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Abstract. Recognition of objects in highly structured surroundings is
a challenging task, because the appearance of target objects changes due
to fluctuations in their surroundings. This makes the problem highly
context dependent. Due to the lack of knowledge about the target class,
we also encounter a difficulty delimiting the non-target class. Hence,
objects can neither be recognized by their similarity to prototypes of
the target class, nor by their similarity to the non-target class. We solve
this problem by introducing a transformation that will eliminate the
objects from the structured surroundings. Now, the dissimilarity between
an object and its surrounding (non-target class) is inferred from the
difference between the local image before and after transformation. This
forms the basis of the detection and classification of polyps in computed
tomography colonography. 95% of the polyps are detected at the expense
of four false positives per scan.

1 Introduction

For classification tasks that can be solved by an expert, there exists a set of
features for which the classes are separable. If we encounter class overlap, not
enough features are obtained or the features are not chosen well enough. This
conveys the viewpoint that a feature vector representation directly reduces the
object representation [1]. In the field of imaging, the objects are represented
by their grey (or color) values in the image. This sampling is already a reduced
representation of the real world object and one has to ascertain that the acquired
digital image still holds sufficient information to complete the classification task
successfully. If so, all information is still retained and the problem reduces to a
search for an object representation that will reveal the class separability.

Using all pixels (or voxels) as features would give a feature set for which
there is no class overlap. However, this feature set usually forms a very high
dimensional feature space and the problem would be sensitive to the curse of
dimensionality. Considering a classification problem in which the objects are
regions of interest V with size N from an image with dimensionality D, the
dimensionality of the feature space Ω would then be ND, i.e. the number of pixels
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in V . This high dimensionality poses problems for statistical pattern recognition
approaches. To avoid these problems, principal component analysis (PCA) could
for example be used to reduce the dimensionality of the data without having
the user to design a feature vector representation of the object. Although PCA
is designed to reduce the dimensionality while keeping as most information as
possible, the mapping unavoidably reduces the object representation.

The use of statistical approaches completely neglects that images often contain
structured data. One can think of images that are very similar (images that
are close in the feature space spanned by all pixel values), but might contain
significantly different structures. Classification of such structured data receives
a lot of attention and is motivated by the idea that humans interpret images by
perception of structure rather than by perception of all individual pixel values.
An approach for the representation of structure of objects is to represent the
objects by their dissimilarities to other objects [2]. When a dissimilarity measure
is defined (for example the ’cost’ of deforming an object into another object),
the object can be classified based on the dissimilarities of the object to a set (or
sets) of prototypes representing the classes.

Classification based on dissimilarities demands prototypes of both classes,
but this demand can not always be fulfilled. For example, the detection of target
objects in highly structured surroundings poses two problems. First, there is a
fundamental problem describing the class of non-targets. Even if there is detailed
knowledge about the target objects, the class of non-targets (or outliers) is merely
defined as all other objects. Second, if the surroundings of the target objects is
highly structured, the number of non-target prototypes is very large and they all
differ each in their own way, i.e. they are scattered all over the feature space. The
selection of a finite set of prototypes that sufficiently represents the non-target
class is almost impossible and one might have to rely on one-class classification.

The objective of this paper is to establish a link between image processing
and dissimilarity based pattern recognition. On the one hand, we show that the
previous work [3] can be seen as an application of structual inference which is
used in featureless pattern recognition [1]. On the other hand, we extend the fea-
tureless pattern recognition to pattern recognition in the absence of prototypes.
The role of prototypes is replaced by a single context-dependent prototype that
is derived from the image itself by a specific transformation for the application at
hand. The approach will be applied in the context of automated polyp detection.

2 Automated Polyp Detection

The application that we present in this paper is automated polyp detection
in computed tomography (CT) colonography (CTC). Adenomatous polyps are
important precursors to cancer and early removal of such polyps can reduce
the incidence of colorectal cancer significantly [4,5]. Polyps manifest themselves
as protrusions from the colon wall and are therefore visible in CT. CTC is
a minimal-invasive technique for the detection of polyps and, therefore, CTC
is considered a promising candidate for large-scale screening for adenomatous



Recognition of Protruding Objects in Highly Structured Surroundings 43

polyps. Computer aided detection (CAD) of polyps is being investigated to as-
sist the radiologists. A typical CAD system consists of two consecutive steps:
candidate detection to detect suspicious locations on the colon wall, and classi-
fication to classify the candidates as either a polyp or a false detection.

