
PeerVote: A Decentralized Voting Mechanism

for P2P Collaboration Systems

Thomas Bocek, Dalibor Peric, Fabio Hecht, David Hausheer,
and Burkhard Stiller

Department of Informatics IFI, University of Zurich, Switzerland
{bocek,peric,hecht,hausheer,stiller}@ifi.uzh.ch

Abstract. Peer-to-peer (P2P) systems achieve scalability, fault toler-
ance, and load balancing with a low-cost infrastructure, characteristics
from which collaboration systems, such as Wikipedia, can benefit. A ma-
jor challenge in P2P collaboration systems is to maintain article qual-
ity after each modification in the presence of malicious peers. A way of
achieving this goal is to allow modifications to take effect only if a major-
ity of previous editors approve the changes through voting. The absence
of a central authority makes voting a challenge in P2P systems.

This paper proposes the fully decentralized voting mechanism Peer-
Vote, which enables users to vote on modifications in articles in a P2P
collaboration system. Simulations and experiments show the scalability
and robustness of PeerVote, even in the presence of malicious peers.

1 Introduction

Peer-to-peer (P2P) systems inherently support redundancy, scalability, fault tol-
erance, and load balancing [20,16] at a lower cost than client/server systems,
since every participating user contributes with resources. These advantages in-
cited the emergence of different P2P-based applications, including audio and
video streaming [28], file-sharing [7], and storage [24,27]. A large-scale collabo-
ration system, such as Wikipedia [26], could also benefit from the aforementioned
characteristics of P2P systems [3]. In a P2P collaboration system, users share
the resources necessary to host and distribute articles that can be modified by
any other user.

A major challenge in P2P collaboration systems is to assure that user-
generated content quality is being maintained or improved after each modifi-
cation, despite the lack of a central authority. Since article quality is a highly
subjective measurement, user-based voting is needed to allow users to express
their opinion on whether or not a proposed modification shall be accepted.

The contribution of this paper is PeerVote, a decentralized voting mechanism
that provides a method to maintain quality of content and its modifications.
The proposed voting mechanism ensures that every modification to a document
has the approval from the majority of previous editors. This helps to prevent
vandalism, editing wars, and deliberate censorship. To the best of our knowledge,
this is the first user-based voting scheme for P2P collaboration systems. PeerVote

R. Sadre and A. Pras (Eds.): AIMS 2009, LNCS 5637, pp. 56–69, 2009.
c© IFIP International Federation for Information Processing 2009

PeerVote: A Decentralized Voting Mechanism for P2P Collaboration Systems 57

has been implemented in a P2P collaboration application and evaluated on top
of a structured P2P network using a simulator and EMANICSLab [10]. PeerVote
can be used for any kind of document writing with a primary focus on distributed
collaboration, such as scientific reports, project deliverables, or online articles.

The remainder of this paper is structured as follows. While Section 2 discusses
related work, Section 3 shows the design of PeerVote. In Section 4 implemen-
tation details and evaluation results are presented. Finally, Section 5 concludes
this paper and suggests future work.

2 Related Work

One way of achieving the goal of improving quality of content in P2P collabo-
ration systems is by using recommendation or reputation systems. [1] proposes
a content-driven reputation system for Wikipedia, which is based on automatic
analysis of edit-changes of Wikipedia articles and side-steps any user-based rat-
ing. The deriving author reputation can be used to predict the quality of future
articles of such authors. Korsgaard and Jensen [14] outline the integration of a
recommendation system in Wikipedia, which allows users to express their prefer-
ence about the article and consult its general score, whereas the resulting system
would still remain centralized. Although such systems can be used in conjunction
with PeerVote, their focus is on the document itself, while PeerVote’s main con-
cern is on document’s update compliance. While several P2P Wiki approaches
exist [18,25,17,23], none of these approaches support user-based voting.

