
M. Gaedke, M. Grossniklaus, and O. Díaz (Eds.): ICWE 2009, LNCS 5648, pp. 166 – 180, 2009. 
© Springer-Verlag Berlin Heidelberg 2009 

Automating Navigation Sequences in AJAX Websites 

Paula Montoto, Alberto Pan, Juan Raposo, Fernando Bellas, and Javier López 

Department of Information and Communication Technologies, University of A Coruña  
Facultad de Informática, Campus de Elviña s/n 15071 A Coruña, Spain 

{pmontoto,apan,jrs,fbellas,jmato}@udc.es  

Abstract. Web automation applications are widely used for different purposes 
such as B2B integration, automated testing of web applications or technology 
and business watch. One crucial part in web automation applications is to allow 
easily generating and reproducing navigation sequences. Previous proposals in 
the literature assumed a navigation model today turned obsolete by the new 
breed of AJAX-based websites. Although some open-source and commercial 
tools have also addressed the problem, they show significant limitations either 
in usability or their ability to deal with complex websites. In this paper, we 
propose a set of new techniques to deal with this problem. Our main 
contributions are a new method for recording navigation sequences supporting a 
wider range of events, and a novel method to detect when the effects caused by 
a user action have finished. We have evaluated our approach with more than 
100 web applications, obtaining very good results.  

Keywords: Web automation, web integration, web wrappers. 

1   Introduction 

Web automation applications are widely used for different purposes such as B2B 
integration, web mashups, automated testing of web applications or business watch. 
One crucial part in web automation applications is to allow easily generating and 
reproducing navigation sequences. We can distinguish two stages in this process: 

− Generation phase. In this stage, the user specifies the navigation sequence to 
reproduce. The most common approach, cf. [1,9,11], is using the ‘recorder’ 
metaphor: the user performs one example of the navigation sequence using a 
modified web browser, and the tool generates a specification which can be run by the 
execution component. The generation environment also allows specifying the input 
parameters to the navigation sequence. 

− Execution phase. In this stage, the sequence generated in the previous stage and the 
input parameters are provided as input to an automatic navigation component 
which is able to reproduce the sequence. The automatic navigation component can 
be developed by using the APIs of popular browsers (e.g. [9]). Other systems like 
[1] use simplified custom browsers specially built for the task. 

Most existing previous proposals for automatic web navigation systems (e.g. 
[1,9,11]) assume a navigation model which is now obsolete to a big extent: on one 



 Automating Navigation Sequences in AJAX Websites 167 

hand, the user actions that could be recorded were very restrictive (mainly clicking on 
elements and filling in form fields) and, on the other hand, it was assumed that almost 
every user action caused a request to the server for a new page.  

Nevertheless, this is not enough for dealing with modern AJAX-based websites, 
which try to replicate the behavior of desktop applications. These sites can respond to 
a much wider set of user actions (mouse over, keyboard strokes, drag and drop…) and 
they can respond to those actions executing scripting code that manipulates the page 
at will (for instance, by creating new graphical interface elements on the fly). In 
addition, AJAX technology allows requesting information from the server and 
repainting only certain parts of the page in response.  

In this paper, we propose a set of new techniques to build an automatic web 
navigation system able to deal with all this complexity. In the generation phase, we 
also use the ‘recorder’ metaphor, but substantially modified to support recording a 
wider range of events; we also present new methods for identifying the elements 
participating in a navigation sequence in a change-resilient manner.  

In the execution phase, we use the APIs of commercial web browsers to implement 
the automatic web navigation components (the techniques proposed for the recording 
phase have been implemented using Microsoft Internet Explorer (MSIE) and the 
execution phase has been implemented using both MSIE and Firefox); we take this 
option because the approach of creating a custom browser supporting technologies 
such as scripting code and AJAX requests is effort-intensive and very vulnerable to 
small implementation differences that can make a web page to behave differently 
when accessed with the custom browser. In the execution phase, we also introduce a 
method to detect when the effects caused by a user action have finished. This is 
needed because one navigation step may require the effects of the previous ones to be 
completed before being executed. 

2   Models 

In this section we describe the models we use to characterize the components used for 
automated browsing. The main model we rely on is DOM Level 3 Events Model [3]. 
This model describes how browsers respond to user-performed actions on an HTML 
page currently loaded in the browser. Although the degree of implementation of this 
standard by real browsers is variable, the key assumptions our techniques rely on are 
verified in the most popular browsers (MSIE and Firefox). Therefore, section 2.1 
summarizes the main characteristics of this standard that are relevant to our 
objectives. Secondly, section 2.2 states additional assumptions about the execution 
model employed by the browser in what regards to scripting code, including the kind 
of asynchronous calls required by AJAX requests. These assumptions are also 
verified by current major browsers. 

2.1   DOM Level 3 Events Model 

In the DOM Level 3 Events Model, a page is modelled as a tree. Each node in the tree 
can receive events produced (directly or indirectly) by the user actions. Event types 
exist for actions such as clicking on an element (click), moving the mouse cursor over 
it (mouseover) or specifying the value of a form field (change), to name a few. Each 



168 P. Montoto et al. 

node can register a set of event listeners for each event type. A listener executes 
arbitrary code (typically written in a script language such as Javascript). Listeners 
have the entire page tree accessible and can perform actions such as modifying 
existing nodes, removing them, creating new ones or even launching new events.  

