
M.J. Smith and G. Salvendy (Eds.): Human Interface, Part I, HCII 2009, LNCS 5617, pp. 466–474, 2009.
© Springer-Verlag Berlin Heidelberg 2009

UbiSOA Dashboard: Integrating the Physical and Digital
Domains through Mashups

Edgardo Avilés-López and J. Antonio García-Macías

Computer Science Department
CICESE Research Center

Km. 107 Carretera Tijuana-Ensenada
Ensenada, Baja California, México
{avilesl,jagm}@cicese.mx

Abstract. The current Web 2.0 stage of the Internet provided the basis for
web-based communities and services aimed at collaboration and information
sharing. Furthermore, Internet is now an application platform in which Web ap-
plications can be integrated to provide augmented services that could bring the
basis for ubiquitous computing scenarios. Recently, the concept of mashups has
been used to refer to applications built upon the integration and combination of
public Web API's and data sources. Ubiquitous computing mashups go further
by combining the functionality of both software and hardware components in an
attempt to exploit computation and services provided by everyday objects.
Typically, developing a mashup requires highly specialized knowledge in many
topics (such as using different programming interfaces and languages). This
problem is greatly magnified in developing mashups of both physical and digi-
tal services due to the various integration and communication issues. We exem-
plify these concepts through the use of UbiSOA Editor, a system that allows the
creation of ubiquitous computing mashups through simple activities such as
dragging and dropping graphical representations of the involved services in a
desired scenario. Then we talk about the planning and execution of a sample
scenario as a showcase of what can be easily accomplished.

1 Introduction

The vision of ubiquitous computing, as articulated more than 15 years ago in a semi-
nal article by Mark Weiser stated that “the most profound technologies are those that
disappear. They weave themselves into the fabric of everyday life until they are indis-
tinguishable from it” [1]. Although this vision has not completely become a reality,
we are getting closer. Nowadays we have GPS-equipped cars that will inform us
about road conditions and propose driving routes, we can check our e-mail, make a
phone call, listen to music and watch video clips with the same device (e.g., Apple
iPhone1, which can be used for people-centric sensing applications [2]). All this is
possible by micro-controllers embedded in the artifacts that we use everyday, some of
which have truly embedded computers that we use without being aware of it. That is,

1 Apple iPhone: http://www.apple.com/iphone/

 UbiSOA Dashboard: Integrating the Physical and Digital Domains through Mashups 467

technology is weaving itself into the fabric of everyday life. Weiser also stated that
“machines that fit the human environment instead of forcing humans to enter theirs
will make using a computer as refreshing as taking a walk in the woods”. Although
using computers, embedded or not, is currently not as refreshing as a walk in the
woods, there have been some advances in multimodal user interfaces promising better
interactions that fit the human environment.

Some have suggested that integration is one of the main barriers to realizing the vi-
sion of ubiquitous computing [3]. Indeed, some of the appropriate infrastructural
elements exist, and there have been significant advances in human-computer inter-
faces, but there are many ubiquitous computing scenarios still a matter of science
fiction and not part of our daily lives [4]. We believe that an important factor is that,
for the creation of the applications in these scenarios, we are accessing the infrastruc-
tural elements and integrating them at a very low-level. This forces developers to
focus on unnecessary infrastructure-level details, instead of focusing on application-
level issues.

In this article we start by discussing two of the key issues in the development of
ubiquitous computing applications: access and integration (Section 2). We then pre-
sent UbiSOA and discuss how it can help in accessing context providers (Section 3).
We also discuss the integration issue and talk about the Web as a platform for ubiqui-
tous computing by showing how mashups can be helpful for integrating different
services and primary context sources. We exemplify those concepts through the de-
velopment of a ubiquitous computing mashup application by using of UbiSOA Editor
(Sections 4 and 5). Finally, we present some conclusions and future work (Section 6).

2 Access and Integration

Our current technological situation can be easily understood with an example: the
development of a dashboard application where we can monitor what is going on at
home, at the office, or at our grandparent's house. We would be interested to check
out if some lights were left turned on at home, or maybe turn them on while we are
traveling to deter burglars from breaking-in. Maybe we would like to keep an eye on
our grandparents and monitor the air quality at their home to warn us of possible gas
leaks, or want to have an overview of their motion patterns during the day. It would
also be useful if this dashboard could integrate some services we already use, like
traffic alerts to avoid the bottlenecks in the highway. All the elements to make this a
reality exist: there are already in the market Zigbee-enabled2 devices to control lights
in a networked fashion; many networked sensors, including environmental monitors
and motion detectors, are also in the market; traffic alerts services are also available
from many providers. But there are two key problems that make creating this
dashboard difficult: access and integration.