Different voting and consensus reaching algorithms have been proposed, with
distributed systems and electronic voting as their main applications. In dis-
tributed systems, the main purpose of voting mechanisms is to ensure consistency
among replicated data, usually by achieving an agreement between replica holder
entities. Examples of such consensus protocols are the two-phase commit pro-
tocol [12], the weighted voting [11], and the decentralized weighted voting [19].
With the exception of the latter, such voting schemes have the disadvantage of
being centralized. Another disadvantage of those schemes is that they are syn-
chronous, thus, their application for human-based voting would require all voters
to express their preference simultaneously, which is unfeasible for large numbers
of participants.

Fully decentralized voting protocols, such as the inexact voting over wide
area networks [13] and the Deno voting protocol [5] have been proposed. The
first approach shows a message complexity quadratic with respect to the number
of voters, which is not scalable. The Deno voting protocol, while being scalable,
does not guarantee that updates commit in a bounded time.

Secret ballot protocols, or electronic voting protocols, implement a democratic
voting system on electronic equipment. Some existing implementations [6,21] ad-
dress specific security concerns, like eligibility, privacy, individual and universal
verifiability, fairness, robustness, and receipt-freeness, but they work in a cen-
tralized fashion.

Table 1 shows a comparison among these voting mechanisms. None of these
mechanisms reviewed support a decentralized user-based voting.

58 T. Bocek et al.

Table 1. Comparison of distributed voting mechanisms

Decen-
tralized

Scalable Time-
bounded

Asyn-
chronous

User-based

2-Phase Commit No Yes Yes No No

Weighted Voting No Yes Yes No No

Decentralized
Weighted Voting

Yes Yes Yes No No

Secure Ballot No Yes Yes Yes Yes

Inexact Voting Yes No Yes Yes No

Deno Voting Yes Yes Yes No No

PeerVote Yes Yes Yes Yes Yes

Fig. 1. PeerVote message sequence chart

3 PeerVote Design

The design of PeerVote defines roles and their interactions. Each role defines a
set of actions and interacts with one or more other roles. The following use case
introduces these roles.

3.1 Use Case

A typical use case for PeerVote is shown in Figure 1, where a user searches for a
document including the keyword “P2P”. The peer finds a tracker with addresses
of peers holding documents with the keyword “P2P”. After reading, the user
finds a wrong statement and corrects it. Following the majority of previous
authors agreeing on this correction, the modified document is published.

3.2 Roles

PeerVote defines six roles: tracker, storage, user, editor, mediator, and voter roles
(cf. Figure 1). One peer can have one or more roles, depending on the action of
a user.

PeerVote: A Decentralized Voting Mechanism for P2P Collaboration Systems 59

Tracker Role: A tracker peer stores references to storage peers that store cer-
tain documents. Each tracker peer is responsible for storing references to doc-
uments with document-ids nearest to its peer-id. A tracker peer also evaluates
voting metadata. A tracker can reject references with wrong or inconsistent vot-
ing metadata. References have a time-to-live value, so they are removed in case
peers stop (re)publishing them.

Storage Role: A storage peer stores and periodically (re)publishes documents.
Publishing is carried out by searching for trackers responsible for a particular
document-id and storing addresses of storage peers and metadata. These docu-
ments are stored by peers that either created or viewed them.

User Role: A user interacts via a user interface with its user peer. The role
of the user peer is to search for, download, and display documents. A search
is carried out by searching trackers responsible for a particular document-id.
These trackers reply with references to storage peers from which a user peer can
download this document. If user peers publish downloaded documents, they also
become storage peers.

Editor Role: An editor peer proposes modifications to a document. The editor
hands over the change proposal to the mediator peer, which initiates the voting
session.

Mediator Role: A mediator peer is responsible for a voting session. After a
modification to a document is proposed, the mediator contacts its voting peers
and requests them to review and sign the result. If a majority of those voters
approve the change, the modified document is published. In the publishing pro-
cess, references and the voting metadata are stored on tracker peers.

