
M.J. Smith and G. Salvendy (Eds.): Human Interface, Part II, HCII 2009, LNCS 5618, pp. 178–184, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Representing Logical Inference Steps with Digital
Circuits

Erika Matsak

Tallinn University, Department of Computer Science, 25 Narva Road, 10120 Tallinn, Estonia
and

Tallinn University of Technology, Department of Computer Engineering, Raja 15, 12618
Tallinn, Estonia

erika.matsak@tlu.ee

Abstract. The use of inference steps in natural language reasoning is observed.
An algorithm is presented for representing logically correct inference steps with
digital circuits. New foundations for creating decision making systems are
studied.

Keywords: Logical inference steps, logic gates, digital circuits representing
logical inference steps.

1 Introduction

Many decisions that are required for efficient results with modern systems need to be
made without human intervention. For example, driving a Mars rover remotely from
Earth is not practical because the sensor information from Mars takes tens of minutes
to reach Earth and it takes equally long for the steering commands to reach the rover.
Another example would be taking defensive action in case of cyber attacks: a human
will not be able to understand the situation and make a (informed) decision in a
fraction of a second. Therefore, computers must make these necessary decisions. At
the same time we want that the computer-made decisions would be at least as reliable
as the one that an intelligent person would make (if he/she would be able to do that).

This brings us to the point that the decision making computer must possess logical
instruments: logic formulas (for formulating propositions) and logic inference rules
(for constructing an argument). A problem in this case is that a number of different
logic systems are in use. For example, classical logic is suitable for operating with
legal arguments, while intuitionistic logic [16, 17] can be used for structural program
synthesis. One of the ways to distinguish the various logic systems is to use inference
rules and the corresponding inference steps. In information technology the inference
rules (using inference steps to move between formulae) are implemented in software
[1, 2]. However, this does not have to be the only viable option. It is not excluded, in
principle, that some of the inference steps could be more efficiently implemented at
the hardware level. For this we would first need to develop instruments that allow the
separation of logical constructs, such as formulas and inference steps, from natural
language [6, 10-14]. We could then proceed to implement these constructs with
digital circuits using logic gates [5].

 Representing Logical Inference Steps with Digital Circuits 179

2 Inference Steps and Implications in Logic Gate Circuits

Let us agree that within this paper we rely on the classic bivalent logic and that we
will stay in the confines of first-order predicate calculation. In this case we can use
the fact that each correct inference step corresponds to a correct implication, which
has the conjunction of the premises of the inference step as an antecedent and the
formula of the conclusion of the inference step as a result [6]:

M P … Q - inference step,

 R

 (M&P& … &Q)⊃R - corresponding implication.

(1)

From this point on the implication representing an inference step will be matched
with a two-part digital circuit, where the first part (above the dotted line on drawings)
represents the conjunction of the premises of the inference step M&P& ... &Q, and
the second part represents the formula R.

Note. In bivalent logic the implication can be replaced by the disjunction of the
negation of the antecedent and the result (for example, the implication X⊃Y can be
replaced with the disjunction ¬X∨Y). We did not use such replacements above!
Therefore, for example, the Modus Ponens inference step is not represented with the
formula ¬(A&(¬A∨B))∨B, but with a two part circuit, where the first part represents
the formula A&(¬A∨B) and the second part represents the formula B.

The solution described above allows for representing inference steps with
traditional digital circuits composed of three types of logic gate elements: negation,
conjunction and disjunction. As explained previously, each circuit is divided into two
parts, where the first part represents the list of premises and the second part represents
the conclusion formula. The use of the inference step therefore corresponds to moving
from the first part of the circuit to the second part. A separate problem in here is
creating such circuits as well as suitable visualization software, which was not as
simple as it first appeared.

3 An Algorithm for Using Logic Gates to Design a Digital Circuit
That Represents Inference Steps

While designing a digital circuit we assume that as we move from left to right in the
formula all signals must have reached the corresponding gates. In order to guarantee
this property, we will change the formula (and sub-formulas) as necessary:

− If the formula contains a conjunction that is not in parentheses and immediately before
or after it are other operations then the conjunction must be surrounded by parentheses.

