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1   Introduction 

Many decisions that are required for efficient results with modern systems need to be 
made without human intervention. For example, driving a Mars rover remotely from 
Earth is not practical because the sensor information from Mars takes tens of minutes 
to reach Earth and it takes equally long for the steering commands to reach the rover. 
Another example would be taking defensive action in case of cyber attacks: a human 
will not be able to understand the situation and make a (informed) decision in a 
fraction of a second. Therefore, computers must make these necessary decisions. At 
the same time we want that the computer-made decisions would be at least as reliable 
as the one that an intelligent person would make (if he/she would be able to do that). 

This brings us to the point that the decision making computer must possess logical 
instruments: logic formulas (for formulating propositions) and logic inference rules 
(for constructing an argument). A problem in this case is that a number of different 
logic systems are in use. For example, classical logic is suitable for operating with 
legal arguments, while intuitionistic logic [16, 17] can be used for structural program 
synthesis. One of the ways to distinguish the various logic systems is to use inference 
rules and the corresponding inference steps. In information technology the inference 
rules (using inference steps to move between formulae) are implemented in software 
[1, 2]. However, this does not have to be the only viable option. It is not excluded, in 
principle, that some of the inference steps could be more efficiently implemented at 
the hardware level. For this we would first need to develop instruments that allow the 
separation of logical constructs, such as formulas and inference steps, from natural 
language [6, 10-14]. We could then proceed to implement these constructs with 
digital circuits using logic gates [5]. 
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2   Inference Steps and Implications in Logic Gate Circuits 

Let us agree that within this paper we rely on the classic bivalent logic and that we 
will stay in the confines of first-order predicate calculation. In this case we can use 
the fact that each correct inference step corresponds to a correct implication, which 
has the conjunction of the premises of the inference step as an antecedent and the 
formula of the conclusion of the inference step as a result [6]:  

M  P  …   Q               - inference step,  

                                           R 

 (M&P& … &Q)⊃R   - corresponding implication. 

(1) 

From this point on the implication representing an inference step will be matched 
with a two-part digital circuit, where the first part (above the dotted line on drawings) 
represents the conjunction of the premises of the inference step M&P& ... &Q, and 
the second part represents the formula R. 

Note. In bivalent logic the implication can be replaced by the disjunction of the 
negation of the antecedent and the result (for example, the implication X⊃Y can be 
replaced with the disjunction ¬X∨Y). We did not use such replacements above! 
Therefore, for example, the Modus Ponens inference step is not represented with the 
formula ¬(A&(¬A∨B))∨B, but with a two part circuit, where the first part represents 
the formula A&(¬A∨B) and the second part represents the formula B. 

The solution described above allows for representing inference steps with 
traditional digital circuits composed of three types of logic gate elements: negation, 
conjunction and disjunction. As explained previously, each circuit is divided into two 
parts, where the first part represents the list of premises and the second part represents 
the conclusion formula. The use of the inference step therefore corresponds to moving 
from the first part of the circuit to the second part. A separate problem in here is 
creating such circuits as well as suitable visualization software, which was not as 
simple as it first appeared. 

3   An Algorithm for Using Logic Gates to Design a Digital Circuit 
That Represents Inference Steps 

While designing a digital circuit we assume that as we move from left to right in the 
formula all signals must have reached the corresponding gates. In order to guarantee 
this property, we will change the formula (and sub-formulas) as necessary: 

− If the formula contains a conjunction that is not in parentheses and immediately before 
or after it are other operations then the conjunction must be surrounded by parentheses.  

− For example we replace the formula A ∨ B & C ⊃ D with the formula A ∨ (B & C) ⊃ D 
− If the formula contains sub-formulas or their negations then we nest the 

components from left to right in successive parentheses. 
− For example we replace the formula ¬A & B & ¬C & D with the formula (((¬A & B) 

& ¬C) & D). We use an analogous process in a formula consisting of only disjunctions. 
− If conjunctions (disjunctions) contain sub-formulas of various lengths (including 

negations or “quantifications” of formulas) then we arrange them from left to right 
by order of decreasing length (number of symbols).   
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− For example we replace the formula ( Δ ∨ Γ ) & ( ¬Α & Γ ) ∨ ( ( Α & Β ) & Χ ) with 
the formula ( ( Α & Β ) & Χ ) ∨ ( ¬Α & Γ ) & ( Δ ∨ Γ ). 