First, let us examine access. The intelligent network-controlled lights may use the
Zigbee protocol stack. This implies having to learn some Zigbee concepts, including
how to bind end-devices to controllers, how to create a network, etc. Coding the ap-
plication may force the programmer to use a particular development environment

2 Zigbee Alliance: http://www.zigbee.org/

468 E. Avilés-López and J.A. García-Macías

(e.g., Codewarrior3 for HCS08 microcontrollers) and programming language (typi-
cally C). For the sensor network at our grandparent's home, there are already many
wireless sensor network kits available. TinyOS [5] is a very popular platform in these
kits, but it imposes programming in a particular programming language called nesC
[6] which, not being a general purpose language will be unlikely already known by a
developer. This language has a certain philosophy where everything is a component
and in order to build an application we have to bind them using certain interfaces.
Other embedded systems concepts, such as threads of execution and atomic sections
may be in order. The part developers would be more familiar with is the traffic alerts
parts, since companies like Google and others have public APIs4 that can be used to
invoke their services by means of familiar Web concepts. Now that we have access to
the different platforms (the home automation network, the monitoring network, and
the traffic alerts), there is yet another problem: the integration of them all. Since the
dashboard must be accessed anytime, the home automation network and our grand-
parent's sensor network must be properly Internet-enabled. This means, writing some
sort of Internet gateway for each of them, and since their code is written in different
languages and they have different idiosyncrasies, reutilization is mostly not possible.
A web page could be the integration element, since the gateways can be configured to
output HTML and some JavaScript code would allow to access the services provided
by Google Maps5.

3 Better Access with UbiSOA

The concept of the Ubiquitous Web (UW) [7] has received a lot of attention lately, as
it defines a pervasive web infrastructure where physical objects are integrated into the
world of web information and services. Many features make the Web attractive as a
platform for ubiquitous computing: it is device-independent and language-agnostic, it
offers low barriers to entry, it has a content-centric model and it is, for all practical
purposes, ubiquitous.

Regarding the access problem, providing better abstractions to developers has been
a long-time motivation in software engineering. Therefore, we have witnessed ad-
vances in programming methodologies and paradigms ranging from sequential pro-
gramming, modular programming, object oriented programming, component-based
programming, and more recently service-oriented programming. This recent approach
arises in response to modern needs and complexities such as distributed software,
application integration, as well as heterogeneity in platforms, protocols and devices,
including Internet integration. It features a very high abstraction level; any functional-
ity is exposed as a service, so the user just asks for a given service without knowing
or having to deal with any low-level issues required for the functionality to be com-
pleted. For example, if we have just installed a new wireless sensor node, and we
want to know what the moisture reading is, we would have to go through the cumber-
some tasks discussed earlier. In contrast, with the service-oriented model, we would

3 Codewarrior Development Tools: http://www.freescale.com/codewarrior/
4 Google APIs: http://code.google.com/apis/
5 Google Maps: http://maps.google.com/

 UbiSOA Dashboard: Integrating the Physical and Digital Domains through Mashups 469

just ask what services the network provides and then we would invoke the service for
reading the moisture level.

This is precisely the philosophy behind UbiSOA (which is a work in progress and
has evolved from TinySOA [8]). As other authors [9], we think that the service-
oriented and context-driven models are excellent means to implement successful
ubiquitous applications. UbiSOA is a platform comprised of many different services,
resources and tools to allow the creation of ubiquitous applications. Instances of such
services are localization, environmental primary context providers (wireless sensor
networks), identification context (RFID devices), and others. The access to those
services is driven through standard and easy to use Web services (via the SOAP and
REST protocol) and Web feeds (Atom and RSS feeds). An important advantage of
Web services and feeds is that developers can use the same tools and languages they
normally use for developing applications. This means, no hardware specifications
needed, no need to learn or be tied to a particular language, and no wasting valuable
time with these issues.

