
J.A. Jacko (Ed.): Human-Computer Interaction, Part IV, HCII 2009, LNCS 5613, pp. 88–93, 2009.
© Springer-Verlag Berlin Heidelberg 2009

A Web-Based, Interactive Annotation Editor for the
eCampus Development Environment for SCORM

Compliant E-Learning Modules

Benedikt Deicke, Jan-Torsten Milde, and Hans-Martin Pohl

University of Applied Sciences Fulda
Competence Center Human Computer Interaction

hans-martin.pohl@verw.hs-fulda.de, benedikt@synatic.net,
jan-torsten.milde@informatik.hs-fulda.de

Abstract. The eCampus development environment was created in an
interdisciplinary project at the University of Applied Sciences Fulda. Today it is
a fully webbased application for the easy creation of E-Learning modules
complying the SCORM standard. The webbased, interactive annotation editor
for the eCampus development environment is used to both automatically and
manually annotate existing OpenOffice documents in order to transform them
into E-Learning modules. The editor is build using Open Source software and
frameworks such as Ruby on Rails.

Keywords: E-Learning, Web, SCORM, eCampus, OpenOffice, Ruby, Ruby on
Rails, JavaScript, user friendly, annotation, transformation.

1 Introduction

The creation of standard compliant E-Learning modules is a complex task. In order to
simplify the process, the University of Applied Sciences Fulda created the eCampus
development environment [5]. It is based on OpenDocument files which are
transformed into SCORM [1] compliant E-Learning modules using XSL
Transformations. The transformation relies on annotations added to the
OpenDocument file using OpenOffice.org [3]. Nevertheless, the handson experience
showed that the annotation process using OpenDocument styles within
OpenOffice.org is still too complicated for most of the users. With the “eCampus”
development environment now being a web-based and integrated system for the
generation of SCORM compliant E-Learning modules, the creation of an interactive,
web-based annotation editor is the next logical step. To simplify the annotation
process even more an automatic analysis and annotation process is implemented, too.

2 The eCampus Project

The research focuses on the development of a user-friendly system for writing
ELearning units, allowing authors to concentrate on the content and the didactic
concept of the unit, instead of worrying about the underlying technology. It is part of

A Web-Based, Interactive Annotation Editor for the eCampus Development Environment 89

the eCampus project at the University of Applied Sciences Fulda. In this
interdisciplinary project, content is being created for the faculties Nutritional
Sciences, Food and Consumer Sciences, Applied Computer Science, Nursing &
Health Care as well as Food Technology. Within the first years of the project, many
E-Learning modules were produced. All modules address prominent introductory
courses of the particular program of study. This was only possible by using the
eCampus framework.

The central target of the project is the implementation of a tool that decreases the
complexity of the process of learning module production. The central objectives of
the learning module production are an increase in the interactivity of the course, as
well as an increase in the quality and quantity of self learning.

3 The Tools

The annotation editor is based on the existing eCampus web application which is built
using Ruby [8] and the Ruby on Rails framework [7]. It is running as an E-Service on
a centralized server. In order to use it, the author has to create a user account. This is
required to protect uploaded documents and generated E-Learning modules from
unauthorized access.

The user interface is built using XHTML and CSS. It is enhanced by JavaScript
utilizing the Prototype and Script.aculo.us frameworks [4].

4 The Process

Using the webbased annotation editor the process of creating E-Learning modules
from OpenDocument files is condensed into five simple steps: Uploading of the
unannotated OpenDocument file, automatic analysis and annotation of the file,
manual annotation and correction of the resulting document, transformation into a
SCORM compliant E-Learning module, downloading of the finished module.

4.1 Reading and Modifying OpenDocument Files

In order to read and manipulate the OpenDocument a library has been developed. It
encapsulates the required steps within a simple API. In order to read the contents of
the document it is extracted using RubyZIP. Afterwards the content. xml file, which
contains the actual content, and the styles.xml file are parsed using Ruby’s built-in
XML library [6]. Utilizing Ruby’s dynamic nature, the library creates a class for
every node type contained in the document’s content and instantiates it as needed.
This provides the possibility to dynamically overwrite the default behavior for
specific node types.

4.2 Automatic Analysis and Annotation

The process of the automatic analysis and annotation is separated into different
annotation engines. The engines analyze every stylable element in the
OpenDocument’s content structure using different approaches. If the analysis step is

90 B. Deicke, J.-T. Milde, and H.-M. Pohl

not successful, the next annotation engine tries to analyze the current element. This is
continued until no annotation engines are left or an approach is successful and
annotates the element. This process is repeated for every annotated element of the
input text. Figure 1 visualizes this concept. Currently five annotation engines are
implemented: Keep, Tags, Styles, Bayes and Default. The Keep engine stops the
analysis chain if the element is already annotated with eCampus styles by checking
each elements formatting style. The Tags engine analyzes the type of the current
element and its context and tries to map this onto eCampus styles. For example text:h
nodes with an outline level of 1 are annotated with EC_Modul, nodes with outline
level 2 as EC_Session, etc. The Styles engine simply translates default
OpenDocument styles into eCampus styles where possible, such as Text body to
EC_Text. The Bayes engine tries to analyze the current elements style properties in
order to detect elements like headlines or important terms which were just changed
visually, but not by using using built-in OpenDocument styles. In order to achieve
this, the Bayes engine is trained with correctly annotated documents. Based on the
annotation and the visual style, the engine learns possible visual variations. While
visiting each node in the document the Bayes engine builds “sentences” from the
nodes style attributes. This results in sentences like “12pt bold italic” which are
handed to a bayes classifier that returns a corresponding eCampus style or unknown if
no style could be identified.