By nature the colon is highly structured; it is curved, bended and folded. This
makes that the appearance of a polyp is highly dependent on its surrounding.
Moreover, a polyp can even be (partly) occluded by fecal remains in the colon.

2.1 Candidate Detection

Candidate detection is based on a curvature-driven surface evolution [3,6]. Due
to the tube-like shape of the colon, the second principal curvature κ2 of the colon
surface is smaller than or close to zero everywhere (the normal vector points into
the colon), except on protruding locations. Polyps can thus be characterized by a
positive second principal curvature. The surface evolution reduces the protrusion
iteratively by solving a non-linear partial differential equation (PDE):

∂I

∂t
=

{
−κ2|∇I| (κ2 > 0)
0 (κ2 ≤ 0)

(1)

where I is the three-dimensional image and |∇I| the gradient magnitude of the
image.

Iterative application of (1) will remove all protruding elements (i.e. locations
where κ2 > 0) from the image and estimates the appearance of the colon surface
as if the protrusion (polyp) was never there. This is visualized in Fig. 1 and
Fig. 2. Fig. 1(a) shows the original image with a polyp situated on a fold. The
grey values are iteratively adjusted by (1) . The deformed image (or the solution
of the PDE) is shown in Fig. 1(b). The surrounding is almost unchanged, whereas
the polyp has completely disappeared. The change in intensity between the two
images is shown in Fig. 1(c). Locations where the intensity change is larger than
100 HU (Hounsfield units) yield the polyp candidates and their segmentation
(Fig. 1(d)). Fig. 2 also shows isosurface renderings at different time-steps.

(a) Original (b) Solution (c) Intensity change (d) Segmentation

Fig. 1. (a) The original CT image (grey is tissue, black is air inside the colon). (b)
The result after deformation. The polyp is smoothed away and only the surrounding
is retained. (c) The difference image between (a) and (b). (d) The segmentation of the
polyp obtained by thresholding the intensity change image.
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(a) Original (b) 20 Iterations (c) 50 Iterations (d) Result

Fig. 2. Isosurface renderings (-750 HU) of a polyp and its surrounding. (a) Before
deformation. (b–c) After 20 and 50 iterations. (d) The estimated colon surface without
the polyp.

2.2 Related Work

Konukoglu et al. [7] have proposed a related, but different approach. Their
method is also based on a curvature-based surface evolution, but instead of
removing protruding structures, they proposed to enhance polyp-like structures
and to deform them into spherical objects. The deformation is guided by

∂I

∂t
=

(
1 − H

H0

)
|∇I| (2)

with H the mean curvature and H0 the curvature of the sphere towards the
candidate is deformed.

3 Structural Inference for Object Recognition

The candidate detection step, described in the previous section, divides the fea-
ture space Ω of all possible images into two parts. The first part consists of all
images that are not affected by the PDE. It is assumed that these images do
not show any polyps and these are said to form the surrounding class Ω◦. The
other part consists of all images that are deformed by iteratively solving the
PDE. These images thus contain a certain protruding element. However, not all
images with a protruding element do contain a polyp as there are other possible
causes of protrusions like fecal remains, the ileocecal valve (between the large
and small intestine) and natural fluctuations of the colon wall.

To summarize, three classes are now defined:

1. a class Ω◦ ⊂ Ω; all images without a polyp: the surrounding class,
2. a class Ωf ⊂ Ω\Ω◦; all images showing a protrusion that is not a polyp: the

false detection class, and
3. a class Ωt ⊂ Ω\Ω◦; all images showing a polyp: the true detection class.

Successful classification of new images now requires a meaningful representation
of the classes and a measure to quantify the dissimilarity between an image and
a certain class. Therefore, Section 3.1 will describe how the dissimilarities can
be defined for objects of which the appearance is highly context-dependent, and
Section 3.2 will discuss how the classes can be represented.
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(a) (b) (c)

Fig. 3. (a) Objects in their surroundings. (b) Objects without their surroundings. All
information about the objects is retained, so the objects can still be classified correctly.
(c) The estimated surrounding without the objects.

3.1 Dissimilarity Measure

To introduce the terminology and notation, let us start with a simple example of
dissimilarities between objects. Fig. 3(a) shows various objects on a table. Two
images, say xi and xj , represent for instance an image of the table with a cup
and an image of the table with the book. The dissimilarity between these images
is hard to define, but the dissimilarity between either one of these images and
the image of an empty table is much easier. This dissimilarity may be derived
from the image of the specific object itself (Fig. 3(b)).

