
R. Shumaker (Ed.): Virtual and Mixed Reality, LNCS 5622, pp. 225–234, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Software-Agents for On-Demand Authoring of Mobile
Augmented Reality Applications

Rafael Radkowski

Heinz Nixdorf Institute, University of Paderborn
Fürstenallee 11

33102 Paderborn, Germany
Rafael.Radkowski@hni.uni-paderborn.de

Abstract. The paper presents an concept for the automatic authoring of aug-
mented reality (AR) applications. The approach is based on software agents that
provide different functions and content on demand for an AR application.
Autonomous software agents encapsulate the specific functions of an AR appli-
cation. It is distinguished between two kinds of software agents: So called
provider-agents and user-agents. The user agent is configured by a human user,
the provider-agent provides the functionality of an AR application. By commu-
nication and cooperation, provider and user agents form an AR application. The
AR-based concept has been tested with the agent platform JADE.

1 Introduction

Augmented Reality (AR) is a human-computer-interface, which superimposes the
perception of reality with computer-generated information [1]. The information is
shown in the right context and with relation to a real world object. This information
can be 3D models, text or annotations. To see them, special viewing devices are
necessary. A classic viewing device is the head mounted display (HMD), a google-
like thing that uses small displays instead of glasses. The user sees the reality as a
video stream inside this displays, the computer-generated information superimpose
the video stream.

Normally, most of the known AR applications are stand alone applications. These
applications have a fixed set of functions as well as a fixed hardware setup at one cer-
tain location. These functions and the hardware setup form the configuration of the
AR application. Figure 1 shows a schematic overview of a typical configuration of
software components of an AR application. There are components for tracking, for
interaction and for the content of the applications. To facilitate an AR application, the
components exchange information. A tracking system tracks the position and orienta-
tion of the user and of real objects, surrounding the user. Content components for AR
provide 2D visualizations, 3D models, annotations, and text information, etc. The
content represents the information the AR application can present to the user. Interac-
tion devices and the related software components provide the information from
the hardware devices. All this information is processed in an application logic
component, which manage the application and controls the renderer.

226 R. Radkowski

Fig. 1. Common component configuration of an AR application

Because AR applications present information about a localized real world object, a
stand-alone application is suitable in many cases. But today, the mobile hardware
devices become more and more smaller. In consequence, mobile, location based
applications become important. If an AR application should facilitate information
about more than on object, or should provide functions for more than one purpose, the
configuration has to be changed.

There are two ways to change the configuration of an AR application: a program-
mer can reprogram the application or an AR-author uses an authoring tool. For a user
of an AR application, e.g. a mechanics, an engineer or a medicine, these two ways are
not adequate.

To get a dynamic change of the content, the tracking system, etc., different
programming techniques exist. Software agents are one solution to achieve this. Soft-
ware agents are autonomous computer programs that work according to the require-
ments of a user [2]. One feature of software agents is ability to communicate and
cooperate with other software agents. In this paper, an agent-based AR software is
described. First, the related work is discussed, and then the concept of the agent-based
AR application is presented. Afterwards a software prototype of this concept is de-
scribed and the first results are presented. At last, the results are summarized and an
outlook is given.

2 Related Work

There are two research fields, which are related to the work, presented in this paper.
These are software frameworks for AR applications and authoring tools. Both,
software frameworks and authoring tools are used change the configuration of an AR
application.

Software frameworks and APIs are the common way, because software developers
create most of the developed and presented AR applications. They are the most flexi-
ble way to integrate new functions into an application, because new functionality is
integrated by programming. This is flexible but very complex. At this place, only a

 Software-Agents for On-Demand Authoring of Mobile AR Applications 227

few of them can be presented. One famous framework is Studierstube [3]. It is a
framework for the development of mobile, collaborative and ubiquitous AR applica-
tions. The standard API is realized as a set of C++ classes built on top of the Open
Inventor (OIV) graphics toolkit. It supports camera calibration and uses vision based
pattern tracking. Because it is a programming interface it can be extended easily by
adding new components. Another software for programming mobile AR applications
is Tinmith [4]. Tinmith is a software architecture written in C++. It supports 2D and
3D rendering, tracker abstractions, object extensions etc.. The architecture has
been designed and implemented for mobile outdoor augmented reality application.
Interaction devices like data gloves can be easily integrated. To extend these two
frameworks, it is necessary to program new functions or to integrate other software
components by programming, too.