Voter Role: A voter peer can vote exactly once on a modification proposal.
Allowed voters are editors of previous modifications of this document or editors
with many approved votes.

3.3 Voting Algorithm and Data Structure

A voting session is initiated when an editor submits a proposal and becomes a
mediator. As a mediator, it starts the voting phase by sending the proposal to all
previous editors or to editors with many edits, if no previous editors exist in case
of a new document. These editors can vote, if the change shall be accepted. The
voting session is open for a specific amount of time. During this time, voters can
review and vote for or against the change. If a voter does not vote, it is considered
as a negative vote. Thus, there are no benefits of avoiding to contact peers for
a review. A vote is accepted, if signed voting results reach a threshold. Figure 2
shows the pseudo code for the voting scheme, with the methods voting() and
incoming(). The voting method is used by a mediator to start a voting session,
while the incoming method is called on voting peers (previous editors).

In a decentralized system, it is important to take measures against dropping
votes, i.e., when a mediator ignores negative votes. For example, if a mediator

60 T. Bocek et al.

//start voting session
voting(Document d, time t) {

//previous editor are stored in metadata
MetaData m=d.getMetaData();
List resultVotes;
//ask previous editors to review document
for editor in m.previousEditors() {

resultVotes.add(requestReview(editor,d));
}
//this is blocking, use a thread and a
//future object to make it non-blocking
wait(t);
return resultVotes;

}
//handle incoming voting requests
incoming(Voterequest r, Document d) {

//display a popup for the user
notifyUser();
//ask the user to vote for or against
boolean vote=displayAndReview(d);
if(vote) {

result=sign(d.getMetaData())
//reply sends the result to the requester
r.reply(result)

}
else {

//reply sends null to the requester,
//which means that the modification
//was not approved
r.reply(null)

}
}

Fig. 2. Voting scheme pseudo code

//verify the metadata before
//adding to storage
addAndVerify(MetaData m1, PeerAddress n) {

MetaData copyM1 = m1;
MetaData m2=latestLocalMetaData()
while (true) {
//checks if version matches and previous
//editors are in place
if (isNextVersion(copyM1, m2)) {

setLatestVersion(copyM1)
//reached latest
if (copyM1.equals(m1)) {

//verification successful
return true;

}
//start from the beginning
m2 = copyM1;
copyM1 = m1;

}
else {

copyM1 = copyM1.getPreviousMetaData();
if (copy == null) {

//reached first versios
break;

}
}

}
//verification failed
return false;

}

Fig. 3. Voting metadata verification

receives 98 negative votes and 2 positive votes, dropping 97 negative votes gets
the modification accepted. One way of dealing with this is to introduce a thresh-
old for a minimum number of votes for a valid outcome. Another way is to count
no votes as negative votes and use a threshold for the positive votes to determine
the voting outcome. PeerVote uses the second approach, thus dropping negative
votes does not change the voting outcome.

Storage and user peers need to evaluate the voting metadata to detect un-
reviewed changes. The information required for this evaluation is stored in the
voting metadata. The voting metadata in PeerVote consists of versioning in-
formation, hash code of the content of the document, document-id, and signed
voting results. The document-id is constant for all changes on the same base
document. The voting metadata has the structure as shown in Table 2.

It is important to verify the consistency of previous voting sessions. Otherwise,
a malicious peer could replace, add, or drop signatures to pretend to have less
editors or to be a previous editor. Thus, voting metadata is verified with the

Table 2. Voting metadata structure and example values

Nr Version Document-id Hash Signatures (Signature, Peer-id) Previous

#1 1 0x123 0x234 (0x134,0x456)

#2 2 0x123 0x235 (0x135,0x456) (0x136,0x567) #1

PeerVote: A Decentralized Voting Mechanism for P2P Collaboration Systems 61

following rules. Each version can have at most one new editor, a new version
contains all peer-ids of previous editors, and all versions have the signed results
of the voting sessions. These rules are verified as shown in Figure 3, which
shows the pseudo code for verification of voting metadata. The voting scheme
uses public-key cryptography for peer identification and signatures to prevent
forgery. A public key is exchanged on first contact.

