
R. Shumaker (Ed.): Virtual and Mixed Reality, LNCS 5622, pp. 145–153, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Supporting Reusability of VR and AR Interface Elements
and Interaction Techniques

Wolfgang Broll and Jan Herling

Collaborative Virtual and Augmented Environments
Fraunhofer FIT

53754 Sankt Augustin, Germany
{Wolfgang.Broll,Jan Herling}@fit.fraunhofer.de

Abstract. In contrast to 2D environments which apply well established user
interface elements and generally accepted interaction techniques, VR and AR
applications typically provide rather individual and specific realizations. This
often leads to inconsistent user interfaces and a long and cumbersome develop-
ment process. In this paper we show how we extended our approach on model-
ing VR and AR interface elements and interaction techniques represented by
interaction and behavior objects by some simple yet powerful mechanisms:
modules, templates, and inheritance. We will also show how specific examples
could benefit from that approach.

Keywords: Virtual Reality, Augmented Reality, Mixed Reality, 3D User Inter-
faces, Multi-modal User Interfaces, Interaction Techniques.

1 Introduction

The majority of the overall effort and time required to develop Virtual Reality (VR)
and Augmented Reality (AR) applications is spent for the development of specific
user interface elements and underlying interaction techniques [2]. The first issue is
also true for many traditional 2D desktop applications, although it is generally easier
there due to the availability of appropriate user interface design tools and well estab-
lished design guidelines (both not available for VR and AR). However, when it comes
to interaction techniques, the difference is even more obvious. While in 2D desktop
environments applications usually rely on the well known and well established WIMP
metaphor, no standard interaction techniques for VR and AR exist [4]. In contrary,
they often depend on the specific (3D) input devices available, the user’s preferences
as well as the specific requirements of the application. Further, most users have no or
little experience using VR and AR technology and related devices and interaction
techniques. This additionally complicates the user interface design and often results in
either rather poor user interfaces or several iterative user trial and update cycles
requiring a high implementation effort.

Existing approaches to overcome this problem include user interface description
languages such as UIML [1] and InTML [7], authoring tools such as DART [13] or
iaTAR [11], scene graph related approaches such as Behavior3D [6] and YABLE [5],
and component based approaches such as BodyElectric [10] or Unit [12].

146 W. Broll and J. Herling

Our original approach [4] combines synchronous control and data flows with asyn-
chronous event and network distribution. It is based on a predefined yet extendable
set of components representing integral parts of VR/AR interaction techniques and
related device handling. Several of these components are combined into a so called
interaction or behavior object (aka interactive bit). These objects react to event input
from input devices or other objects, or depend on the elapsed time or are synchronized
with per frame scene updates.

While the overall approach has already proved to be quite powerful for fast and
easy realization of application prototypes, reusability of already realized interaction
techniques going beyond simple copy and paste has been a major request by the users.

In this paper we will present our recent extensions allowing for easy and powerful
reusability of user interface elements and interaction techniques. In section 2 we will
briefly explain the major concepts and components of our original approach. In sec-
tion 3 we will then present our extensions allowing for an efficient reusability of in-
teraction and behavior objects. In section 4 we will provide some example scenarios
to demonstrate how specific user interfaces and interaction techniques can benefit
from the approach, before concluding and looking at some future work in section 5.

2 Our Original Approach

In our original approach [4] we used a component based approach allowing for mod-
eling rather than programming 3D user interfaces and interaction techniques by
assembling interaction and behavior objects from a set of pre-defined components.
These components represent integral parts of autonomous object behavior, user inter-
face elements, and interaction techniques. Generally we distinguish between seven
component categories:

• Base components, for receiving and sending events and to query information or
register for updates or changes at other system components. This for instance
allows for registering for an input device and to manipulate a scene graph object
accordingly.

• Execution components are used to influence the control flow and to perform calcu-
lations or even more complex behavior by scripting.

• Time-dependent components are invoked independent of user input at specific
timestamps or after certain periods, etc.

• Key-value mapping components are in particular used for realizing animations, but
also for mapping between different data sets and for autonomous behavior based
on state machines.

• Device input calculation components allow for easy calculation as necessary for
using 2D devices in 3D interaction techniques and for modifying 3D input data.
This includes components for transforming and filtering data.

• Data storage components, allow for temporal (memory) and permanent (file) stor-
age and retrieval of data.

• Networked components, finally provide enhanced versions of other components for
better supporting their usage in networked environments allowing for more ad-
vanced distributed interaction mechanisms than by replicated scene graphs only.