4 Better Integration with Mashups

In its origins, the Web provided a way to easily share information. Shared contents
consisted of simple hyperlinked documents hosted on Web servers and were only
maintained by their authors. One can refer to this stage as the Web 1.0, where the
Internet's available content was on a “read-only” mode. As technologies evolved,
server-side scripting languages (such as Perl, PHP, and others) gained attention. This
made the Web servers to start changing dynamically the information they provided.
This new “read-write” paradigm, gave the basis to web-based communities and ser-
vices aimed at collaboration and information sharing. In this paradigm the user is no
longer a consumer; he continuously contributes with new information (as seen on
wiki systems). This still current stage is known as Web 2.0, where Web sites typically
include technologies such as AJAX-enabled communications, syndication through
RSS feeds, and a clear adoption of standards on presentation and content handling.
Furthermore, we can see Internet as a platform in which many different Web applica-
tions are now providing public available APIs to manage and use the information they
provide. This led to the introduction of mashups.

The mashup concept originated in music, where fragments of two or more songs
are mixed and rearranged together creating new songs or compositions. A mashup in
computer science refers to applications created by the integration and combination of
services and content from different Web public APIs and sources. A very common
example is a mashup that uses Google Maps to show the location of the most recent
pictures of a Flickr6 account. There are even many tools online that can help you on
creating mashups: Microsoft Popfly7, Yahoo! Pipes8, Google Mashup Editor9 and
others. Those systems are ready to integrate information from some of the most used

6 Flickr: http://www.flickr.com/
7 Microsoft Popfly: http://www.popfly.ms/
8 Yahoo! Pipes: http://pipes.yahoo.com/
9 Google Mashup Editor: http://editor.googlemashups.com/

470 E. Avilés-López and J.A. García-Macías

Web applications that already provide access to their functionality through Web ser-
vices or other standardized means.

Recently, the term ubiquitous computing mashup is being used referring to the at-
tempt to move computation off the desktop and integrate it with the artifacts of every-
day life [10]. Ubiquitous computing application development can highly benefit from
mashup technology. Common functionality can be isolated into single and independent
components (service providers) that can be later combined to accomplish functionality
needed for a specific scenario. Also, as the number of devices and other data sources
grows, the need to filter the available information will be higher; mashups can then be
used to delegate processing of the multiple sources (data or even functionality) gener-
ating a more manageable and scalable feed. Although, there is one problem, real-time
needs could hardly be supported if they aren't carefully considered in the design and
operation of each one of the service providers. Other aspects of Web 2.0 technology
are being used to power ubiquitous scenarios, one of them is the model of sharing and
annotating physical augmented devices in the same way wiki systems are [11].

Since UbiSOA's services allow us to retrieve primary context information from
sensor networks and RFID devices (environmental and identification), we can go
back to the monitoring dashboard we discussed earlier; we will see how UbiSOA can
make building this type of applications a lot easier.

In order to showcase what can be easily accomplished, let us introduce the follow-
ing scenario: let's suppose there are multiple sensor-networks deployed in some
locations and that there are RFID readers in the door of multiple rooms on different
locations that users use to report their arrival and departure. We need a Web applica-
tion in which we can easily browse through all these locations (ideally using a map)
and see the current status for each one, also, we need to be aware of many events
including a user arriving/leaving a location. Clearly, developing this without using
third-party services would be highly complicated, mainly because of dealing with the
communication and data extraction of the many different involved devices, besides
the problem of how to combine and remotely access all the data.

Second, we need to know what services we can use to accomplish the scenario and
what we are going to integrate. In our case we will use Google Maps handled by an
AJAX interface (for driving and selection of multiple locations), sensor networks (to
fetch sensor data) and RFID services (to track people arriving/leaving locations and
possibly other objects). This is going to be a static mashup; all the different providers
will be manually selected to build the final application. Mashups can also be dynamic,
allowing choosing on execution time which services could be used. This is highly
useful, because for instance, we could use a backup service in case the main one is
down or too busy to obtain timely responses.