− We replace implications with applicable formulas consisting of negations, 
conjunctions and disjunctions. For example we replace the formula X⊃Y with the 
formula ¬X∨Y. 

− If following the rearrangements there is a negation at the right end of the formula 
then we surround it with parentheses. For example we replace Δ&¬B with Δ&(¬B). 
If there are two conjunctions or two disjunctions without parentheses at the right end 
of the formula, then we surround them with parentheses. For example we replace Δ 
& A & B with  Δ & ( A & B ). Similarly, we replace Δ ∨ A ∨ B with  Δ ∨ ( A ∨ B ). 

− The final change is perhaps the most unusual. We write the negation symbol after 
the formula in question, not before. For example, we replace ¬C with C¬.  

The described changes enable the use of the algorithm in Figure 1.  

 
Fig. 1. The algorithm for designing an inference step 
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Using the algorithm in figure 1 we get the following circuit for the Modus Ponens 
inference step: 

 

 

Fig. 2. “Digital” Modus Ponens 

By introducing the universal quantifier to the rule [3] 

       ( Α(β) & Γ ) ⊃ Δ         
( ∀ξ Α(ξ) & Γ ) ⊃ Δ 

(2) 

we get the following digital circuit: 

 
Fig. 3. Digital circuit of the univeral quantifier rule (∀+→)  
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4   Circuits in Practice 

The logic module of decision system could consist of the following components: 

− a binary matrix of notation-denotation (symbol-meaning) relations, where rows 
represent notation (symbols, signs) and columns represent denotation (meaning). 
The intersections contain markers (for example 1 or 0) that indicate that the 
corresponding notation applies to the denotation (or not). It is important to 
remember, that according to Lorents [7-9] some notations may have multiple 
denotations, and some denotations may have multiple notations; 

− the set of correct formulas; 
− the set of inference rules. 

Before implementing the inference steps by using digital circuits, the data in the 
role of predicates must be inserted. In order to achieve this, the relation between 
formulas and digital logic gates must be established. Since classically there are two 
possible truth values 1 and 0 (or true and false) and each logic gate also has two 
values 1 and 0 (or High Voltage (+5V) and Low Voltage (0V)), then it is natural to 
connect the gates in a way that correct atomal formulas are represented by the signal 
“1”. Non-atomal formulas should be treated in the following way: 

− Identify the part of the circuit that corresponds to the non-atomal formula in 
question; 

− Identify the input points (corresponding to the atomal formulas) for that specific 
circuit part; 

− Identify an input signal combination for the above input gates that produces “1” as 
an output for that circuit part. 

This way we can provide the necessary input signals to the (upper) part of digital 
circuits, which corresponds to the predicates of the inference step. 

The construction of decision may take the simple form of “fitting” puzzle pieces, 
where the “suitable” premise set of an inference rule allows the rule to be matched to 
a combination of existing formulas that normally do not involve more than a few 
formulas. 

5   Advantages of the Proposed Circuits 

While creating decision making systems (that are based on, for example, binary 
decision diagrams (BDD), negation normal form (NNF), propositional directed 
asyclic graph (PDAG), etc.) data structures related to Boolean functions are often 
used. The logical operations used to form decisions are simple: AND, OR, NOT. In 
recent years, several problems have surfaced in solutions relying on neural networks 
or graphs. This does not mean that these methods should be cast aside (for example, 
neural networks have advantages in modeling non-linear characteristics of sample 
data – [4]). However, systems based on implementing inference steps with digital 
circuits also have advantages. One source of these advantages is the ability to include 
“regular” operations (AND, OR, NOT), as well as other operations (implication, etc.) 
and quantifiers. Second and more important advantage is the possibility to notably 
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“shorten” the decision making process (it is well known from logic studies that 
manipulating with the rules may sometimes allow an exponential (!) decrease in the 
number of inference steps). 

6   Conclusion 

The described digital circuits consisting of logic gates are not the only way to 
represent inference steps. In principle, using special transformations one could 
implement them in neural networks [15] or other circuits. The important part here is 
how to implement logical inference steps in hardware based on the logical constructs 
extracted from natural language. It is possible that a similar implementation is present 
in the human brain, which allows us to use  logical constructs, including the ability to 
formulate propositions and to come up with the correct conclusion. 
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