In such a decentralized system, peers can modify documents concurrently, be-
cause they operate independently. Concurrency in this voting scheme for change
proposals uses a first come, first served scheme. This means that for conflicting
changes, the peer that collected the votes first, publishes the change proposal
and all other conflicting change proposals with the same version number are
discarded. The user which submitted the failed change proposal is notified and
can update to the latest version of the document and propose the change again.

3.4 Voting Scheme Example

The following example explains the design and the pseudocode, presented in
Figure 3 with example values. While the new document (#1) in Table 2 with
document-id 0x123 and hash value 0x234 has no reference to previous metadata,
the modified document (#2) has a reference to (#1), which means that (#2) is
based on (#1). For the modified document (#2), the hash value 0x235 changed,
because of the modified content. The signature in the new document (#1) is
based on the hash value 0x234 to confirm that its content was approved by peer
with peer-id 0x456. This signature belongs to peer 0x456 in this example. All
signatures of the modified document (#2) show that two voters have approved
this modification, the original editor, and a second editor with peer-id 0x567.
The signature for document #2 is based on the hash 0x235.

4 Implementation and Evaluation

PeerVote has been implemented in a P2P collaboration application, which
has the primary focus on evaluating generic decentralized collaboration. Thus,
the simulation does not focus on parameters for specific applications such as
Wikipedia. This P2P collaboration application is based on TomP2P [2], a Dis-
tributed Hash Table (DHT) and tracker implementation.

4.1 P2P Collaboration Application Implementation

The P2P collaboration application supports document publishing, document
downloading, and document modifying using a tracker-based approach. Publish-
ing a new document requires first to search for a tracker with a peer-id closest
to the document-id. A tracker is responsible for storing voting metadata and
document references to storage peers. For new documents, the voting metadata
is filled and stored with the reference to the storage peer on the tracker. A new
document is accepted without any further validation because it is assumed that
a new document is never published by a malicious peer.

62 T. Bocek et al.

Downloading a document starts with searching for trackers with a peer-id
close to the document-id. These trackers contain addresses of peers that store
the document. After those trackers are found, addresses and voting metadata
are downloaded. The addresses from the trackers are used to download the doc-
ument.

After a document is modified, all previous editors are requested to review the
change. All voting peers that are online answer this request as described in the
incoming method in the pseudo code of Figure 2. If a sufficient number of voters
have signed the modified document, the document is published. For publishing
a modified document, the tracker verifies voting metadata as described in the
addAndVerify method (cf. Figure 3). If the verification is successful, the refer-
ence to the modified document and voting metadata is stored. Further search
requests to this tracker return the modified metadata and its reference to the
storage peer.

4.2 Simulation and Experimental Settings

Simulations and experiments have been run to investigate scalability, fault-
tolerance, and robustness. This has been performed by using various combina-
tions of the following parameters: number of peers, number of malicious peers,
number of voting sessions, and number of change proposals. Since user-based vot-
ing in P2P collaboration applications have not been studied before, parameters,
such as churn (10%), concurrency (50%), and number of publishing peers (10%,
20%, 30%), have been selected. Malicious peers can propose incorrect modifica-
tions, vote against correct modifications, or vote randomly. Malicious peers that
vote randomly simulate users that vote without reviewing, because users may
pretend to be active without investing resources for reviewing. A random voting
peer votes with a probability of 50% for and with a probability of 50% against
it. Malicious peers that propose incorrect modifications simulate users that in-
tend to publish unsuitable information, e.g., spam or contradicting information.
Malicious peers that vote against correct proposals simulate colluding peers. A
malicious vote is always detected because malicious modifications are marked
as such and considering different opinions on modifications is not supported. In
the current setting, the voting metadata is not verified by user peers, because
malicious storage peers are not implemented. New documents do not have wrong
information regardless of the publishing peer being malicious. A voting session
lasts at most 45 seconds and a peer replies, if online, within 10 seconds to finish
the simulation and experiments in a reasonable time. The voting meta data is
accumulated during these changes. There is a 50% chance for peers to propose
changes concurrently in a voting session. Currently, in the P2P collaboration
application changes based on the same version are always conflicting and never
merged.

