CSS</type>
<title>Specifying alignment either to the left OR right in
CSS</title>
<description>The value of the property has to be one of some
specifically defined</description>
<test_case>
<type>3</type>
<evaluation_type>auto</evaluation_type>
<evaluation_result>[error]</evaluation_result>
<element>
<label>#tag p</label>
<attribute>
<atb>[text-align]</atb>
<test_a>value</test_a>
<content analysis="=">[left]</content>
<content analysis="=">[right]</content>
</attribute>

</element>
</test_case>

</techniques>

for $d in //rule/declaration_block/declaration return
if($d/property = "text-align") then
return
 if($d/value!="left" and $d/value!="right")
 then ("error")

Fig. 7. One test case for verifying WCAG 2.0 C19 CSS technique specified in UGL and the
corresponding XQuery sentence. CSS test-case no. 3 “Determined value”

<techniques id="C25">
<type>CSS</type>
<title>Specifying borders and layout in CSS to delineate areas
of a Web page while not specifying text and text-background
colors</title>
<description>It is recommended to avoid using the
property</description>
<test_case>
<type>2</type>
<evaluation_type>semi</evaluation_type>
<evaluation_result>[warn]</evaluation_result>
<element>
<label>#tag p</label>
<attribute>
<atb> [background-color] </atb>
<test_a>warning</test_a>
</attribute>

</element>
</test_case>

</techniques>

for $d in //rule/declaration_block/declaration return
if($d/property = "background-color")
 then ("warn")

Fig. 8. One test case for verifying WCAG 2.0 C25 CSS technique specified in UGL and the
corresponding XQuery sentence

26 A. Aizpurua et al.

Table 2. Evaluation results of the example CSS code fragment based on the described three test
cases

Type Selector Attribute Description Technique Id CSS code
Error #tag p font-size The value of the

property must
contain a determined
part of value

C12 font-
size:10px

Error #tag p text-align The value of the
property has to be
one of some
specifically defined

C19 text-align:
justify

Warning #tag p background-color It is recommended to
avoid using the
property

C25 background-
color:
#FFFFFF

UGL specification of CSS test cases also provides useful information for creating

the evaluation results report as the description and title of the test case is also
available. The results obtained evaluating the example CSS code fragment according
to the described three test cases are described in Table 2.

5 Limitations of CSS Evaluation

The main advantage of using style sheets is that they allow the separation of content
from design, as recommended by the W3C. Separating markup and presentation is a
crucial part of universal design paradigm. This architectural principle is the key for
the evolution of the web in a wide range of aspects, such as accessibility, device
independence, ubiquity and so on. Currently, it would be very difficult to fulfill the
WCAG accessibility guidelines without using CSS.

However, CSS provides powerful mechanisms and functionalities which can lead
to a misuse. In this sense, some practices may lead to confuse specialized
technologies used by people with disabilities. For instance, the use of misusing
(X)HTML structural elements for its expected visual effects, such as the TABLE
element which is often used for stylistic purposes like positioning or alignment. On
the contrary, style sheets may be used to imitate proper (X)HTML Markup. Elements
such as headings, paragraphs and inline elements (STRONG, EM, etc) are sometimes
replaced with inappropriate tags which are styled to simply look like markup
elements. In order to avoid confusing specialized technologies, it is crucial to verify
that CSS techniques are applied appropriately.

Even though this paper describes a useful evaluation framework for CSS
techniques, there are several issues which have to be necessarily considered in order
to perform comprehensive evaluations. For example, the presented framework
evaluates the accessibility of a style sheet itself but it is more interesting to evaluate
the result of applying the styles on a specific web page. In addition there are some

 Exploring Automatic CSS Accessibility Evaluation 27

aspects of CSS which make more difficult to foresee the final display of a web page,
but they should be considered for ensuring accessibility of web documents:

• Inheritance10. CSS allows some properties applied to determined elements, to be
inherited from those specified for the parent elements. Although all CSS
properties cannot be inherited, the latter CSS specification introduced the inherit
property value. This value allows the property to be inherited from a parent
element in the document tree.

• Cascading11. Style sheets may belong to different agents: author, user and user-
agent. The cascade is the property which allows having multiple styles from
different sources merged together into one definitive style. It consists of a set of
rules to determine the interaction among conflicting styles from different origins.
Conflicts among styles happen when for the same element in a document a
determined property is assigned contradictory values by different style sheets.
Priority levels have been determined in order to solve these conflicts. They are
based on three main factors: weight and origin, specificity of selectors and order
of appearance. However, there are some mechanisms which can override the
established priorities such as !important style rules, @import statement.
Therefore, it is a complex task to foresee which style rules will be finally applied
to the document.