Before discussing the third step which is the implementation of the scenario, we
need to introduce UbiSOA Editor. In our infrastructure, a mashup application can be
coded by means of a script that specifies the services involved, the connections be-
tween them, and the data flow though the configuration or assembled by using the
UbiSOA Editor, a system to create mashups through simple activities such as drag-
ging and dropping graphical representations of the involved services to accomplish
the specification of configurations that support a desired scenario. In our scenario of
use, a user must carry a device that provides him with personal services (such as lo-
calization, contacts, notification, and others), runs mashup applications, and allows

 UbiSOA Dashboard: Integrating the Physical and Digital Domains through Mashups 471

Fig. 1. Overview of the UbiSOA Editor

Fig. 2. Mashup configuration for the dashboard application

472 E. Avilés-López and J.A. García-Macías

access to the infrastructure through the UbiSOA Editor. The personal applications and
services are shown on the left sidebar of the editor (see Fig. 1). The UbiSOA infra-
structure automatically discovers the services that are provided on the user environ-
ment and the applications that are currently running (those are shown on the right
sidebar). Additionally to the basic personal services, the user can add external ser-
vices such as his Facebook or Twitter account. The editor also allows interaction with
remote environments. The area at the center of the editor is the instantiation area
where the services are dropped, interconnected, and then stored into an environment
or in the personal device as mashup applications.

Fig. 3. The dashboard application build upon the embedded code from the mashup

Continuing with the dashboard implementation, we just have to drag, drop and in-
terconnect the appropriate services for the scenario we desire. We need a sensor net-
work service and a RFID reader service for each of the environments we want to
monitor (we will first need to connect to them) and utility services that will provide
our visualization needs. Is important to note that UbiSOA doesn't just introduce cus-
tom services, it also allows the integration with current Web resources and APIs such
as Google's. In our sample dashboard we are going to support 2 locations, each with a
WSN and a RFID service. As utility services, we need a KML maker service and a
Script service that runs custom code for interpreting the RFID readings received from
the readers, once interpreted we send the results to a RSS maker service. We could

 UbiSOA Dashboard: Integrating the Physical and Digital Domains through Mashups 473

already use the generated KML and RSS files as data feeds for our dashboard applica-
tion but UbiSOA also provides tools to embed special HTML+JavaScript code in our
web applications that will help us on visualizing and updating those files when an
infrastructure event is generated. Those tools are also services, in this case the Map
and Listing services. The full configuration of this mashup is shown in Fig. 2. Once
interconnected, we need to store this application in the environment or in our device
to finally get the embedded codes of the sensing map and the identification listing.
Figure 3 shows the finished dashboard application.

5 Towards the Ubiquitous Web

Almost by accident, or at least without being part of a grand plan, the Internet is play-
ing a very important role in making the vision of ubiquitous computing a reality.
What started as a medium for publishing and sharing information is now seen as a
good platform for interconnecting all types of physical devices, integrating them into
the information universe. The next stage in the evolution of the Web, already in pro-
gress and called by some Web 3.0, will be realized with semantic web developments.
But beyond that, in what is called the Ubiquitous Web or the Internet of Things ([12,
13]), we need better means for accessing the services provided by physical objects
and for integrating these services. Current Web 2.0 technologies, in the form of Web
services for access and mashups for integration, provide a step ahead, although can
only be seen as transitional technologies.

A decade ago, Weiser considered the Internet as a transitional stage between PC
and UbiComp scenarios [14]. We can see proofs of this transition in current works
such as the seamless integration of wireless sensor networks with IP networks [15].
More importantly, not only we have witnessed the needed changes on infrastructure
and services, there are also changes on social aspects too; users are more prone to use
a Web-based tool to do their tasks, for instance, increasingly more people are using
webmail providers than institutionally hosted mail services, another notorious exam-
ple is the adoption of instant-messaging systems.

6 Conclusions and Future Work

We believe that the benefits of mashup applications are important; they allow us to
fulfill tasks and rapidly construct proof of concept applications which is highly valu-
able for ubiquitous computing research. Although there is a problem to overcome:
developing a mashup application requires Web programming expertise due to the
management of data representations, connectivity, and standards [16]. Higher-level
abstraction tools that assist in constructing ubiquitous mashups are needed. These
tools need to hide from the developer issues such as security, event management, real-
time needs, communication, and others.

UbiSOA is still a work in progress; we are currently exploring communication and
event notification models to allow a more transparent integration and cooperation
between service providers. In this paper we have introduced the UbiSOA Editor
which is an important part of the UbiSOA infrastructure. We plan to further improve
the design by conducting a usefulness and adoption of technology experiment.

474 E. Avilés-López and J.A. García-Macías

Acknowledgements. Financial support for this project was provided by the Mexican
Council for Science and Technology (CONACyT).