Signatures are required to sign the result of a voting session. The current
implementation generates a hash of the modified data as a replacement for the
signature, because signing and verifying is CPU intensive and many peers are
simulated on one machine, which makes the CPU a bottleneck. Since malicious

PeerVote: A Decentralized Voting Mechanism for P2P Collaboration Systems 63

peers do not exploit this, a signature can be verified by hashing the modified
data. Thus, a distribution of public keys is not required.

PeerVote’s evaluations are based on more than 1,000 peers. Churn has been set
to 10%, which means that peers fail to reply in 10% of the time. Experiments and
simulations have been run 10 times each and the averages have been calculated
including the standard deviation.

All simulations have been performed on 2 Intel(R) Xeon(R) quad-core CPUs,
2.83GHz, with a Java HotSpot(TM) 64-Bit Server VM (build 11.2-b01, mixed
mode). The parameters set for the simulation with Java were -d64 -Xmx10G,
which allows to run in 64bit mode and use 10 GB RAM. The simulation re-
quired 2 days to complete. All experiments were run on 14 EMANICSLab [10]
machines. EMANICSLab is a research network established among European re-
search partners and consists of 7 different partner sites. The hardware used in
EMANICSLab is heterogeneous with different CPU models and RAM sizes. The
experiment required 2.5 days to complete.

4.3 Results and Discussion

Figure 4 shows the accumulated number of DHT and voting messages per peer
with an increasing number of peers, from 100 to 1000. The number of published
documents is set to 10%, 20%, and 30% respectively, proportional to the number
of peers, which means that for 20% and 100 peers, 20 documents are published,
for 1000 peers, 200 documents are published. A document is changed 2 times.
All change proposals are carried out by 30% of the peers. This means that for
100 peers, 30 change proposals are submitted for 20 documents. Thus, some
proposals are submitted concurrently. Malicious peers are not present in this
simulation. Figure 5 shows the accumulated number of voting messages per peer
with increasing number of peers using the aforementioned parameters.

Figure 4 indicates a logarithmic behavior for all three curves. Furthermore,
Figure 5 shows a constant number of messages from 100 to 1,000 peers, and
that the number of voting messages doubles if the publishing peers double. This
indicates that the voting algorithm is scalable with an increasing number of
peers. While the voting messages have a small number of messages (maximum of
4.75), the overall number of messages, including DHT overhead have a maximum
of 575. Thus, this indicates that the DHT overhead contributes most to the
number of messages.

Figure 6 shows the graph for voting traffic with an increasing number of
documents, from 10% to 100% proportional to the number of peers. The number
of peers shown are 400, 500, and 600. Voting parameters are set as described in
the previous simulation. Malicious peers are not present. Figure 7 shows a graph
for voting traffic with an increasing number of change proposals with the same
settings as for Figure 6.

Both figures show for 400, 500, and 600 peers, that the 3 traffic graphs overlap.
This indicates that the voting traffic is independent of the number of peers. The
voting traffic is dependent on the number of documents (Figure 6) and the
number of change proposals (Figure 7).

64 T. Bocek et al.

Fig. 4. Number of voting and DHT messages per peer

Fig. 5. Number of voting messages per peer

Figure 6 shows that traffic increases with linear complexity for an increasing
number of peers proposing a change, while Figure 7 shows that traffic increases
with polynomial complexity for an increasing number of change proposals per
peer. The graph in Figure 7 is explained due to the increasing number of previous
authors, which increase the message size and also the number of messages, be-
cause all previous peers need to be contacted. Thus, the list of previous authors
for a document needs to have a fixed capacity.