− For example we replace the formula A ∨ B & C ⊃ D with the formula A ∨ (B & C) ⊃ D
− If the formula contains sub-formulas or their negations then we nest the

components from left to right in successive parentheses.
− For example we replace the formula ¬A & B & ¬C & D with the formula (((¬A & B)

& ¬C) & D). We use an analogous process in a formula consisting of only disjunctions.
− If conjunctions (disjunctions) contain sub-formulas of various lengths (including

negations or “quantifications” of formulas) then we arrange them from left to right
by order of decreasing length (number of symbols).

180 E. Matsak

− For example we replace the formula (Δ ∨ Γ) & (¬Α & Γ) ∨ ((Α & Β) & Χ) with
the formula ((Α & Β) & Χ) ∨ (¬Α & Γ) & (Δ ∨ Γ).

− We replace implications with applicable formulas consisting of negations,
conjunctions and disjunctions. For example we replace the formula X⊃Y with the
formula ¬X∨Y.

− If following the rearrangements there is a negation at the right end of the formula
then we surround it with parentheses. For example we replace Δ&¬B with Δ&(¬B).
If there are two conjunctions or two disjunctions without parentheses at the right end
of the formula, then we surround them with parentheses. For example we replace Δ
& A & B with Δ & (A & B). Similarly, we replace Δ ∨ A ∨ B with Δ ∨ (A ∨ B).

− The final change is perhaps the most unusual. We write the negation symbol after
the formula in question, not before. For example, we replace ¬C with C¬.

The described changes enable the use of the algorithm in Figure 1.

Fig. 1. The algorithm for designing an inference step

 Representing Logical Inference Steps with Digital Circuits 181

Using the algorithm in figure 1 we get the following circuit for the Modus Ponens
inference step:

Fig. 2. “Digital” Modus Ponens

By introducing the universal quantifier to the rule [3]

 (Α(β) & Γ) ⊃ Δ
(∀ξ Α(ξ) & Γ) ⊃ Δ

(2)

we get the following digital circuit:

Fig. 3. Digital circuit of the univeral quantifier rule (∀+→)

182 E. Matsak

4 Circuits in Practice

The logic module of decision system could consist of the following components:

− a binary matrix of notation-denotation (symbol-meaning) relations, where rows
represent notation (symbols, signs) and columns represent denotation (meaning).
The intersections contain markers (for example 1 or 0) that indicate that the
corresponding notation applies to the denotation (or not). It is important to
remember, that according to Lorents [7-9] some notations may have multiple
denotations, and some denotations may have multiple notations;

− the set of correct formulas;
− the set of inference rules.

Before implementing the inference steps by using digital circuits, the data in the
role of predicates must be inserted. In order to achieve this, the relation between
formulas and digital logic gates must be established. Since classically there are two
possible truth values 1 and 0 (or true and false) and each logic gate also has two
values 1 and 0 (or High Voltage (+5V) and Low Voltage (0V)), then it is natural to
connect the gates in a way that correct atomal formulas are represented by the signal
“1”. Non-atomal formulas should be treated in the following way:

− Identify the part of the circuit that corresponds to the non-atomal formula in
question;

− Identify the input points (corresponding to the atomal formulas) for that specific
circuit part;

− Identify an input signal combination for the above input gates that produces “1” as
an output for that circuit part.

This way we can provide the necessary input signals to the (upper) part of digital
circuits, which corresponds to the predicates of the inference step.

The construction of decision may take the simple form of “fitting” puzzle pieces,
where the “suitable” premise set of an inference rule allows the rule to be matched to
a combination of existing formulas that normally do not involve more than a few
formulas.

5 Advantages of the Proposed Circuits

While creating decision making systems (that are based on, for example, binary
decision diagrams (BDD), negation normal form (NNF), propositional directed
asyclic graph (PDAG), etc.) data structures related to Boolean functions are often
used. The logical operations used to form decisions are simple: AND, OR, NOT. In
recent years, several problems have surfaced in solutions relying on neural networks
or graphs. This does not mean that these methods should be cast aside (for example,
neural networks have advantages in modeling non-linear characteristics of sample
data – [4]). However, systems based on implementing inference steps with digital
circuits also have advantages. One source of these advantages is the ability to include
“regular” operations (AND, OR, NOT), as well as other operations (implication, etc.)
and quantifiers. Second and more important advantage is the possibility to notably

 Representing Logical Inference Steps with Digital Circuits 183

“shorten” the decision making process (it is well known from logic studies that
manipulating with the rules may sometimes allow an exponential (!) decrease in the
number of inference steps).