References

1. Weiser, M.: The computer for the 21st century. In: SIGMOBILE Mob. Comput. Commun.
Rev., vol. 3, pp. 3–11. ACM Press, New York (1999)

2. Miluzzo, E., Oakley, J.M.H., Lu, H., Lane, N.D., Peterson, R.A., Campbell, A.T.: Evaluat-
ing the iPhone as a mobile platform for people-centric sensing applications. In: Proc. of
Intl Workshop on Urban, Community, and Social Applications of Networked Sensing Sys-
tems (UrbanSense 2008) (November 2008) (to appear)

3. Davies, N., Gellersen, H.: Beyond prototypes: Challenges in deploying ubiquitous sys-
tems. In: IEEE Pervasive Computing, Piscataway, USA, vol. 1, pp. 26–35. IEEE Educa-
tional Activities Department (2002)

4. Schmitz, M., Endres, C., Butz, A.: A survey of human-computer interaction design in sci-
ence fiction movies. In: INTETAIN 2008: Proceedings of the 2nd international conference
on INtelligent TEchnologies for interactive enterTAINment (January 2008)

5. Levis, P., Madden, S., Polastre, J., Szewczyk, R., Whitehouse, K., Woo, A., Gay, D., Hill,
J., Welsh, M., Brewer, E., Culler, D.: TinyOS, an operating system for wireless sensor
networks. Springer, New York (2005)

6. Gay, D., Levis, P., von Behren, R., Welsh, M., Brewer, E., Culler, D.: The nesC language:
A holistic approach to networked embedded systems. In: PLDI 2003: Proceedings of the
ACM SIGPLAN 2003 conference on Programming language design and implementation,
pp. 1–11. ACM, New York (2003)

7. W3C: Workshop on the ubiquitous Web (2006)
8. Avilés-López, E., García-Macías, J.: Providing service-oriented abstractions for the wire-

less sensor grid. In: Cérin, C., Li, K.-C. (eds.) GPC 2007. LNCS, vol. 4459, pp. 710–715.
Springer, Heidelberg (2007)

9. Yang, H., Jansen, E., Helal, S.: A comparison of two programming models for pervasive
computing. In: SAINT-W 2006: Proceedings of the International Symposium on Applica-
tions on Internet Workshops, Washington, DC, USA, pp. 134–137. IEEE Computer Soci-
ety, Los Alamitos (2006)

10. Hartmann, B., Doorley, S., Klemmer, S.R.: Hacking, mashing, gluing: Understanding op-
portunistic design. Pervasive Computing 7(3), 46–54 (2008)

11. de Ipiña, D.L., Vázquez, J.I., Abaitua, J.: A web 2.0 platform to enable context-aware mo-
bile mash-ups. In: Schiele, B., Dey, A.K., Gellersen, H., de Ruyter, B., Tscheligi, M.,
Wichert, R., Aarts, E., Buchmann, A. (eds.) AmI 2007. LNCS, vol. 4794, pp. 266–286.
Springer, Heidelberg (2007)

12. Broll, G., Siorpaes, S., Rukzio, E., Paolucci, M., Hamard, J., Wagner, M., Schmidt, A.:
Supporting mobile service usage through physical mobile interaction. In: PERCOM 2007:
Proceedings of the Fifth IEEE International Conference on Pervasive Computing and
Communications, Washington, DC, USA, pp. 262–271. IEEE Computer Society, Los
Alamitos (2007)

13. Michahelles, F., Thiesse, F., Schmidt, A., Williams, J.R.: Pervasive rfid and near field
communication technology. IEEE Perv. Computing 6(3), 94–96 (2007)

14. Weiser, M., Brown, J.S.: The coming age of calm technology. Beyond Calculation: The
Next Fifty Years of Computing 75(85) (1997)

15. Hui, J.W., Culler, D.E.: IP is dead, long live IP for wireless sensor networks. In: Proceed-
ings of the 6th international Conference on Embedded Networked Sensor Systems (SenSys
2008) (November 2008)

16. Wong, J., Hong, J.: Marmite: end-user programming for the web. In: CHI 2006: CHI 2006
extended abstracts on Human factors in computing systems, pp. 1541–1546. ACM, New
York (2006)

	UbiSOA Dashboard: Integrating the Physical and Digital Domains through Mashups
	Introduction
	Access and Integration
	Better Access with UbiSOA
	Better Integration with Mashups
	Towards the Ubiquitous Web
	Conclusions and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