The event processing lifecycle can be summarized as follows: The event is 
dispatched following a path from the root of the tree to the target node. It can be 
handled locally at the target node or at any target's ancestors in the tree. The event 
dispatching (also called event propagation) occurs in three phases and in the 
following order: capture (the event is dispatched to the target’s ancestors from the 
root of the tree to the direct parent of the target node), target (the event is dispatched 
to the target node) and bubbling (the event is dispatched to the target's ancestors from 
the direct parent of the target node to the root of the tree). The listeners in a node can 
register to either the capture or the bubbling phase. In the target phase, the events 
registered for the capture phase are executed before the events executed for the 
bubbling phase. This lifecycle is a compromise between the approaches historically 
used in major browsers (Microsoft IE using bubbling and Netscape using capture).  

The order of execution between the listeners associated to an event type in the 
same node is registration order. The event model is re-entrant, meaning that the 
execution of a listener can generate new events. Those new events will be processed 
synchronously; that is, if li, li+1 are two listeners registered to a certain event type in a 
given node in consecutive order, then all events caused by li execution will be 
processed (and, therefore, their associated listeners executed) before li+1 is executed.  

Fig. 1. Listeners Execution Example 

Example 1: Fig. 1 shows an excerpt of a DOM tree and the listeners registered to the 
event types e1 and e2. The listeners in each node for each event type are listed in 
registration order (the listeners registered for the capture phase appear as lcxyz and the 
ones registered for the bubbling phase appear as lbxyz). The figure also shows what 
listeners and in which order would be executed in the case of receiving the event-type 
e1 over the node n3, assuming that the listener on the capture phase lc313 causes the 
event-type e2 to be executed over the node n4.  

DOM Level 3 Events Model provides an API for programmatically registering new 
listeners and generating new events. Nevertheless, it does not provide an introspection 
API to obtain the listeners registered for an event type in a certain node. As we will 
see in section 3.1, this will have implications in the recording process in our system. 

 n1 

n2

n3 

n4

e1 {lc311, lc312, lc313} {lb311, lb312} 

e1 {lc211} {lb211} 

e1 {lc111, lc112} {lb111} 

e2 {lc421, lc422} {lb421, lb422} 

 function lc313() { 
  n4.fireEvent("e2") 
 } 

{lc111, lc112, lc211, lc311, lc312, lc313, {lc421, lc422, lb421, lb422}, lb311, lb312 lb211, lb111} 



 Automating Navigation Sequences in AJAX Websites 169 

2.2   Asynchronous Functions and Scripts Execution Model 

In this section we describe the model we use to represent how the browser executes 
the scripting code of the listeners associated to an event. This model is verified by the 
major commercial browsers. 

The script engine used by the browser executes scripts sequentially in single-thread 
mode. The scripts are added to an execution queue in invocation order; the script 
engine works by sequentially executing the scripts in the order specified by the queue. 

When an event is triggered, the browser obtains the listeners that will be triggered 
by the event and invokes its associated scripts, causing them to be added to the 
execution queue. Once all the scripts have been added, execution begins and the 
listeners are executed sequentially.  

The complexity of this model is slightly increased because the code of a listener 
can execute asynchronous functions. An asynchronous function executes an action in 
a non-blocking form. The action will run on the background and a callback function 
provided as parameter in the asynchronous function invocation will be called when 
the action finishes.  

The most popular type of asynchronous call is the so-called AJAX requests. An 
AJAX request is implemented by a script function (i.e. in Javascript, a commonly 
used one is XMLHTTPRequest) that launches an HTTP request in the background. 
When the server response is received, the callback function is invoked to process it.  

Other popular asynchronous calls establish timers and the callback function is 
invoked when the timer expires. In this group, we find the Javascript functions 
setTimeout(ms) (executes the callback function after ms milliseconds) and 
setInterval(ms) (executes the callback function every ms milliseconds). Both have 
associated cancellation functions: clearTimeout(id) and clearInterval(id). 

It is important to notice that, from the described execution model, it is inferred the 
following property: 

Property 1: The callback functions of the asynchronous calls launched by the listeners 
of an event will never be executed until all other scripts associated to that event have 
finished. 

The explanation for this property is direct from the above points: all the listeners 
associated to an event are added to the execution queue first, and those listeners are 
the ones invoking the asynchronous functions; therefore, the callback functions will 
always be positioned after them in the execution queue even if the background action 
executed by the asynchronous call is instantaneous. 

3   Description of the Solution 

In this section we describe the proposed techniques for automated web navigation. 
First, we deal with the generation phase: section 3.1 describes the process used to 
record a navigation sequence in our approach. Section 3.2 deals with the problem of 
identifying the target DOM node of a user action: this problem consists in generating 
a path to the node that can be used later at the execution phase to locate it in the page 
and section 3.3 deals with the execution phase. 



170 P. Montoto et al. 

3.1   Recording User Events 

The generation phase has the goal of recording a sequence of actions performed by 
the user to allow reproducing them later during the execution phase. 

A user action (e.g. a click on a button) causes a list of events to be issued to the 
target node, triggering the invocation of the listeners registered for them in the node 
and its ancestors, according to the execution model described in the previous section. 
Notice that each user action usually generates several events. For instance, the events 
generated when the user clicks on a button include, among others, the mouseover 
event besides of the click event, since in order to click on an element it is previously 
required to place the mouse over it. Recording a user action consists in detecting 
which events are issued, and in locating the target node of those events.  

In previous proposals, cf. [1,6,9], the user can record a navigation sequence by 
performing it in the browser in the same way as any other navigation. The method 
used to detect the user actions in these systems is typically as follows: the recording 
tool registers its own listeners for the most common events involved in navigations 
(mainly clicks and the events involved in filling in form fields) in anchors and form-
related tags. This way, when a user action produces one of the monitored event-types 
e on one of the monitored nodes n, the listener for e in n is invoked, implicitly 
identifying the information to be recorded.  