A framework, which can easily be extended by third-party components is DWARF
[5]. DWARF is a CORBA based framework that allows the rapid prototyping of dis-
tributed AR applications. The framework is based on the concept of collaborating
distributed services. The services are interdependent and expose their requirements
with the help of service managers. It can be easily extended by integrated new
services to the framework. With CORBA the development language can be chosen
free from case to case. This framework simplifies the integration of new functions
into an AR application and to design or setup a new application. But it doesn’t work
automatically.

Beside software frameworks and APIs, authoring tools are the second way to
program a new application. But authoring tools have a fixed and limited set of func-
tions, which can be configured by the user. If new functions are needed, they have to
be programmed by the provider of the authoring tool or a computer scientist. For in-
stance, authoring tools are DART (http://www.cc.gatech.edu/projects/dart/), AMIRE
(http://www.amire.net/), and ARBlender (http://www.ai.fh-erfurt.de/arblender).

A work, which has the same aim is presented in [6], where a concept for ubiquitous
tracking has been tested. Aim is to get data from widespread and diverse heterogene-
ous tracking sensors and automatically and dynamically fuse them, and then transpar-
ently provide them to applications. For tracking systems, the approach is close to the
agent-based approach. But the agent-based approach extends it to content, interaction
devices and the entire set of components necessary for an AR application.

3 Agent-Based AR Applications

Software agents have two features that facilitate a dynamic configuration of AR
applications. It is their ability to communicate and to cooperate. If software agents
encapsulate the functionality for an AR application, they are able to form an applica-
tion only by communication. For that purpose, a proposal for an agent-based configu-
ration is made and how the on-demand functionality can be achieved. Furthermore, a
communication architecture is presented, that facilitates the dynamic connection of
different components over TCP/IP or UDP/IP.

228 R. Radkowski

Fig. 2. Schematic overview of the agent-based approach for AR applications

3.1 Agent-Based Configuration

Figure 2 shows a schematic overview of the proposed agent-based configuration.
Basic idea is, that software agents encapsulate the software components, necessary for
an AR application. There need to be one agent for each component, which have to
exchange data to the application control. Each agent knows the functionality of its
related software component. Furthermore it knows the application context, in which
the functions can be used.

The components of the AR application are separated into two classes: In compo-
nents for a stationary setup and into components for a mobile setup.

Components of the stationary setup are localized. It is only reasonable to use them
with relation to an appropriate place and an appropriate real world object. For
instance a tracking system is localized. A hardware tracking system is installed and
calibrated for one room. 3D models or text information should that an AR application
shows should provide information about a real object. They are only reasonable at an
appropriate location, too.

Components of the mobile setup are mobile. These are the application control and
the rendering engine. The application control manages the information flow inside the
application. For instance it shows or hide 3D models, annotate different real world
objects, if they should be visible for the user. This managing component is only once
needed. It must provide some basic functions (show/hide models, move models,
change color, etc.), which can be selected by the content, tracking and interaction
components. A rendering component is reasonable only in relation to a certain hard-
ware device. Furthermore it don’t need an agent, because their can be a point-to-point
communication to the application control.

An AR application is realized by communication only. The task of the software
agents is to found each other, to start an application and to initialize a communication
process between the components. Initiate a communication process means, they agree
about the values, the semantic of those values as well as about the communication
protocol.

 Software-Agents for On-Demand Authoring of Mobile AR Applications 229

Fig. 3. Different stationary setups provide location-based functions for AR applications. If a
mobile device comes close to a stationary setup, the user agent initiates the application.