 Supporting Reusability of VR and AR Interface Elements and Interaction Techniques 147

Fig. 1. Component hierarchy for assembling interaction and behavior objects

Fig. 2. Visual programming environment for defining interaction and behavior objects

Figure 1 provides an overview of the currently supported components.
Each interaction and behavior object may use an arbitrary number of components

of each type, which are connected by a signal/slot mechanism. This mechanism al-
lows us to transfer data values (such as integers, floats, strings, vectors, matrices, etc.)
between the individual components. In order to specify the control flow for the execu-
tion of the individual components, event signals are used (also specified by the
signal/slot mechanism). However, these mechanisms apply for the internal communi-
cation between the individual components of a single object only. For external
communication, i.e. access to input and output devices, scene graph objects, or ser-
vices such as object picking or collision detection, an asynchronous event based
mechanism is used. Thus, it allows for easy application of the approach to net-
worked/distributed environments, where events will need some time to be transmitted.
This event based mechanism is also used for communication between different
interaction and behavior objects.

148 W. Broll and J. Herling

While the interaction and behavior object description uses a text based description,
we additionally realized a visual programming environment (see Figure 2) for easier
arrangement and editing of the individual components, and their interconnection by
data connections and event signals [3].

3 Our Approach to Support Reusability

In order to reduce the effort for realizing similar interaction techniques we extended
our original approach by four mechanisms for supporting the reusability of already
defined interaction and behavior objects. These are:

• Instantiation
• Templates
• Modules
• Inheritance

By instantiation we provide a mechanism which allows for easy attachment of inter-
action techniques to several user interface elements at once. Therefore a master object
is defined, which is actually not immediately used. As part of the definition an
attachment rule is defined. Whenever the attachment rule is fulfilled, a instance
(copy) of the object defined is created and attached to the objects specified. As the
specification of the target attachment is quite flexible (e.g. specifying specific scene
graph objects by wild cards) and the actual attachment may be either explicit or
implicit (e.g. whenever a new object is created), this mechanism allows for easy reuse
of elements already defined. The short coding fragment below shows how an object is
specified to be dynamically attached to objects in a certain branch of an X3D scene
graph having a name with the prefix “CHAIR”. The attachment is re-evaluated each
time a file is loaded or a node is added to the scenegraph.

Behavior {
 targets XSG:X3D::MY_ROOM/FURNITURE/CHAIR*
 attachment [LOAD_FILE, ADD_NODE]
...
// definition of individual components follows here
Sensor GRAB {
 ...
}

Action MOVE {
 targets . // i.e. the local entity the
 // behavior is attached to
 ...}

Further, we developed two template mechanisms: one for entire interaction and be-
havior objects and one for individual components. The first one allows for specifying
a full object with additional parameters applied during initialization. Upon instantia-
tion the parameters are then used to create the actual object. The individual compo-
nents of such a template are invisible and cannot be accessed directly within the

 Supporting Reusability of VR and AR Interface Elements and Interaction Techniques 149

instantiated object. A simple example would be a behavior simulating the movement
caused by a parabolic flight. As a parameter you may specify the velocity (direction
and amount).

The second template mechanism applies to individual components. A component
template is always based on one or several already existing components (or compo-
nent templates). In addition to parameters a component template has to define the data
and control flow interfaces of the new template component. Those are mapped to the
corresponding data and signal slots of the underlying sub-components. This allows us
to combine several components into a new component template, which then may be
used similar to built-in components.

Further, our approach supports a mechanism for realizing interface and interaction
technique modules. It may be used to include previously defined interaction and
behavior objects or templates. It allows for the provision of frequently used interac-
tion and interface modules (e.g. for rigid 3D manipulation such as positioning and
rotating, support for tangible user interface elements, or individual navigation styles
for specific types of input devices).

Finally we provide an inheritance mechanism. It allows us for the reuse of already
defined behaviors object, enabling the rapid construction of new objects with rather
small modifications (either replacing parts of their behavior or by applying additional
features). For example, a standard object behavior which highlights a scene graph
objects upon selection can be easily modified and extend to use a color frame and a
sound feedback instead, while the underlying selection mechanism is kept). Inheri-
tance applies during instantiation of an object and applies to any part of its definition.

A big advantage of the four approaches presented is their ability to be combined
and even nested arbitrarily.

4 Example Scenarios

In this section we would like to present and discuss some example scenarios. In par-
ticular we will show how those examples benefited from the mechanisms introduced
in this paper.

4.1 Autonomous Behavior

In this little demo example we realized an arena containing a configurable yet arbi-
trary number of autonomous robots. Each robots goal is to explore the given arena
and to kill as many other robots as possible. The entire demonstration scenario is
based on two 3D files (one containing the geometry of the arena and one for the ge-
ometry of a robot), three behavior objects (in a single file) and a couple of sound files
representing the individual activities of the robots. The three behavior objects are:

• One defined as template, where the actual instance used allows for specifying the
number of robots and the size and location of the area for their potential initial
starting position. This one will include the robot file as many times as specified,
giving each of them an individual name (ROBOT1 … ROBOTn) and define an
arbitrary starting position for each robot.