Nevertheless, the modern AJAX-based websites can respond to a much wider set 
of user actions (e.g. placing the mouse over an element, producing keyboard strokes, 
drag and drop…); in addition, virtually any HTML element, and not only traditional 
navigation-related elements, can respond to user actions: tables, images, texts, etc.  

Extending the mentioned recording process to support AJAX-based sites would 
involve registering listeners for every event in every node of the DOM tree (or, 
alternatively, registering listeners for every event in the root node of the page, since 
the events execution model ensures that all events reach to the root). Registering 
listeners for every event has the important drawback that it would “flood” the system 
by recording unnecessary events (e.g. simply moving the mouse over the page would 
generate hundreds of mouseover and mouseout events); recall that, as mentioned in 
section 2, it is not possible to introspect what events a node has registered a listener 
for; therefore, it is not possible to use the approach of registering a listener for an 
event-type e only in the nodes that already have other listeners for e. 

Therefore, we need a new method for recording user actions. Our proposal is 
letting the user explicitly specify each action by placing the mouse over the target 
element, clicking on the right mouse button, and choosing the desired action in the 
contextual menu (see Fig. 2). If the desired action involves providing input data into 
an input element or a selection list, then a pop-up window opens allowing the user to 
specify the desired value (see Fig. 2). Although in this method the navigation 
recording process is different from normal browsing, it is still fast and intuitive: the 
user simply changes the left mouse button for the right mouse button and fills in the 
value of certain form fields in a pop-up window instead of in the field itself.  

This way, we do not need to add any new listener: we know the target element by 
capturing the coordinates where the mouse pointer is placed when the action is 
specified, and using browser APIs to know what node the coordinates correspond to. 
The events recorded are implicitly identified by the selected action. 



 Automating Navigation Sequences in AJAX Websites 171 

 

Fig. 2. Recording Method 

Our prototype implementation includes actions such as click, mouseover, 
mouseout, selectOption (selecting values on a selection list), setText (providing input 
data into an element), drag and drop. Since each user action actually generates more 
than one event, each action has associated the list of events that it causes: for instance, 
the click action includes, among others, the events mouseover, click and mouseout; the 
setText action includes events such as keydown and keyup (issued every time a key is 
pressed) and change (issued when an element content changes). 

This new method has a problem we need to deal with. By the mere process of 
explicitly specifying an action, the user may produce changes in the page before we 
want them to take place. For instance, suppose the user wishes to specify an action on 
a node that has a listener registered for the mouseover event; the listener opens a pop-
up menu when the mouse is placed over the element. Since the process of specifying 
the action involves placing the mouse over the element; the page will change its state 
(i.e. the pop-up menu will open) before the user can specify the desired action. This is 
a problem because the process of generating a path to identify the target element at 
the execution phase (described in detail in section 3.2) cannot start until the action has 
been specified. But, since the DOM tree of the page has already changed, the process 
would be considering the DOM tree after the effects of the action have taken place 
(the element may even no longer exist because the listeners could remove it!). 

We solve this problem by deactivating the reception of user events in the page 
during the recording process. This way, we can be sure that no event alters the state of 
the page before the action is specified. Once the user has specified an action, we use 
the browser APIs to generate on the target element the list of events associated to the 
action; this way, the effects of the specified action take place in the same way as if the 
user would have performed the action, and the recording process can continue.  

Another important issue we need to deal with is ensuring that a user does not 
specify a new action until the effects caused by the previous one have completely 
finished. This is needed to ensure that the process for generating a path to identify at 
the execution phase the target element of the new action has into account all the 
changes in the DOM tree that the previous action provokes. Detecting the end of the 
effects of an action is far from a trivial problem; since it is one of the crucial issues at 
the execution phase, we will describe how to do it in section 3.3. 



172 P. Montoto et al. 

3.2   Identifying Elements 

During the generation phase, the system records a list of user actions, each one 
performed on a certain node of the DOM tree of the page. Therefore, we need to 
generate an expression to uniquely identify the node involved in each action, so the 
user action can be automatically reproduced at the execution phase. 

An important consideration is that the generated expression should be resilient to 
small changes in the page (such as the apparition in the page of new advertisement 
banners, new data records in dynamically generated sections or new options in a 
menu), so it is still valid at the execution stage.  

To uniquely identify a node in the DOM tree we can use an XPath [15] expression. 
XPath expressions allow identifying a node in a DOM tree by considering 
information such as the text associated to the node, the value of its attributes and its 
ancestors. For our purposes, we need to ensure that the generated expression on one 
hand identifies a single node, and on the other hand it is not too specific to be affected 
by the formerly mentioned small changes. Therefore, our proposal tries to generate 
the less specific XPath expression possible that still uniquely identifies the target 
node. The algorithm we use for this purpose is presented in section 3.2.1.  

In addition, the generated expressions should not be sensible to the use of session 
identifiers, to ensure that they will still work in any later session. Section 3.2.2 
presents a mechanism to remove session identifiers from the generated expressions. 

3.2.1   Algorithm for Identifying Target Elements 
This section describes the algorithm for generating the expression to identify the 
target element of a user action. 

As it has already been said, the algorithm tries to generate the less specific XPath 
expression possible that still uniquely identifies the target node. More precisely, the 
algorithm first tries to identify the element according to its associated text (if it is a 
leaf node) and the value of its attributes. If this is not enough to uniquely identify the 
node, its ancestors (and the value of their attributes) will be recursively used. The 
algorithm to generate the expression for a node n consists of the following steps: 

1. Initialize X{n} (the variable that will contain the generated expression) to the 
empty string. Initialize the variable ni to the target node n. 