PeerVote: A Decentralized Voting Mechanism for P2P Collaboration Systems 65

Fig. 6. Voting traffic for increasing number of proposing peers

Fig. 7. Voting traffic for increasing change proposals per peer

To evaluate malicious behavior, up to 50% malicious peers have been simu-
lated. Figure 8 shows an increasing number of malicious peers. The number of
peers are set to 500. The number of published documents is set to 100. Both
graphs are decreasing and start at 100% correct documents. The more malicious
peers join, the more incorrect changes are present. The graph with random votes
(Figure 8) has less incorrect changes compared to the graph with malicious votes.
For 50% of malicious peers (250 peers), 65% correct documents are stored, while
for 50% of random voting peers, 82% correct documents are stored. More than

66 T. Bocek et al.

Fig. 8. Effect on documents with malicious and randomly voting peers

Fig. 9. Experiment on EMANICSLab and simulation comparison

half of the documents are correct, because the initial document is always correct,
regardless if a peer is malicious or not.

Figure 9 shows the comparison of those simulation results above with the
experimental results from the EMANICSLab implementation. Both settings have
from 300 to less than 1,100 peers and 20% published documents. Two changes
are proposed and the graph shows the number of DHT and voting messages.

The number of messages for the DHT and voting messages is higher on
EMANICSLab, which is also observed for other comparisons. The higher message

PeerVote: A Decentralized Voting Mechanism for P2P Collaboration Systems 67

number is due to peers on EMANICSLab, which may fail to reply or which send
a reply too late, because of other CPU or network intensive experiments running
on EMANICSLab nodes. The larger error bars for EMANICSLab experiments
also reflect this.

5 Summary, Conclusions, and Future Work

This paper presented PeerVote, a decentralized voting mechanism in a P2P col-
laboration application. Experiments and simulations with a prototypical imple-
mentation showed that PeerVote is scalable and robust, even in the presence of
random and malicious voting peers. Evaluations showed that overall traffic in-
creases logarithmically and that voting messages are independent on the number
of peers. Furthermore, experiments on EMANICSLab showed that the algorithm
deployed in a real network has similar traffic characteristics as in the simulation.

PeerVote considers no votes as negative votes, using a threshold to deter-
mine the voting outcome. The threshold has to be set on a per-application basis
because an optimal value for this threshold depends on the application. Each ap-
plication and its user may have a different social contract, which defines the ways
how users act. If a social contract defines a loosely-coupled collaboration with
voluntary contribution, it may see fewer responses to voting requests than in a
tightly-coupled collaboration, where contributions are compulsory. Thus, e.g., in
a loosely-coupled online collaboration application the threshold has to be set to
a lower value than in a tightly-coupled scientific collaboration application.

In contrast to P2P recommendation systems, which are typically used for
recommending complete documents, PeerVote is used for managing changes of a
document in a decentralized collaboration application. PeerVote allows previous
authors to review changes. However, new documents and early proposals are
prone to malicious behavior because only few or none previous editors exist.
A possible solution is to combine a recommendation system with PeerVote. A
second issue is that authors can block changes forever, if they do not respond
to a review request. If for a first change proposal the previous author does
not respond, then a majority is never reached. Furthermore, for old documents,
previous authors may not be as responsive as for newer documents. Thus, such
a threshold needs to be time-based, where old documents need less votes for a
change. A third issue is that the list of previous authors grows, resulting in a
polynomial traffic. This could be solved by limiting the capacity of this list.

The voting mechanism is not Sybil attack [9] proof, since it does not prevent
a user from acquiring multiple peer identities. Mechanisms to prevent or detect
acquisition of multiple identities have to be implemented. Such mechanisms may
be implemented with certificates binding peer identifiers to real-world identities,
either with a trusted third part or with a web of trust. Another mechanism to
limit multiple identities is by exchanging or paying with resources to participate
or not be excluded [4].