When we denote the image of an empty table as p◦, this first example can be
schematically illustrated as in Fig. 4(a). The dissimilarities of the two images to
the prototype p◦ are called di◦ and dj◦. If these dissimilarities are simply defined
as the Euclidean distance between the circles in the image, the triangle-inequality
holds.

However, if the dissimilarities are defined as the spatial distance between
the objects (in 3D-space), all objects in Fig. 3(a) have zero distance to the
table, but the distance between any two objects (other than the table) is larger
than zero. This shows a situation in which the dissimilarity measure violates the
triangle-inequality and the measure becomes non-metric [8]. This is schematically
illustrated in Fig. 4(b). The prototype p◦ is no longer a single point, but is
transformed into a blob Ω◦ representing all objects with zero distance to the
table. Note that all circles have zero Euclidean distance to Ω◦.

The image of the empty table can also be seen as the background or surround-
ing of all the individual objects, which shows that all objects have exactly the
same surrounding. When considering the problem of object detection in highly
structured surroundings this obviously no longer holds. We first state that, as in
the first example given above, the dissimilarity of an object to its surrounding
can be defined by the object itself. Secondly, although the surroundings may
differ significantly from each other, it is known that none of the surroundings
contain an object of interest (a polyp). Thus, as in the second example, the
distances between all surroundings can be made zero and we obtain the same
blob representation for Ω◦, i.e. the surrounding class. The distance of an object
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Fig. 4. (a) Feature space of two images of objects having the same surrounding, which
means that the image of the surrounding (the table in Fig. 3(a)) reduces to a single
point p◦. (b) When considering spatial distances between the objects, the surrounding
image p◦ transforms into a blob Ω◦ and all distances between objects within Ω◦ are
zero. (c) When the surroundings of each object are different but have zero distance to
each other, the feature space is a combination of (a) and (b).

to the surrounding class can now be defined as a minimization of the distance
between the image of the object over all images pk from the set of surroundings
Ω◦

di◦ � d(xi, Ω◦) = min
k

d(xi,pk) with pk ∈ Ω◦.

In short, this problem is a combination of the two examples and this leads to the
feature space shown in Fig. 4(c). Both images xi and xj have a related image
(prototype), respectively p̂i and p̂j , to which the dissimilarity is the smallest.
Again, the triangle inequality does no longer hold: two images that look very
different may both be very close to the surrounding class. On the other hand,
two objects that are very similar do have similar dissimilarity to the surround-
ing class. This means that the compactness hypothesis still holds in the space
spanned by the dissimilarities. Moreover, the dissimilarity of an object to its sur-
rounding still contains all information for successful classification of the object,
which may easily be seen by looking at Fig. 3(b).

3.2 Class Representation

The prototypes p̂i and p̂j thus represent the surrounding class, but are not
available a priori. We know that they must be part of the boundary of Ω◦ and
that the boundary of Ω◦ is the set of objects that divides the feature space of
images with protrusions and those without protrusions. Consequently, for each
object we can derive its related prototype of the surrounding class by iteratively
solving the PDE in (1). That is, Ωs � δΩ◦∩(δΩt∪δΩf ) are all solutions of (1) and
the dissimilarity of an object to its surroundings is the ’cost’ of the deformation
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(a) x1 ∈ Ω◦ (b) x2 (c) Deformation (d) p̂2 ∈ Ωs

Fig. 5. (a–b) Two similar images having different structure lead to different responses
to deformation by the PDE in (1). The object x1 is a solution itself, whereas x2 will
be deformed into p̂2. A number of structures that might occur during the deformation
process are shown in (c).

guided by (1). Furthermore, the prototypes of the surroundings class can now
be sampled almost infinitely, i.e. a prototype can be derived when it is needed.

A few characteristics of our approach to object detection are illustrated in
Fig. 5. At first glance, objects x1 and x2, respectively shown in Figs. 5(a) and
(b), seem to be similar (i.e. close together in the feature space spanned by all
pixel values), but the structures present in these images differ significantly. This
difference in structure is revealed when the images are being transformed by
the PDE (1). Object x1 does not have any protruding elements and can thus be
considered as an element of Ω◦, whereas object x2 exhibits two large protrusions:
one pointing down from the top, the other pointing up from the bottom. Fig. 5(c)
shows several intermediate steps in the deformation of this object and Fig. 5(d)
shows the final solution. This illustrates that by defining a suitable deformation,
a specific structure can be measured in an image. Using the deformation defined
by the PDE in (1), all intermediate images are also valid images with protrusions
with decreasing protrudedness. Furthermore, all intermediate objects shown in
Fig. 5(c) have the same solution. Thus, different objects can have the same
solution and relate to the same prototype.