2. Let m be the number of attributes of ni, Tni be the tag associated to ni and tni  
be its associated text. Try to find a minimum set of r attributes {ani1,…,anir}r<=m, 
of ni such that the following expression (‘+’ represents the concatenation of two 
strings):  

“//” + Tni [@ani1=vni1 and… and @anir=vnir and @text()=tni] + X{n}+”/” 
uniquely identify n. (NOTE:The fragment and text()=tni of the expression would 
only be added if ni is a leaf node, since only leaf nodes have associated text). 
3. If the set is found then 

3.1)   return the expression from step 1. 
else 

3.2) Let {ani1,…,anim} be the set of all attributes of ni. Set X{n} = “/”+Tni 
[@ani1=vni1 and… and @anim=vnim and @text()=tni] + X{n}; that is, we 
add conditions by all the attributes of ni to the expression.  

 
 



 Automating Navigation Sequences in AJAX Websites 173 

4. If ni is not the root of the DOM tree then  
4.1)  Set ni=parent(ni) and go to step 1  

      else  
4.2)  Obtain the relative position j of n in the page with respect to all the 

nodes verifying the current expression X{n}. Return “/”+ X{n}+ [j] + “/”. 
 

TR

TD

A

DIV

DIV

DIV

A

TD

text = "More Info"
atrbs = {class= "c1"}

attrbs = {href= "#"}

attrbs = {id= "id1"}

attrbs (attributes) = {}

attrbs = {}

attrbs = {href="#"}

attrbs = {id="id2", 
class= "c2"}

text() = "More Info"  
attrbs = {class="c1"}

First Iteration:
X{n} = /DIV[@class="c1" and text()="More Info"]
(/X{n}/ does not identify the grayed element)

Second Iteration:
X{n} = /A[@href="#"]/DIV[@class="c1" and text()="More Info"]
(/X{n}/ does not identify the grayed element)

Third Iteration:
X{e} = /TD[@id="id1"]/A[@href="#"]/DIV[@class="c1“ and text()="More Info“]
(/X{n}/ identifies the grayed element)

Result:
//TD[@id="id1"]/A[@href="#"]/DIV[@class="c1“ and text()="More Info"]/

TR

TD

A

DIV

DIV

DIV

A

TD

text = "More Info"
atrbs = {class= "c1"}

attrbs = {href= "#"}

attrbs = {id= "id1"}

attrbs (attributes) = {}

attrbs = {}

attrbs = {href="#"}

attrbs = {id="id2", 
class= "c2"}

text() = "More Info"  
attrbs = {class="c1"}

TR

TD

A

DIV

DIV

DIV

A

TD

text = "More Info"
atrbs = {class= "c1"}

attrbs = {href= "#"}

attrbs = {id= "id1"}

attrbs (attributes) = {}

attrbs = {}

attrbs = {href="#"}

attrbs = {id="id2", 
class= "c2"}

text() = "More Info"  
attrbs = {class="c1"}

First Iteration:
X{n} = /DIV[@class="c1" and text()="More Info"]
(/X{n}/ does not identify the grayed element)

Second Iteration:
X{n} = /A[@href="#"]/DIV[@class="c1" and text()="More Info"]
(/X{n}/ does not identify the grayed element)

Third Iteration:
X{e} = /TD[@id="id1"]/A[@href="#"]/DIV[@class="c1“ and text()="More Info“]
(/X{n}/ identifies the grayed element)

Result:
//TD[@id="id1"]/A[@href="#"]/DIV[@class="c1“ and text()="More Info"]/  

Fig. 3. Algorithm for Identifying Target Elements Example 

Fig. 3 shows an example sub-tree and the X{n} value in each iteration of the 
algorithm to generate the XPath expression to identify the grayed DIV node. 

Now, we provide further detail about some of the steps. The step 1 of the algorithm 
tries to identify the minimum set of attributes of the currently considered node ni, that 
allow completing the identification of n. To do this, we add attributes one by one until 
either n is uniquely identified or all the attributes of ni, have been added. To decide 
the order in which we add the attributes, we have defined an order for the attributes of 
each HTML tag based on its estimated selectivity (that is, how much they contribute 
to narrow the selection). For instance, we consider the id and name attributes highly 
selective for all HTML tags and the href attribute highly selective for the A tag, while 
we consider the class attribute as of low selectivity.  

Step 3.2 considers the case when the algorithm reaches the root, and the generated 
expression still does not uniquely identify n. In that case, the algorithm adds to the 
XPath expression the relative position in the page of n with respect to the rest of 
elements identified by the expression.  

3.2.2   Removing Session IDs 
Many websites use session identifiers in URL attributes to track user sessions. In 
these sites, the values of attributes containing URLs may vary in each session. Since 
our method to identify target elements at the execution phase relies on attribute 
values, this causes a problem for our approach.    

Our prototype implementation recognizes the main standard formats for including 
session identifiers in URLs. Unfortunately, many websites do not use any standard, 
but include the session identifier using arbitrary query parameters.  

Therefore, we propose an algorithm to generalize the value of attributes containing 
URLs. The algorithm is based on two observations: 1) a query parameter acting as 
session identifier must take the same value in all the URLs of the page in which it 
appears; 2) if a query parameter takes the same value in all URLs with the same host  
 



174 P. Montoto et al. 

//A[matches(@href,"listById?id=1&order=[^&=]+&sid=[^&=]+")]/

DIV

A

A

DIV

{href="listById?id=1&order=T&sid=ac456s"}

{href="listById?id=3&order=T&sid=ac456s"}

A

{href="listAll?order=F&sid=ac456s"}

//A[matches(@href,"listById?id=1&order=[^&=]+&sid=[^&=]+")]/

DIV

A

A

DIV

{href="listById?id=1&order=T&sid=ac456s"}

{href="listById?id=3&order=T&sid=ac456s"}

A

{href="listAll?order=F&sid=ac456s"}

 

Fig. 4. Removing Session IDs Example  

and query parts, then it is irrelevant for the purpose of identifying an element in the 
DOM tree by the value of its attributes.  