3.2 On-Demand Authoring

On-demand in the context of AR applications means that a user can use a local re-
ferred application, if he is a) at the appropriate place and b) if he liked it. Authoring
means that the content and functionality of an application and the necessary devices
are changed in order to fulfill new requirements. This requires an infrastructure, that
broadcast information about attainable applications and which informs the user, when
a suitable application is attainable. To achieve this, two kinds of agents are proposed:
the so called provider agents and user agents.

Provider agents provide information about the functionality of the location-based
components (Fig. 3). There are two types of information: General information and
communication information. General information provides data about the functional-
ity of the agent and the application context. Communication information provides
information about the data itself and about the binding procedure. In order to decide,
which application or component is suitable for a user the general information is
important.

The developer of the provider agent has to specify this information. Following in-
formation is proposed:

• ID: Each agent gets a unique id.
• Name: The name of the agent. The name can be chosen by the programmer of the

agent
• Description: This is an annotation that should provide some further information

about the agent.
• Keyword: Keywords, those provide a summary of the functions.
• Service Type: Specify the provider agent as provider of tracking functionality, in-

teraction functionality or content.
• Server: Specify the url of the server, where the agent platform is located.

230 R. Radkowski

• Connection: Provide some detailed information about the binding, the connection
procedure and the query requests.

• Application Class: Tell the application class of the agent. One provider agent
should only have one application class. Several application classes like, art, fun, in-
formation, service, etc. are specified.

• Reference: References to other provider agents that functions are necessary for that
agent in order to provide an entire application.

A user agent represents a human user in the agent community. It fulfills three tasks.
First it searches for provider agents and AR applications. If applications are found, it
verifies the offered functions with the demands of the user and proposes them to the
user. Third, when the user decides to use the application, the agent initiates the AR
application and configures the necessary communication process.

To localize a provider agent, a directory service of the agent platform is used. This
directory service broadcasts a list of all available agents and their referred service
types and keywords. Furthermore, it provides information about how the provider
agent is to connect. To verify the application context, the user agent uses a keyword
matching. Altogether, the user has to specify four type of information:

• Application Class: These keywords are similar to the applications classes of the
provider agent. A user can specify as much keywords, as he wish to use.

• Keywords: These keywords should provide some detailed information about the
applications, e.g. workshop, drilling machine, museum, etc. The keywords itself
and their number can be chosen by the user.

• Human Factors: The most important human factors are, time, costs and location.
By setting a time limit, the user tells the agent, how much time he want to spend
for an application. Costs describe the prices that an user have to pay for an applica-
tion. Location information help to find the application, It gives some detailed
information about the location, e.g. a building or a room number.

• Hardware: Describes the hardware of the user. Most important values are the
processing power, the available graphic capability, the memory and integrated
interaction devices.

Fig. 4. Provider agent and user agent keep a set of data, the user agent compares this data to
identify adequate applications

 Software-Agents for On-Demand Authoring of Mobile AR Applications 231

This keyword matching compares the application class of the provider agent and
the keywords with keywords, entered by the user (Fig. 4).

3.3 Communication and Integration Architecture

If the user agent founds provider agents its user want to use, it has to setup an AR
application. For that purpose, a communication server is used (Fig. 5). Main task of
the communication server is to coordinate the data exchange between different
software components. Software components can be tracking systems, software for
interaction devices and the content. Because the AR applications should be realized
by communication, the communication server is used as integration platform.

Fig. 5. A communication server is use to exchange the data between the components. The soft-
ware agents send command to the server in order to configure the data routing.

To use the software agents itself for communication is not necessary. Main reason
for that is the static communication between the components. Once, the communica-
tion is initialized, the attributes are fixed and will not be changed. An agents should
be used only, if the values that are exchanged are not fixed. Furthermore, the time
synchronize communication is better controllable over a central server.