6 Conclusion

The described digital circuits consisting of logic gates are not the only way to
represent inference steps. In principle, using special transformations one could
implement them in neural networks [15] or other circuits. The important part here is
how to implement logical inference steps in hardware based on the logical constructs
extracted from natural language. It is possible that a similar implementation is present
in the human brain, which allows us to use logical constructs, including the ability to
formulate propositions and to come up with the correct conclusion.

Acknowledgements. The author of the given work expresses profound gratitude to
professor Peeter Lorents for assistance in a writing of given clause and to Rain Ottis
for English version edition.

References

1. Chang, C., Lee, R.: Symbolic logic and mechanical theorem proving. Academic Press,
New York (1973)

2. Fitting, M.: First-Order Logic and Automated Theorem Proving, 2nd edn. Springer,
Heidelberg (1996)

3. Gentzen, G.: Die Widerspruchsfreiheit der reinen Zahlentheorie. Mathematische
Annalen 112, 493–565 (1936)

4. Kim, D., Lee, J.: Rule Reduction over Numerical Attributes in Decision Trees Using
Multilayer Perceptron. In: Cheung, D., Williams, G.J., Li, Q. (eds.) PAKDD 2001. LNCS,
vol. 2035, p. 538. Springer, Heidelberg (2001)

5. Kunz, W., Stoffel, D.: Reasoning in Boolean Networks: Logic Synthesis and Verification
Using Testin Techniques. Kluwer Academic Publishers, Dordrecht (1997)

6. Lorents, P.: Language and logic. EBS Print, Tallinn (2000)
7. Lorents, P.: Formalization of data and knowledge based on the fundamental notation-

denotation relation. In: Proceedings of the International Conference on Artificial
Intelligence, ICAI 2001, vol. III, pp. 1297–1301 (2001)

8. Lorents, P.: Knowledge and understanding. In: Proceedings of the International
Conference on Artificial Intelligence, ICAI 2004, vol. I, pp. 333–337 (2004)

9. Lorents, P.: Taxonomy of intellect. In: Proceedings of the International Conference on
Artificial Intelligence, ICAI 2008, vol. II, pp. 537–544 (2008)

10. Matsak, E.: Dialogue system for extracting Logic constructions in natural language texts.
In: Proceedings of the International Conference on Artificial Intelligence, ICAI 2005,
vol. II, pp. 791–797 (2005)

11. Matsak, E.: Using Natural Language Dialog System DST for Discovery of Logical
Constructions of Children’s Speech. In: The 2006 International Conference on Artificial
Intelligence, ICAI 2006, Las Vegas, Nevada, USA (2006)

184 E. Matsak

12. Matsak, E.: System DST for Transforming Natural Language Texts, Representing
Estimates and Higher Order Predicates and Functionals. In: The 3rd International
Conference on Cybernetics and Information Technologies, Systems and Applications:
CITSA 2006, Orlando, Florida, USA (2006)

13. Matsak, E.: The prototype of system for discovering of inference rules. In: Proceedings of
the International Conference on Artificial Intelligence. International Conference on
Artificial Intelligence, ICAI 2007, vol. II, pp. 489–492 (2007)

14. Matsak, E.: Improved version of the Natural Language Dialog System DST and its
application for discovery of logical constructions in children’s speech. In: International
Conference on Artificial Intelligence, ICAI 2008, vol. I, pp. 332–338 (2008)

15. Minsky, M.: Finite and Infinite machines. Prentice-Hall, Inc., Englewood Cliffs (1967)
16. Mints, G., Tyugu, E.: Justification of the structural synthesis of programs. Science of

computer programming 2(3), 215–240 (1982)
17. Mints, G., Tyugu, E.: The programming system PRIZ. Journal of Symbolic Computation (4)

(1987)

	Representing Logical Inference Steps with Digital Circuits
	Introduction
	Inference Steps and Implications in Logic Gate Circuits
	An Algorithm for Using Logic Gates to Design a Digital Circuit That Represents Inference Steps
	Circuits in Practice
	Advantages of the Proposed Circuits
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