The basic idea of the algorithm derives directly from the above observations: find 
all the query parameters that take the same value in all the URLs in which they appear 
and ignore their values for identification purposes. Although some of the identified 
query parameters may not be session identifiers, according to observation 2 it is safe 
to ignore their values anyway.  

Fig 4 shows a simple example of the algorithm where n is the grayed node in the 
figure. The query parameters named order and sid take the same value in all the 
URLs with the same path (in the example the page does not contain other URLs with 
the same path). Therefore, they are considered irrelevant for node identification 
purposes. (NOTE: matches() is XPath function for applying regular expressions). 

3.3   Execution Phase 

The generation phase generates a program capturing the navigation sequence recorded 
by the user. The execution phase runs the program in the automatic navigation 
component. 

A first consideration is that we opt to use the APIs of commercial web browsers to 
implement the automatic web navigation components instead of building a simplified 
custom-browser. The main reason for taking this option is that web 2.0 sites make an 
intensive use of scripting languages and support a complex event model. Creating a 
custom browser supporting those technologies in the same way as commercial 
browsers is very effort-intensive and, in addition, is extremely vulnerable to small 
implementation differences that can make a web page to behave differently when 
accessed with the custom browser than when accessed with a “real” browser. Our 
techniques for the execution phase have been implemented in both MSIE and Firefox. 

To reproduce an action in the navigation sequence, there are three steps involved:  

1. Locating the target node in the DOM tree of the page.  
2. Generating the recorded event (or list of events) on the identified node.  
3. Wait for the effects of the events to finish. This is needed because the following 

action can need the effects of the previous ones to be completed (e.g. the action 
n+1 can generate an event on a node created in the action n). 



 Automating Navigation Sequences in AJAX Websites 175 

The implementation of 1) and 2) is quite straightforward using browser APIs and 
given the output of the recording process. Step 1) uses the XPath expression produced 
by the process described in section 3.2, and step 2) uses the events recorded in the 
process described in section 3.1.  

In turn, step 3) is difficult because browser APIs do not provide any way of 
detecting when the effects on the page of issuing a particular event have finished. 
These effects can include dynamically creating or removing elements in the DOM 
tree, maybe also having into account the response to one or several AJAX requests to 
the server. Previous works have addressed this problem by establishing a timer after 
the execution of an event before continuing execution. This solution has the usual 
drawbacks associated to a fixed timeout in a network environment: if the specified 
timeout is short, then when the response to an asynchronous AJAX request is slower 
than usual (or even if the machine is very heavily loaded), the sequence may fail. If, 
in turn, we use a higher timeout valid even in those circumstances, then we are 
introducing an unnecessary delay when the server is responding normally. 

The remaining of this section explains the method we propose to detect when the 
effects caused directly or indirectly by a certain event have finished. This way, the 
system waits the exact time required. The correctness of the method derives from the 
assumptions stated in section 2, which are verified by the major commercial browsers.  

The method we use to detect when the effects of an event-type e generated on a 
node n have finished consists of the following steps: 

1. We register a new listener l to capture the event e in n. The code of the listener l 
invokes an asynchronous function specifying the callback function cf. What 
asynchronous function is actually invoked in l is mainly irrelevant; for instance, in 
Javascript, we can simply invoke setTimeout(cf,0). Notice that as consequence of 
property 1 in section 2, it is guaranteed that cf will be executed after all the 
listeners triggered by the execution of e have finished. Therefore, if the listeners 
had not made any other asynchronous call, then the control arriving to cf would 
indicate that the effects of e had finished and the navigation sequence execution 
could continue. Nevertheless, since the listeners can actually execute other 
asynchronous calls, this is not enough. 

2. To be notified of every asynchronous call executed by the listeners triggered by e, 
we redefine those asynchronous functions providing our own implementation of 
them (for instance, in Javascript we need to redefine setTimeout, setInterval and 
the functions used to execute AJAX requests such as XMLHTTPRequest). The 
template of our implementation of each function is shown in Fig 5. The function 
maintains a counter that is increased every time the function is invoked (the 
counter is maintained as a global variable initialized to zero for every emitted 
event). After increasing the counter, the function calls the former standard 
implementation of the asynchronous function provided by the browser but 
substituting the received callback function by a modified one (the new_cf function 
created in Figure 5). This new callback function invokes the original callback 
function and then decreases the counter. This way, the counter always takes the 
value of the number of currently active calls. 

3. When the callback function cf from step 1 is executed, it polls the counters 
associated to the asynchronous functions. When they are all 0, we know the 
asynchronous calls have finished and execution can proceed. 



176 P. Montoto et al. 

4. There may be some cases where the effects of e actually never finish. This is for 
instance the case when the setInterval function is used. This function executes the 
callback function at specified time intervals and, therefore, its effects last 
indefinitely unless the function clearInterval is used. In the generation-phase, if the 
setInterval calls are not cleared after a certain timeout, the system notifies it to the 
user so she/he can specify the desired action, which can be to wait a fixed time or 
wait for a certain number of intervals to complete. 