Main part of the communication server is a variable map. Every variable that is
exchange by the server is stored inside this map. The variables are stored by a unique
name. This name is formed by the name of the component and a unique name for each
variable

name_of_component.name_of_variable
Each component, which provides a variable, it is stored in the variable map. If a

component needs variables, the communication server will send them to the compo-
nent. Task of the software agents is to configure the read and write maps inside the

232 R. Radkowski

communication server. If an user agent initialize an AR application, every provider
agent declare the variables of the referred component to the server and start the appli-
cation. After all variables are declared, the component starts to submit the data to the
server. The user agent start to declare the date, its component needs to read.

4 Prototypical Realization

Aim of this work was to verify the agent-based architecture for AR applications and
the keyword search for the on-demand configuration. For that purpose, a software
prototype has been implemented. For that software prototype, an agent platform
JADE (Java Agent DEvelopment Framework) has been used [7]. It simplifies the im-
plementation of multi-agent systems through a middle-ware that complies with the
FIPA specifications and through a set of tools that supports the debugging and
deployment phases.

The test the agent-based architecture, two AR applications has been connected to
software agents (Fig. 6).

Fig. 6. To test the agent-based architecture, two AR applications have been setup by software
agents

The first AR application visualizes the internal environment model of autonomous
soccer robots [8]. The second application shows different car models inside the real
environment. To simulate different locations, each application has been installed in a
different room. The 3D models, which present the environment to the user, and the
car model have been encapsulated to software components. Moreover, two different
tracking devices have been separated into two software components, which have been
connected to a software agent. The soccer robots are tracked by an A.R.T. infrared
tracking system [9], the car models are shown on ARToolkit pattern [10]. For the test,
these four software components have been executed as stand alone applications, they
communicate with the software agent via a TCP/IP socket. This was necessary to
keep the existing applications and to allow software agents, written in JAVA to
communicate with software, written in C++.

 Software-Agents for On-Demand Authoring of Mobile AR Applications 233

The AR rendering component has been programmed with OpenSceneGraph [11],
an open source scenegraph programming library, written in C++. It runs as stand
alone application and, for the tests, it communicates to a referred user-agent by a
TCP/IP socket to. As hardware device a tablet PC (Compaq) has been used.

4.1 Results and Discussion

The application has been tested by a set of user. This test should show, if the user-
agents are able to find the provider agents and if an AR application can be initialized
by communication. The test show, that the software agents are able to configure the
communication server and to initiate an AR application. Furthermore, they show that
it is possible to separate a AR application in different independent running parts,
which are integrated to an application, by communication and cooperation only.
Existing agent frameworks like JADE allow a flexible cooperation between software
agents. Further, they provide a service description and necessary functions to discover
software agents on an agent platform.

One advantage of an agent-based concept is, that is separates the provider of the
AR applications from the hardware of the user. Today, a provider of an AR applica-
tion has to provide everything: the hardware, the rendering software, the tracking
system, interaction devices and the content. There are no possibilities to separate
these parts to different providers. For instance, one person/company could provide a
tracking system on different places, and a provider of content, e.g. a museum, provide
information to its paintings, based on the available tracking system. A visitor of this
museum can use its on smart phone or tablet PC to use this AR application. Because
people can user their own hardware theoretically, the provider of an AR application
doesn‘t have to hold the hardware ready.

The big advantage is, that the agent-based approach facilitates a flexible frame-
work for AR applications. Different agents form an AR application by communica-
tion only. If one component of the application should be exchanged, it is only
necessary to change the software agent, encapsulate the needed functions. Of course,
the software agents have to be prepared.

To achieve this flexibility, the communication protocol and agent service descrip-
tion must be standardizing. The general information the provider agent and user agent
have been used is self-made. For the small controlled test, the keyword matching and
the application classes work in order to found an application. But for a real world
scenario, the information has to be standardized.