150 W. Broll and J. Herling

• One for registering the virtual 3D scene with the tracked marker on the table. This
is a standard marker tracking behavior which is loaded from an appropriate module
using the include mechanism.

• One for the actual behavior of the individual robot. Its main component is a State-
Machine (scan, fire, cruise, explode, idle) activating and deactivating individual
tests (i.e. picking and/or collision detection) and animations. The behavior object is
defined as master allowing for an automatic instantiation and attachment of an in-
dividual copy to each robot’s geometry upon creation.

Fig. 3. Demo application showing autonomous robots trying to destroy each other

4.2 Application Specific Interaction Styles

TimeWarp [8] – an application showcase of the integrated project IPCity [9] - is a
location-based Mixed Reality game where the players have to solve challenges in
different locations distributed throughout the old part of Cologne. In addition to
enhancing the real environment by the virtual challenges, the game takes the players
to different epochs in the history of the city by augmenting the real environment visu-
ally and acoustically. Players use either head-mounted optical see-through displays or
handheld ultra mobile PCs applying video see-through AR. While the individual
challenges are quite different regarding their content, the interaction techniques for
selecting and manipulating content are shared by all challenges. As each challenge
typically is realized independently (even by different developers or game designers),
it was important to ensure that the interaction techniques used are independent of the
individual challenge. For that reason an interaction library module was created and
included in each challenge implementation. This also ensured that changes to the
interaction techniques apply to all challenges automatically. Specifically the reusabil-
ity mechanisms also allowed us to support different flavors of the interaction
techniques depending on the devices used. While for head-mounted displays we relied

 Supporting Reusability of VR and AR Interface Elements and Interaction Techniques 151

Fig. 4. A virtual version of the famous Roman Dionysus mosaic in Cologne was modified and
had to be re-arranged to represent the original figures by the players

on ray-based picking along the viewing direction in the center of the current view,
ray-based picking on the handheld devices providing a touch screen was more flexible
as objects could be directly selected by the players using their fingers. Thus, we just
inherited and extended the original ray-based mechanism, adding the inherited inter-
action technique to the module.

Additional reusability mechanisms were applied to realize individual challenges.
The challenge to reconstruct the original tiles of the famous Roman Dionysus mosaic
(see Figure 4) consists of nine interactive tiles. Each of them may be turned by 180°
based on user interaction. While each tile seems to consist of two faces, there are
actually three different texture applied to each tile in a sequence. Thus, the behavior
object for turning a tile and replacing the textures from a set uses the template mecha-
nism to specify the individual texture as parameters.

4.3 Guided Tour

Another application we realized using the mechanisms presented was a guided tour
for a stereoscopic 3D presentation of a reconstruction of the Bamiyan Buddha statues
in Afghanistan for a museum (see figure 5). The camera was animated smoothly
flying from one point of interest to the next one. This was the standard mode in the
museum. For guided tours however, there was a SpaceTraveler as navigation device.
By that, a guide could interrupt the animated camera at any point and continue indi-
vidual navigation. The automatic animation of the camera would resume after a
certain time of inactivity, flying smoothly to the next POI in line.

Here, the SpaceTraveler navigation is loaded from a navigation module containing
navigation support for various input devices as template. The default 6-DOF

152 W. Broll and J. Herling

Fig. 5. Guided tour and interactive navigation for a presentation of the destroyed Bamiyan
Buddha statues in the Gandhara region of Afghanistan

navigation provided by the device is reduced to 5-DOF by disabling the roll axis for
easier use by occasional users, since user tests showed that they otherwise get easily
lost in the scene. This was done by inheriting from the template a modified behavior
template, thus combining the template and the inheritance mechanism.

5 Conclusion and Future Work

In this paper we introduced our approach on supporting the reusability of interaction
techniques and user interface elements in VR and AR environments. We showed how
the approach overcomes the limitations of existing approaches in respect to flexibility,
scalability, and usability.

Beside the detailed introduction of the mechanisms applied, we presented several
examples from ongoing projects, showing the actual feasibility of the individual
mechanisms and the usability of the overall approach.

In our future work we will further extend the interface and interaction libraries of
predefined behavior templates and base classes, reflecting all major 3D interaction
techniques and interfaces. We further intend to combine this with a tutorial on best
practice examples for easier use by new interface developers and in particular for
using the approach for teaching VR and AR user interface classes.