 

Fig. 5. Asynchronous Function Redefinition 

In addition of the possible effects of an event in the current page, the event can also 
make the browser (or a frame inside the page) navigate to a new page. When the new 
page/frame is loaded (this can be detected using browser APIs), the load event is 
generated; this event has as target the body element of the page. Before continuing the 
execution of the navigation sequence, we need to wait until the end of the effects of 
the load event have finished, using the same technique used for the rest of events. 

4   Evaluation 

To evaluate the validity of our approach, we tested the implementation of our 
techniques with a wide range of AJAX-based web applications. We performed two 
kinds of experiments:  

1. We selected a set of 75 real websites making extensive use of scripting code and 
AJAX technology. We used the prototype to record and reproduce one navigation 
sequence on each site. The navigation sequences automated the main purpose of 
the site. For instance, in electronic shops we automated the process of searching 
products; in webmail sites we automated the process required to access e-mails. 

2. Some of the main APIs for generating AJAX-based applications such as Yahoo! 
User Interface Library (YUI) [16] and Google Web Toolkit (GWT) [4] include a 
set of example websites. At the time of testing, GWT included 5 web applications 
and YUI included 300 examples. We recorded and executed 12 navigation 
sequences in the web applications from GWT ensuring that every interface element 
from the applications was used at least once. In the case of YUI, we recorded 40 
sequences in selected examples (choosing the more complex examples). This 
second group of tests is useful because many real websites use those toolkits.  

old_asyncFunction = standardAsyncFunction; 
new_asyncFunction = new function(param1,param2,…,paramn,cf) { 
    counter++;     //counter is a global variable 
    new_cf = new function() { 
      result = cf(); 
      counter--; 
      if (counter==0) {  
          notifyEndAsyncFunctions(); 
      } 
      return result; 
    }; 
    old_asyncFunction(param1,param2,…,paramn,new_cf); 
  }; 
standardAsyncFunction = new_asyncFunction; 