• Media selection12. Media Types allow specifying how documents will be
presented on different media, such as speech synthesizers, braille devices,
printers, etc. The design of a web page to be displayed on a normal desktop
screen may not be suitable for a printer, or a handheld device. There are several
media types but by default, style sheets apply to all media types. Different ways
can be used to make styles apply only to specific media types. The most
commonly used methods are the use of the media attribute of the link or style tag,
and the @media rule. Most of the styles are available to all media types, but some
CSS properties are only designed for certain media. For example, the font-size
style property does not make any sense in speech media. This means that the
rules of the style sheets must be applied depending on the selected media.

• Browser implementation differences13. Although most browsers support style
sheets, not all of them provide the same level of implementation14. Moreover,
there are implementation differences among versions of the same browser. There
are several mechanisms15 to solve the CSS related browser bugs. Nevertheless, if
those solutions are not applied and a design for a given web page is made for a
determined browser, the content of the page can be inaccessible for persons using
other browsers.

All these aspects should be considered in order to perform a more adaptive evaluation
but it requires gathering more information about final users’ environment, such as the

10 http://www.w3.org/TR/CSS21/cascade.html#inheritance
11 http://www.w3.org/TR/CSS21/cascade.html#cascade
12 http://www.w3.org/TR/CSS21/media.html
13 http://www.webreference.com/authoring/style/sheets/browser_support/
14 http://www.quirksmode.org/css/contents.html
15 http://websitetips.com/css/solutions/

28 A. Aizpurua et al.

browser model and version, access device used, existence of user defined style sheets,
etc. Otherwise, evaluating accessibility of CSS for all possible interaction schemas
becomes an excessively complex task.

6 Conclusions

In this paper we have presented a framework to evaluate accessibility of style sheets
according to the CSS techniques specified in WCAG 2.0. For this purpose, a detailed
analysis of CSS techniques has been performed. The framework itself has not been
developed from scratch since one flexible accessibility evaluation framework was
selected to accommodate the new CSS techniques. This allows extending the
efficiency of the framework so that more comprehensive accessibility evaluation can
be performed.

Unified Guidelines Language (UGL) is the basis of the framework. The use of this
language guarantees that new CSS techniques will be easily incorporated into the
framework. A total number of 92 CSS test cases have been defined in UGL and
incorporated to the framework for their automatic verification.

This work involves an important step towards considering the web design in the
accessibility evaluation process. However, the proposed framework only deals with
the evaluation of CSS files and it does not consider some significant aspects inherent
to the use of style sheets such as inheritance, cascading, differences in browser
implementation, etc.

Comprehensive accessibility evaluations involve considering more aspects than
only the CSS or the (X)HTML code. In this sense, it is necessary to predict the
resulting display of combining an (X)HTML file with the applicable style sheets in a
determined context of use (specific browser and version, access device, users’
preferences, etc.). Nevertheless, this is a complex task and future work will be
focused on trying to find better solutions in order to improve the accessibility
evaluation process.

References

1. Paciello, M.G.: Web Accessibility for People with Disabilities. CMP books (2000)
2. Pemberton, S.: Accessibility is for Everyone. ACM Interactions 10(6), 4–5 (2003)
3. Jacobs, I., Brewer, J. (eds.): Accessibility Features of CSS. W3C Note, (August 4, 1999),

 http://www.w3.org/TR/CSS-access
4. Chrisholm, W., Vanderheiden, G., Jacobs, I. (eds.): Web Content Accessibility Guidelines

1.0, W3C Recommendation (May 5, 1999), http://www.w3.org/TR/WCAG10/
5. Chisholm, W., Vanderheiden, G., Jacobs, I. (eds.): CSS Techniques for Web Content

Accessibility Guidelines 1.0, W3C Note (November 6, 2000),
 http://www.w3.org/TR/WCAG10-CSS-TECHS/

6. Caldwell, B., Cooper, M., Reid, L.G., Vanderheiden, G. (eds.): Web Content Accessibility
Guidelines (WCAG) 2.0, W3C Recommendation (December 11, 2008),

 http://www.w3.org/TR/WCAG20/
7. Caldwell, B., Cooper, M., Reid, L.G., Vanderheiden, G. (eds.): Techniques for WCAG 2.0.