Acknowledgments

The authors thank their colleagues at the Collaborative Virtual and Augmented Envi-
ronments Department at Fraunhofer FIT for their comments and contributions. Spe-
cial thanks to our colleagues Lisa Blum for her work on the visual programming envi-
ronment, Richard Wetzel for realizing the TimeWarp Dionysus mosaic challenge and
Robert Menzel who realized the Gandhara guided tour. They further wish to thank
their project partners of the IPCity project for their ideas, cooperation, and their
support. IPCity (FP6-2004-IST-4-27571) is partially funded by the European Com-
mission as part of the 6th Framework.

 Supporting Reusability of VR and AR Interface Elements and Interaction Techniques 153

References

1. Abrams, M., Phanouriou, C., Batongbacal, A.L., Williams, S.M., Shuster, J.E.: UIML: An
Appliance-Independent XML User Interface Language. In: Proceedings of the Eighth In-
ternational World Wide Web Conference, pp. 1695–1708. Elsevier, Toronto, Canada
(1999)

2. Bowman, D.A., Kruijff, E., LaViola, J.J., Poupyrev, I.: 3D User Interfaces: Theory and
Practice. Addison-Wesley, Boston (2004)

3. Broll, W., Herling, J., Blum, L.: Interactive Bits: Prototyping of Mixed Reality Applica-
tions and Interaction Techniques through Visual Programming. In: Proc. of the 3rd IEEE
International Symposium on 3D User Interfaces 2008 (IEEE 3DUI 2008), pp. 109–115.
IEEE Computer Society, Los Alamitos (2008)

4. Broll, W., Lindt, I., Ohlenburg, J., Herbst, I., Wittkämper, M., Novotny, T.: An Infrastruc-
ture for Realizing Custom-Tailored Augmented Reality User Interfaces. IEEE Transactions
on Visualization and Computer Graphics 11(6), 722–733 (2006)

5. Burrows, T., England, E.: YABLE—yet another behaviour language. In: Proceedings of
the Tenth international Conference on 3D Web Technology, Web3D 2005, Bangor, United
Kingdom, March 29-April 01, 2005, pp. 65–73. ACM, New York (2005)

6. Dachselt, R., Rukzio, E.: Behavior3D: an XML-based framework for 3D graphics behav-
ior. In: Proceeding of the Eighth international Conference on 3D Web Technology,
Web3D 2003, Saint Malo, France, March 9-12, 2003, p. 101. ACM, New York (2003)

7. Figueroa, P., Green, M., Hoover, H.J.: InTml: a description language for VR applications.
In: Proceeding of the Seventh international Conference on 3D Web Technology, Web3D
2002, Tempe, Arizona, USA, February 24-28, 2002, pp. 53–58. ACM, New York (2002)

8. Herbst, I., Braun, A., McCall, R., Broll, W.: TimeWarp: interactive time travel with a mo-
bile mixed reality game. In: Proceedings of the 10th international Conference on Human
Computer interaction with Mobile Devices and Services, MobileHCI 2008, Amsterdam,
The Netherlands, September 2-5, 2008, pp. 235–244. ACM, New York (2008)

9. IPCity – Integrated Project on Interaction and Presence in Urban Environments,
http://www.ipcity.eu

10. Lanier, J., Grimaud, J.-J., Harvill, Y., Lasko-Harvill, A., Blanchard, C., Oberman, M.,
Teitel, M.: Method and system for generating objects for a multi-person virtual world us-
ing data flow networks. United States Patent 5588139 (1993)

11. Lee, G.A., Nelles, C., Billinghurst, M., Kim, G.J.: Immersive Authoring of Tangible Aug-
mented Reality Applications. In: Proceedings of the Third IEEE and ACM international
Symposium on Mixed and Augmented Reality (ISMAR 2004), November 2-5, 2004, pp.
172–181. IEEE Computer Society, Los Alamitos (2004)

12. Olwal, A., Feiner, F.: Unit: modular development of distributed interaction techniques for
highly interactive user interfaces. In: Spencer, S.N. (ed.) Proceedings of the 2nd interna-
tional Conference on Computer Graphics and interactive Techniques in Australasia and
South East Asia, GRAPHITE 2004, Singapore, June 15-18, 2004, pp. 131–138. ACM,
New York (2004)

13. MacIntyre, B., Gandy, M., Dow, S., Bolter, J.D.: DART: a toolkit for rapid design explora-
tion of augmented reality experiences. In: Proceedings of the 17th Annual ACM Sympo-
sium on User interface Software and Technology, UIST 2004, Santa Fe, NM, USA, Octo-
ber 24-27, 2004, pp. 197–206. ACM, New York (2004)

	Supporting Reusability of VR and AR Interface Elements and Interaction Techniques
	Introduction
	Our Original Approach
	Our Approach to Support Reusability
	Example Scenarios
	Autonomous Behavior
	Application Specific Interaction Styles
	Guided Tour

	Conclusion and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