 Automating Navigation Sequences in AJAX Websites 177 

Table 1. Experimental Results 

Website Played Website Played Website Played

www.a9.com/java www.fidelityasap.com www.optize.es

www.abebooks.com www.fnac.es www.paginasamarillas.es

www.accorhotels.com www.gmail.com www.penguin.co.uk

www.addall.com www.gongdiscos.com people.yahoo.com

www.voyages-sncf.com www.hotelopia.es code.jalenack.com/periodic

www.alitalia.com/ES_ES/ www.hotelsearch.com www.pixmania.com

www.allbooks4less.com www.iberia.com www.planethome.de

www.amadeus.net www.iit.edu www.priceline.com

www.amazon.com www.imdb.com/search www.renault.es

store.apple.com www.infojobs.net www.renfe.es

www.atrapalo.com www.jet4you.com www.reuters.com

autos.aol.com www.laborman.es www.rumbo.es

www.balumba.es www.landrover.com www.shop-com.co.uk

www.barnesandnoble.com www.es.lastminute.com www.sparkassen-immo.de

www.bookdepository.co.uk www.marsans.es www.sterling.dk

www.booking.com www.meridiana.it www.ticketmaster.com

www.carbroker.com.au www.msnbc.msn.com tudulist.com

www.casadellibro.com www.muchoviaje.com www.tuifly.com/es

www.cervantesvirtual.com www.musicstore.com es.venere.com

www.cia.gov www.myair.com www.viajar.com

controlp.com www.mymusic.com www.vuelosbaratos.es

www.digitalcamerareview.com www.es.octopustravel.com www.webpagesthatsuck.com

www.ebay.es www.ofertondelibros.com news.search.yahoo.com/news/advanced

www.edreams.es www.okipi.com news.yahoo.com

www.elcorteingles.es vols.opodo.fr mail.yahoo.com

Website Played Website Played Website Played

www.a9.com/java www.fidelityasap.com www.optize.es

www.abebooks.com www.fnac.es www.paginasamarillas.es

www.accorhotels.com www.gmail.com www.penguin.co.uk

Website Played Website Played Website Played

www.a9.com/java www.fidelityasap.com www.optize.es

www.abebooks.com www.fnac.es www.paginasamarillas.es

www.accorhotels.com www.gmail.com www.penguin.co.uk

www.addall.com www.gongdiscos.com people.yahoo.com

www.voyages-sncf.com www.hotelopia.es code.jalenack.com/periodic

www.alitalia.com/ES_ES/ www.hotelsearch.com www.pixmania.com

www.addall.com www.gongdiscos.com people.yahoo.com

www.voyages-sncf.com www.hotelopia.es code.jalenack.com/periodic

www.alitalia.com/ES_ES/ www.hotelsearch.com www.pixmania.com

www.allbooks4less.com www.iberia.com www.planethome.de

www.amadeus.net www.iit.edu www.priceline.com

www.amazon.com www.imdb.com/search www.renault.es

store.apple.com www.infojobs.net www.renfe.es

www.allbooks4less.com www.iberia.com www.planethome.de

www.amadeus.net www.iit.edu www.priceline.com

www.amazon.com www.imdb.com/search www.renault.es

store.apple.com www.infojobs.net www.renfe.es

www.atrapalo.com www.jet4you.com www.reuters.com

autos.aol.com www.laborman.es www.rumbo.es

www.balumba.es www.landrover.com www.shop-com.co.uk

www.barnesandnoble.com

www.atrapalo.com www.jet4you.com www.reuters.com

autos.aol.com www.laborman.es www.rumbo.es

www.balumba.es www.landrover.com www.shop-com.co.uk

www.barnesandnoble.com www.es.lastminute.com www.sparkassen-immo.de

www.bookdepository.co.uk www.marsans.es www.sterling.dk

www.booking.com www.meridiana.it www.ticketmaster.com

www.carbroker.com.au www.msnbc.msn.com tudulist.com

www.es.lastminute.com www.sparkassen-immo.de

www.bookdepository.co.uk www.marsans.es www.sterling.dk

www.booking.com www.meridiana.it www.ticketmaster.com

www.carbroker.com.au www.msnbc.msn.com tudulist.com

www.casadellibro.com www.muchoviaje.com www.tuifly.com/es

www.cervantesvirtual.com www.musicstore.com es.venere.com

www.cia.gov www.myair.com www.viajar.com

controlp.com

www.casadellibro.com www.muchoviaje.com www.tuifly.com/es

www.cervantesvirtual.com www.musicstore.com es.venere.com

www.cia.gov www.myair.com www.viajar.com

controlp.com www.mymusic.com www.vuelosbaratos.es

www.digitalcamerareview.com www.es.octopustravel.com www.webpagesthatsuck.com

www.ebay.es www.ofertondelibros.com news.search.yahoo.com/news/advanced

www.edreams.es www.okipi.com news.yahoo.com

www.mymusic.com www.vuelosbaratos.es

www.digitalcamerareview.com www.es.octopustravel.com www.webpagesthatsuck.com

www.ebay.es www.ofertondelibros.com news.search.yahoo.com/news/advanced

www.edreams.es www.okipi.com news.yahoo.com

www.elcorteingles.es vols.opodo.fr mail.yahoo.com  
 

The techniques proposed for the recording phase have been implemented using 
MSIE and the execution phase has been implemented using both MSIE and Firefox. 
In each group of experiments, we recorded the navigation sequences on MSIE and 
executed them using both MSIE and Firefox. The execution on MSIE allows us to 
measure the effectiveness of our techniques in both the recording and execution 
phases. We execute the sequences in Firefox to check that the algorithm presented in 
section 3.3 is valid in both browsers. Since MSIE and Firefox usually build different 
DOM trees for the same pages, in some cases the XPath expression generated by the 
recording in MSIE were manually modified to fit the DOM tree in Firefox. Notice 
that this is not a limitation of our approach: it only highlights the issue that the 
browser used for the recording and execution phase should be the same. 

The results of the evaluation were encouraging (see Table 1). In the first set of 
experiments (real websites), 74 of 75 sequences were recorded and executed fine. 

In the case of news.yahoo.com, the XPath expression generated to identify an 
element used an URL with a query parameter which changed every time the page was 
reloaded. This parameter is not a session identifier since it changes its value during 
the same session. If the recorded XPath expression is modified manually to ignore the 
value of this parameter, then the sequence works correctly. To solve problems like 
this, we could include redundant localization information; this way, if an element 
cannot be identified using the “minimal” expression, then we can still use the other 
information to search the nearest match in the page ([1] uses a similar idea that could 
be extended to deal with these cases, although they do not use other necessary 
information, such as hierarchical information). Another option is allowing the user to 
provide several examples of the same sequence for detecting those parameters. 

The second group of tests was completely successful in GWT applications, while 
in the YUI case only one sequence could not be recorded. The problem was that the 



178 P. Montoto et al. 

blur event was not being generated with the setText action. Once this was corrected, 
the sequence could be recorded. 

5   Related Work 

WebVCR [1] and WebMacros [11] were pioneer systems for web navigation 
sequences automation using the “recorder metaphor”. Both systems were only able to 
record a reduced set of events (clicks and filling in form fields) on a reduced set of 
elements (anchors and form-related elements). In the execution phase they relied on 
HTTP clients that lacked the ability to execute scripting code or to support AJAX 
requests. Furthermore, the techniques they used for identifying the target elements of 
user actions were based on the text associated to the elements and the value of some 
specific pre-configured attributes (e.g. href for A tags and src for FORM tags).  

Wargo [9] introduced using a commercial browser as execution component, thus 
supporting websites using scripting languages and guaranteeing that the websites will 
behave in the execution phase in the same way as when a human user accesses it. 
Nevertheless, it still showed the remaining previously mentioned problems.  

Instead of using the “recorder” metaphor, in SmartBookmarks [6] the macros are 
generated retroactively; when the user reaches a page and bookmarks it, the system 
tries to automatically find the starting point of the macro. In order to do this, 
SmartBookmarks permanently monitors the user actions. As it was explained in 
section 3.1, recording user actions in the browser as the user navigates forces to either 
restrict the set of monitored events or suffering from an “event-flooding” problem. 
SmartBookmarks only supports the events click, load and change. Another drawback 
is that it relies on timeouts to determine when to continue executing the sequence. 
HtmlUnit [5] is an open-source tool for web applications unit testing. HtmlUnit does 
not provide a recording tool; instead, the user needs to manually create the navigation 
sequences using Java coding. In addition HtmlUnit uses its own custom browser 
instead of relying on conventional browsers. Although their browser has support for 
many Javascript and AJAX functionalities, this is vulnerable to small implementation 
differences that can make a web page to behave differently when accessed with the 
custom browser. 

Selenium [13] is a suite of tools to automate web applications testing. Selenium 
uses the recorder metaphor through a toolbar installed in Firefox. It is only able to 
record a reduced set of events. To identify elements, Selenium uses a system based on 
the text or generates an XPath expression that does not try to be resilient to small 
changes. Another drawback is that Selenium does not detect properly the end of the 
effects caused by a user action in the recording process. 