Fig. 1. The automatic annotation process

As well as the final transformation into a SCORM compliant E-Learning module,
the automatic analysis and annotation takes several seconds (or even minutes,
depending on the documents size) to finish. Therefore it needs to run asynchronously
in the background. This is done marking the documents as waiting for analysis in the
database. See Figure 2 for a complete overview of possible states. A separate
processes, triggered by CRON, checks for waiting documents and runs the analysis on
them. On the client side the user can see the status of the transformation. It is
automatically updated using a polling AJAX request.

A Web-Based, Interactive Annotation Editor for the eCampus Development Environment 91

Fig. 2. Possible states of a document

4.3 The Interactive, Web-Based Annotation Editor

The front end of the annotation editor for manual annotation is implemented on the
client side using JavaScript. It uses Ajax techniques [2] to save changes to the
document on the server. The GUI is designed to be simple and clean and focusses on
the important functions needed to annotate the document. Figure 3 shows a screenshot
of the final GUI. It consists of a toolbar on top, which includes buttons for navigating
through the document and buttons for saving and exiting the editor. The tooltip on the
right is used to actually annotate the currently highlighted element. The user is able to
select the desired style by selecting it from the select-box.

The JavaScript implementation is designed to be as modular as possible. It utilizes
the observer pattern to separate the various GUI components from the underlying
logic. On startup of the annotation editor, every component registers itself with the
AnnotationEditor core class. Based on the users interaction with the GUI the elements
fire events on the core class, which executes the requested functionality and fires
events on all registered components as a result. This enables the possibility of
additional annotation methods, other than the tooltip described above. Imaginable
annotation methods are: dragging and dropping the styles on the elements or a fill
format mode like known from OpenOffice or Microsoft Word.

To display the OpenOffice document it is read on the server and transformed into a
simple HTML representation. Each HTML elements relation to a node in the original
OpenOffice document is described by adding an attribute containing the nodes XPath
to the element. The nodes annotation (such as EC_Definition, EC_Section,
EC_Image, etc.) as well as its family (Paragraph, Text or Graphic) are represented
using CSS class attributes. Additional every HTML element that can be modified later
the CSS class annotatable is added.

During the manual annotation the underlying CSS class attributes identifying the
annotation are added, modified or removed. On modification of an element it gets

92 B. Deicke, J.-T. Milde, and H.-M. Pohl

marked as changed. When the user decides to save the changes, all marked elements
are collected and serialized into JSON before they are transfered to the server using
an Ajax request. On the server the JSON is deserialized and the changes are applied to
the OpenOffice document using the library described above.

Fig. 3. Screenshot of the Graphical User Interface

5 Results and Visions

The combination of a simple user interface for the annotation and the automatic
analysis and annotation process the creation of standard compliant E-Learning
modules out of existing content simplifies the creation of standard compliant E-
Learning modules. Being integrated into the eCampus web application the annotation
editor inherits useful features like easy updating and extending. The annotation editor
completes eCampus to a full web based development environment for SCORM
compliant E-Learning modules.

Future development could include the possibility to rearrange elements within the
document or even change the content. Additionally the current user interface needs to
be fully evaluated during end-user tests. As described above other annotation methods
could be implemented as well. Furthermore the automatic annotation engines offer a
broad scope for new additions.

References

1. ADL. Scorm, http://www.adlnet.gov/scorm/
2. Garret, J.J.: Ajax: A new approach to web applications (August 5, 2008),

http://www.adaptivepath.com/ideas/essays/archives/000385.php
3. OpenOffice.org. The free and open productivity suite,

http://www.openoffice.org/
4. Porteneuve, C.: Prototype and script.aculo.us. The Pragmatic Programmers, 1st edn. (2007)

A Web-Based, Interactive Annotation Editor for the eCampus Development Environment 93

5. Pohl, H.-M., Tulinska, P., Milde, J.-T.: Efficient creation of multi media eLearning
modules. In: Smith, M.J., Salvendy, G. (eds.) HCII 2007. LNCS, vol. 4558, pp. 457–465.
Springer, Heidelberg (2007)

6. REXML. Ruby standard library documentation (August 18, 2008),
http://www.rubydoc.org/stdlib/libdoc/rexml/rdoc/index.html

7. Thomas, D., Heinemeier-Hannson, D.: Agile Web Development With Ruby On Rails, 1st
edn. The Facets Of Ruby Series. The Pragmatic Programmers (2005)

8. Thomas, D.: Programming Ruby - The Pragmatic Programmers’ Guide, 2nd edn. The
Pragmatic Programmers (2005)

	A Web-Based, Interactive Annotation Editor for the eCampus Development Environment for SCORM Compliant E-Learning Modules
	Introduction
	The eCampus Project
	The Tools
	The Process
	Reading and Modifying OpenDocument Files
	Automatic Analysis and Annotation
	The Interactive, Web-Based Annotation Editor

	Results and Visions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