Future work will investigate how the PeerVote mechanism can be combined
with an incentive scheme. With such a combination, each vote can be traded

68 T. Bocek et al.

to encourage peers to review changes or to store and provide documents. Fur-
ther work will also investigate PeerVote in other application domains. In other
application domains more voting choices could be offered to voters.

Acknowledgements. This work has been performed partially in the framework
of the EU IST Project EC-GIN (FP6-2006-IST-045256) as well as the EU IST
NoE EMANICS (FP6-2004-IST-026854). Many thanks go to Lennart Svensson,
who did initial work on this topic in his Master’s thesis [22].

References

1. Adler, T.B., de Alfaro, L.: A content-driven reputation system for the wikipedia.
In: Proceedings of the 16th international conference on World Wide Web (WWW
2007), New York, NY, USA, pp. 261–270 (2007)

2. Bocek, T.: TomP2P - A Distributed Multi Map (2009),
http://www.csg.uzh.ch/publica-tions/software/TomP2P

3. Bocek, T., Stiller, B.: Peer-to-Peer Large-scale Collaborative Storage Networks.
In: Bandara, A.K., Burgess, M. (eds.) AIMS 2007. LNCS, vol. 4543, pp. 225–228.
Springer, Heidelberg (2007)

4. Castro, M., Druschel, P., Ganesh, A., Rowstron, A., Wallach, D.S.: Secure rout-
ing for structured peer-to-peer overlay networks. SIGOPS Operating Systems Re-
view 36(SI), 299–314 (2002)

5. Cetintemel, U., Keleher, P.J.: Light-Weight Currency Management Mechanisms in
Deno. In: Proceedings of the 10th International Workshop on Research Issues in
Data Engineering (RIDE), San Diego, CA, USA, February 2000, pp. 17–24 (2000)

6. Chaum, D.: Blind signature system. In: CRYPTO 1983: Advances in Cryptology,
New York, USA, p. 153 (1983)

7. Cohen, B.: Incentives Build Robustness in BitTorrent. In: Proceedings of the 1st
Workshop on Economics of Peer-to-Peer Systems (P2PECON), Berkeley, CA, USA
(June 2003)

8. Dabek, F., Kaashoek, M.F., Karger, D., Morris, R., Stoica, I.: Wide-area coopera-
tive storage with CFS. In: Proceedings of the 18th ACM Symposium on Operating
Systems Principles (SOSP), Chateau Lake Louise, Ban (October 2001)

9. Douceur, J.R.: The sybil attack. In: Druschel, P., Kaashoek, M.F., Rowstron, A.
(eds.) IPTPS 2002. LNCS, vol. 2429, pp. 251–260. Springer, Heidelberg (2002)

10. EMANICSLab, http://emanicslab.csg.uzh.ch/
11. Gifford, D.K.: Weighted Voting for Replicated Data. In: Proceedings of the 7th

ACM Symposium on Operating Systems Principles (SOSP), pp. 150–162 (1979)
12. Gray, J.: Notes on data base operating systems. In: Flynn, M.J., Jones, A.K.,

Opderbeck, H., Randell, B., Wiehle, H.R., Gray, J.N., Lagally, K., Popek, G.J.,
Saltzer, J.H. (eds.) Operating Systems. LNCS, vol. 60, pp. 393–481. Springer, Hei-
delberg (1978)

13. Hardekopf, B., Kwiat, K., Upadhyaya: Secure and Fault-Tolerant Voting in Dis-
tributed Systems. In: Proceedings of the 2001 IEEE Aerospace Conference, Big
Sky, Montana, USA, March 2001, vol. 3 (2001)

14. Korsgaard, T., Jensen, C.: Reengineering the Wikipedia for Reputation. In: Pro-
ceedings of the 4th International Workshop on Security and Trust Management
(STM 2008), Trondheim, Norway, June 2008, pp. 71–84 (2008)

http://www.csg.uzh.ch/publica-tions/software/TomP2P
http://emanicslab.csg.uzh.ch/