Sahi [12] is another open-source tool for automated testing of web applications. 
Sahi includes a navigation recording system and it allows the sequences to be 
executed in commercial browsers. To use Sahi, the user configures its navigator to use 
a proxy. Every time the browser requests a new page, the proxy retrieves it, adds 
listeners for monitoring user actions, and returns the modified page. Using a proxy 
makes the recording system independent of the web browser used. Nevertheless, 
using a proxy does not allow using approaches where the user explicitly indicates the 
actions to record; therefore, as discussed previously, it forces to choose between 



 Automating Navigation Sequences in AJAX Websites 179 

either monitoring only a reduced set of events or suffering from “event flooding”. 
Sahi only supports recording events such as click and change. Other events such as 
mouseover can be used at the execution phase if the user manually codes the 
navigation scripts. Another drawback is that they do not detect the end of the effects 
caused by a user action, using timeouts instead.  

In the commercial software arena, QEngine [10] is a load and functional testing 
tool for web applications. QEngine also uses the recorder metaphor through a toolbar 
installed in MSIE (also used as execution component). In addition of the most typical 
events supported by the previously mentioned systems, QEngine also supports a form 
of explicitly specifying mouseover events on certain elements, consisting in placing 
the mouse over the target element for more than a certain timeout (avoiding this way 
the “flooding” problem). Nevertheless, they do not capture other events such as 
mouseout or mousemove. To identify elements, they use a simple system based on the 
text, attributes and relative position of the element. While this may be enough for 
application-testing purposes where changes are controlled, it is not enough to deal 
with autonomous web sources. In addition, as previous systems, QEngine does not 
detect the end of the effects of an action. iOpus [7] is another web automation tool 
that uses the recorder metaphor. Their drawbacks with respect to our proposal are 
almost identical to those mentioned for QEngine.  

Kapow [8] is yet another web automation tool oriented to the creation of mashups 
and web integration applications. Kapow uses its own custom browser. Therefore, in 
our evaluation it showed to be vulnerable to the formerly mentioned drawback: small 
implementation differences can make a web page to behave differently. For instance, 
from the set of 12 sequences from Google Web Toolkit we used in our tests, the 
Kapow browser could only successfully reproduce 1 of them. To identify the target 
elements, Kapow generates an XPath expression that tries to be resilient to small 
changes, although the details of the algorithm they use have not been published.  

With respect to the algorithm to identify target elements, [2,14] have also 
addressed the problem of generating change-resilient XPath expressions. In those 
approaches, the user provides several example pages identifying the target element; 
and the system generalizes the expression by examining the differences between 
them. In our case, that would force the user to record the navigation sequence several 
times. We believe that process would be much more cumbersome to the user. 

6   Conclusions 

We have presented a set of new techniques to record and execute web navigation 
sequences in AJAX-based websites. Previous proposals show important limitations in 
the range of user actions that they can record and execute, the methods they use for 
identifying the target elements of user actions and/or how they wait for the effects of a 
user action to finish. Our techniques have been successfully implemented using both 
MSIE and Firefox. Our main contributions are a new method for recording navigation 
sequences able to scale to a wider range of events and a novel method to detect when 
the effects caused by a user action (including the effects of scripting code and AJAX 
requests) have finished, without needing to use inefficient timeouts. We have also 
evaluated our approach with more than 100 web applications, obtaining a high degree 
of effectiveness. 



180 P. Montoto et al. 

References 

1. Anupam, V., Freire, J., Kumar, B., Lieuwen, D.: Automating web navigation with the 
WebVCR. In: Proceedings of WWW 2000, pp. 503–517 (2000) 

2. Davulcu, H., Yang, G., Kifer, M., Ramakrishnan, I.V.: Computational Aspects of Resilient 
Data Extraction from Semistructured Sources. In: Proc. of ACM Symposium on Principles 
of Database Systems (PODS), pp. 136–144 (2000) 

3. Document Object Model (DOM) Level 3 Events Specification,  
  http://www.w3.org/TR/DOM-Level-3-Events/ 

4. Google Web Toolkit, http://code.google.com/webtoolkit/ 
5. HtmlUnit, http://htmlunit.sourceforge.net/ 
6. Hupp, D., Miller, R.C.: Smart Bookmarks: automatic retroactive macro recording on the 

web. In: Proc. of ACM Symposium on User Interface Software and Technology (UIST 
2007) (2007) 

7. iOpus, http://www.iopus.com 
8. Kapow, http://www.openkapow.com 
9. Pan, A., Raposo, J., Álvarez, M., Hidalgo, J., Viña, A.: Semi automatic wrapper-generation 

for commercial web sources. In: Proc. of IFIP WG8.1 Working Conference on 
Engineering Information Systems in the Internet Context 2002, pp. 265–283 (2002) 

10. QEngine, http://www.adventnet.com/products/qengine/index.html 
11. Safonov, A., Konstan, J., Carlis, J.: Beyond Hard-to-Reach Pages: Interactive, Parametric 

Web Macros. In: Proc. of the 7th Conference on Human Factors & the Web (2001) 
12. Sahi, http://sahi.co.in/w/ 
13. Selenium, http://seleniumhq.org/ 
14. Lingam, S., Elbaum S.: Supporting End-Users in the Creation of Dependable Web Clips. 

In: Proc. of WWW 2007, pp. 953–962 (2007) 
15. XML Path Language (XPath), http://www.w3.org/TR/xpath  
16. Yahoo! User Interface Library (YUI), http://developer.yahoo.com/yui 


	Automating Navigation Sequences in AJAX Websites
	Introduction
	Models
	DOM Level 3 Events Model
	Asynchronous Functions and Scripts Execution Model

	Description of the Solution
	Recording User Events
	Identifying Elements
	Execution Phase

	Evaluation
	Related Work
	Conclusions
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