The agent-based AR applications aim to AR application in a workshop environ-
ment. Where a mechanics or an engineer use AR to analyze the behavior of a test
bench or a mechanic maintenance a machine. This people use one hardware device
only, but the need to use different content and different tracking systems. In such a
not closed but limited environment, it is possible to have influence to the hardware,
the communication protocol, and the service description. If these parts are under
control, the agent-based AR application should facilitate flexible AR applications and
an easy reconfiguration of the application without any assistance by an engineer of
mechanics user.

234 R. Radkowski

5 Outlook

It is planed to use the agent-based architecture in an augmented reality-based experi-
mental try-out environment for mechatronic systems. This environment is part of the
collaborative research center 614 “Self-optimizing concepts and structure in mechani-
cal engineering”. Engineers use AR to analyze and test intelligent mechatronic
systems. For that purpose, different extensions are planed.

First, the prototypical implementation must be extended. To test the architecture, a
prototypical, not user-friendly software has been developed. This software serves for
testing purposes only. For instance, the TCP based communication between software
components of the AR application and the JADE agents is not sufficient. Therefore a
wrapper API is planed.

Next, the information, which is exchange between the software agents and the
keyword matching, should be extended. It is planed to use more than one model to
describe the functionality of a software component. One model should provide
information about the function, one model should describe the possible task, where
the component can be reasonable used, and one model should describe the data.

In order to localize provider agent, a JADE agent platform needs to now the
addresses of other reachable agent platforms. This way, a practical working service
discovery cannot be realized. To improve this, the communication protocol, which the
agents are used will be changed, of the agent platform will be changed.

References

1. Azuma, R.: A Survey of Augmented Reality. In: Presence: Teleoperators and Virtual Envi-
ronments 6 (1997)

2. Jennings, N.R.: An agent-based approach for building complex software systems. Com-
munications of the ACM 44(4), 7 (2001)

3. Schall, G., Newman, J., Schmalstieg, D.: Rapid and Accurate Deployment of Fiducial
Markers for Augmented Reality. In: Proceed. of the 10th Comp. Vistion Winter Workshop,
Zell an der Pram, Upper Austria (2005)

4. Piekarski, W., Smith, R., Thomas, B.H.: Designing Backpacks for High Fidelity Mobile
Outdoor Augmented Reality. In: 3rd Int Symposium on Mixed and Augmented Reality,
Arlington, Va (2004)

5. Bauer, M., Bruegge, B., Klinker, G., MacWilliams, A., Reicher, T., Riß, S., Sandor, C.,
Wagner, M.: Design of a Component-Based Augmented Reality Framework. In: Proceed-
ings of The Second IEEE and ACM International Symposium on Augmented Reality (2001)

6. Newman, J., Wagner, M., Bauer, M., MacWilliams, A., Pintaric, T., Beyer, D., Pustka, D.,
Strasser, F., Schmalstieg, D., Klinker, G.: Ubiquitous Tracking for Augmented Reality. In:
International symposium on mixed and augmented reality, Arlington, USA (2004)

7. Webpage of JADE, A open source plattform for peer to peer agent based applications
(2009), http://jade.tilab.com/

8. Richert, W., Kleinjohann, B., Koch, M., Bruder, A., Rose, S., Adelt, P.: The paderkicker
team: Autonomy in realtime environments. In: Proceedings of the Working Conference on
Distributed and Parallel Embedded Systems, DIPES 2006 (2006)

9. Homepage of Advanced Realtime Tracing, http://www.ar-tracking.de/
10. Kato, H., Billinghurst, M.: Marker Tracking and HMD Calibration for a Video-based

Augmented Reality Conferencing System. In: Proceedings of the 2nd International Work-
shop on Augmented Reality, IWAR 1999 (1999)

11. Webpage of OpenSceneGraph, http://www.openscenegraph.org

	Software-Agents for On-Demand Authoring of Mobile Augmented Reality Applications
	Introduction
	Related Work
	Agent-Based AR Applications
	Agent-Based Configuration
	On-Demand Authoring
	Communication and Integration Architecture

	Prototypical Realization
	Results and Discussion

	Outlook
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