PeerVote: A Decentralized Voting Mechanism for P2P Collaboration Systems 69

15. Kubiatowicz, J., Bindel, D., Chen, Y., Eaton, P., Geels, D., Gummadi, R., Rhea,
S., Weatherspoon, H., Weimer, W., Wells, C., Zhao, B.: OceanStore: An Architec-
ture for Global-scale Persistent Storage. In: Proceedings of the 9th international
Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS 2000), Cambridge, MA, USA (November 2000)

16. Maymounkov, P., Mazières, D.: Kademlia: A peer-to-peer information system based
on the XOR metric. In: Druschel, P., Kaashoek, M.F., Rowstron, A. (eds.) IPTPS
2002. LNCS, vol. 2429, p. 53. Springer, Heidelberg (2002)

17. Morris, J.C., Lüer, C.: DistriWiki: A Distributed Peer-to-Peer Wiki. In: Proceed-
ings of the 2007 International Symposium on Wikis (WikiSym 2007), Montreal,
Quebec, Canada, October 2007, pp. 69–74 (2007)

18. Mukherjee, P., Leng, C., Schürr, A.: Piki - A Peer-to-Peer based Wiki Engine. In:
Proceedings of the 2008 8th International Conference on Peer-to-Peer Computing
(P2P 2008), Washington, DC, USA, September 2008, pp. 185–186 (2008)

19. Rodrig, M., LaMarca, A.: Decentralized weighted voting for P2P data management.
In: Proceedings of the 3rd ACM international workshop on Data engineering for
wireless and mobile access (MobiDe 2003), San Diego, CA, USA, pp. 85–92 (2003)

20. Rowstron, A., Druschel, P.: Pastry: Scalable, distributed object location and rout-
ing for large-scale peer-to-peer systems. In: Guerraoui, R. (ed.) Middleware 2001.
LNCS, vol. 2218, pp. 329–350. Springer, Heidelberg (2001)

21. Shamir, A.: How to Share a Secret. Communications of the ACM 22(11), 612–613
(1979)

22. Svensson, L.: Decentralized Secure and Incentive-compatible Votin in P2P Net-
works. Master’s thesis, Communication Systems Group, IFI, University of Zurich,
Switzerland (March 2007)

23. Urdaneta, G., Pierre, G., van Steen, M.: A Decentralized Wiki Engine for Collab-
orative Wikipedia Hosting. In: Proceedings of the 3rd International Conference on
Web Information Systems and Technologies (WEBIST), Barcelona, Spain (March
2007)

24. Warner, B., Wilcox-O’Hearn, Z., Kinninmont, R.: Tahoe: A Secure Distributed
Filesystem (March 2008), http://allmydata.org/~warner/pycon-tahoe.html

25. Weiss, S., Urso, P., Molli, P.: Wooki: A P2P Wiki-Based Collaborative Writing
Tool. In: Benatallah, B., Casati, F., Georgakopoulos, D., Bartolini, C., Sadiq, W.,
Godart, C. (eds.) WISE 2007. LNCS, vol. 4831, pp. 503–512. Springer, Heidelberg
(2007)

26. Wikipedia, http://www.wikipedia.org
27. Wuala, your files online, http://wua.la
28. Zattoo — TV meets PC, http://zattoo.com/

http://allmydata.org/~warner/pycon-tahoe.html
http://www.wikipedia.org
http://wua.la
http://zattoo.com/

	PeerVote: A Decentralized Voting Mechanism for P2P Collaboration Systems
	Introduction
	Related Work
	PeerVote Design
	Use Case
	Roles
	Voting Algorithm and Data Structure
	Voting Scheme Example

	Implementation and Evaluation
	P2P Collaboration Application Implementation
	Simulation and Experimental Settings
	Results and Discussion

	Summary, Conclusions, and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