Let us propose to use a morphological closing operation as the deformation,
then one might conclude that images x1 and x2 are very similar. In that case
we might conclude that image x2 does not really have the structure of two large
polyps, as we concluded before, but might have the same structure as in x1

altered by an imaging artifact. Using different deformations can thus lead to a
better understanding of the local structure. In that case, one could represent each
class by a deformation instead of a set of prototypes [1]. Especially for problems
involving objects in highly structured surroundings, it might be advantageous
to define different deformations in order to infer from structure.

An example of an alternative deformation was already given by the PDE in
(2). This deformation creates a new prototype of the polyp class given an image
and the ’cost’ of deformation could thus be used in classification. Combining
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Fig. 6. FROC curve for the detection of polyps ≥ 6 mm

both methods thus gives for each object a dissimilarity to both classes. However,
this deformation was proposed as a preprocessing step for current CAD systems.
By doing so, the dissimilarity was not explicitly used in the candidate detection
or classification step.

4 Classification

We now have a very well sampled class of the healthy (normal) images, which do
not contain any protrusions. Any deviation from this class indicates unhealthy
protrusions. This can be considered as a typical one-class classification problem
in which the dissimilarity between the object x and the prototype p indicates
the probability of belonging to the polyp class. The last step in the design of the
polyp detection system is to define a dissimilarity measure that quantifies the
introduced deformation, such that it can be used to successfully distinguish the
non-polyps from the polyps. As said before, the difference image still contains
all information, and thus there is still no class overlap.

Until now, features are computed from this difference image to quantify the
’cost’ of deformation. Three features are used for classification: the length of
the two principal axes (perpendicular to the polyp axis) of the segmentation of
the candidate, and the maximum intensity change. A linear logistic classifier
is used for classification. Classification based on the three features obtained
from the difference image leads to results comparable to other studies [9,10,11].
Fig. 6 shows a free-response receiver operating characteristics (FROC) curve of
the CAD system for 59 polyps larger than 6 mm (smaller polyps are clinically
irrelevant) annotated in 86 patients (172 scans). Results of the current polyp
detection systems are also presented elsewhere [3,6,12].

5 Conclusion

We have presented an automated polyp detection system based on structural
inference. By transforming the image using a structure-driven partial differential
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equation, knowledge is inferred from the structure in the data. Although no
prototypes are available a priori, a prototype of the ’healthy’ surrounding class
can be obtained for each candidate object. The dissimilarity with the healthy
class is obtained by means of a difference image between the image before and
after the transformation. This dissimilarity is used for classification of the object
as either a polyp or as healthy tissue. Subsequent classification is based on three
features derived from the difference image. The current implementation basically
acts like a one-class classification system: the system measures the dissimilarity
to a well sampled class of volumes showing only normal (healthy) tissue. The
class is well sampled in the sense that for each candidate object we can derive a
healthy counterpart, which acts as a prototype.

Images that are very similar might not always have the same structure. In
the case of structured data, it is this structure that is most important. It was
shown that the transformation guided by the PDE in (1) is capable of retrieving
structure from data. Furthermore, if two objects are very similar, but situated
in a different surrounding, the images might look very different. However, after
iteratively solving the PDE, the resulting difference images of the two objects are
also similar. The feature space spanned by the dissimilarities thus complies with
the compactness hypothesis. However, when a polyp is situated, for example,
between two folds, the real structure might not always be retrieved. In such
situations no distinction between Figs. 5(a) and (b) can be made due to e.g.
the partial volume effect or Gaussian filtering prior to curvature and derivative
computations. Prior knowledge about the structure of the colon and the folds in
the colon might help in these cases.

Until now, only information is used about the dissimilarity to the ’healthy’
class. The work of Konukoglu et al. [7] offers the possibility of deriving a proto-
type for the polyp class given a candidate object just as we derived prototypes
for the non-polyp class. A promising solution might be a combination of both
techniques; each candidate object is then characterized by its dissimilarity to a
non-polyp prototype and by its dissimilarity to a polyp prototype. Both pro-
totypes are created on-the-fly and are situated in the same surrounding as the
candidate. In fact, two classes have been defined and each class is characterized
by its own deformation.

In the future, the patient preparation is further reduced to improve patient
compliance. This will lead to data with increased amount of fecal remains in
the colon and this will complicate both the task of automated polyp detection
as well as electronic cleansing of the colon [13,14]. The presented approach to
infer from structure can also contribute to the image processing of such data,
especially if the structure within the colon becomes increasingly complicated.
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