CSS Techniques for WCAG 2.0, W3C Working Group Note (December 11, 2008),
 http://www.w3.org/TR/WCAG20-TECHS/css.html

 Exploring Automatic CSS Accessibility Evaluation 29

8. Ivory, M.Y., Hearst, M.A.: The state of art in automating usability evaluations of user
interfaces. ACM Computing Surveys 33(4), 470–516 (2001)

9. Ivory, M.Y., Mankoff, J., Le, A.: Using Automated Tools to Improve Web Site Usage by
Users with Diverse Abilities. Information Technology and Society 1(3), 195–236 (2003)

10. Brajnik, G.: Comparing accessibility evaluation tools: a method for tool effectiveness.
Universal Access in the Information Society 3(3-4), 252–263 (2004)

11. Abou-Zahra, S. (ed.): Selecting Web Accessibility Evaluation Tools (2006),
 http://www.w3.org/WAI/eval/selectingtools

12. Xiong, J., Farenc, C., Winckler, M.: Analyzing Tool Support for Inspecting Accessibility
Guidelines During the Development Process of Web Sites. In: Weske, M., Hacid, M.-S.,
Godart, C. (eds.) WISE Workshops 2007. LNCS, vol. 4832, pp. 470–480. Springer,
Heidelberg (2007)

13. Brinck, T., Hermann, D., Minnebo, B., Hakim, A.: AccessEnable: A Tool for Evaluating
Compliance with Accessibility Standards. In: Automatically Evaluating the Usability of
Web Sites, CHI Workshop (2002)

14. Beirekdar, A., Vanderdonckt, J., Noirhomme-Fraiture, M.: Kwaresmi - Knowledge-based
Web Automated Evaluation with REconfigurable guidelineS optimization. In: Forbrig, P.,
Limbourg, Q., Urban, B., Vanderdonckt, J. (eds.) DSV-IS 2002. LNCS, vol. 2545, pp.
362–376. Springer, Heidelberg (2002)

15. Beirekdar, A., Vanderdonckt, J., Noirhomme-Fraiture, M.: A Framework and a Language
for Usability Automatic Evaluation of Web Sites by Static Analysis of HTML Source
Code. In: Proceedings of 4th Int. Conf. on Computer-Aided Design of User Interfaces
CADUI 2002, ch. 29, pp. 337–348. Kluwer, Dordrecht (2002)

16. Vanderdonckt, J., Bereikdar, A.: Automated Web Evaluation by Guideline Review.
Journal of Web Engineering. Rinton Press 4(2), 102–117 (2005)

17. Leporini, B., Paternò, F., Scorcia, A.: Flexible tool support for accessibility evaluation.
Interacting with Computers 18(5), 869–890 (2006)

18. Abascal, J., Arrue, M., Fajardo, I., Garay, N., Tomás, J.: Use of Guidelines to
automatically verify web accessibility. Universal Access in the Information Society 3(1),
71–79 (2004)

19. Arrue, M., Vigo, M., Abascal, J.: Including Heterogeneous Web Accessibililty Guidelines
in the Development Process. In: Gulliksen, J., et al. (eds.) EIS 2007, vol. 4940, pp. 620–
637. Springer, Heidelberg (2008)

20. Takata, Y., Nakamura, T., Seki, H.: Accessibility Verification of WWW Documents by an
Automatic Guideline Verification Tool. In: Proceedings of the 37th Hawaii International
Conference on System Sciences (2004)

21. Luque, V., Delgado, C., Gaedke, M., Nussbaumer, M.: WCAG Formalization with W3C
Techniques. In: Lowe, D.G., Gaedke, M. (eds.) ICWE 2005. LNCS, vol. 3579, pp. 615–
617. Springer, Heidelberg (2005)

22. Vanderdonckt, J.: Development milestones towards a tool for working with guidelines.
Interacting with Computers 12, 81–118 (1999)

23. Abascal, J., Nicolle, C.: Why Inclusive Design Guidelines? In: Abascal, J., Nicolle, C.
(eds.) Inclusive Design Guidelines for HCI, ch.1, pp. 3–13. Taylor & Francis, Abington
(2001)

24. Mariage, C., Vanderdonckt, J., Pribeanu, C.: State of the Art of Web Usability Guidelines.
In: Proctor, R., Vu, K. (eds.) The Handbook of Human Factors in Web Design, ch. 8,
pp. 688–700. Lawrence Erlbaum, Mahwah (2005)

	Exploring Automatic CSS Accessibility Evaluation
	Introduction
	Related Work
	Incorporating CSS into Accessibility Evaluation Process
	Evaluation Process of CSS Techniques
	Example of the Evaluation Process

	Limitations of CSS Evaluation
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

