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Abstract. A novel hardware architecture for k-means clustering is pre-
sented in this paper. Our architecture is fully pipelined for both the
partitioning and centroid computation operations so that multiple train-
ing vectors can be concurrently processed. The proposed architecture is
used as a hardware accelerator for a softcore NIOS CPU implemented
on a FPGA device for physical performance measurement. Numerical
results reveal that our design is an effective solution with low area cost
and high computation performance for k-means design.

1 Introduction

Cluster analysis is a method for partitioning a data set into classes of similar
individuals. The clustering applications in various areas such as signal compres-
sion, data mining and pattern recognition, etc., are well documented. In these
clustering methods the k-means [9] algorithm is the most well-known clustering
approach which restricts each point of the data set to exactly one cluster.

One drawback of the k-means algorithm is the high computational complexity
for large data set and/or large number of clusters. A number of fast algorithms
[2/6] has been proposed for reducing the computational time of the k-means
algorithm. Nevertheless, only moderate acceleration can be achieved in these
software approaches.

Other alternatives for expediting the k-means algorithm are based on hard-
ware. As compared with the software counterparts, the hardware implementations
may provide higher throughput for distance computation. Efficient architectures
for distance calculation and data set partitioning process have been proposed in
[B/5UT0]. Nevertheless, the centroid computation is still conducted by software in
some architectures. This may limit the speed of the systems. Although hardware
dividers can be employed for centroid computation, the hardware cost of the cir-
cuit may be high because of the high hardware complexity for the divider design. In
addition, when the usual multi-cycle sequential divider architecture is employed,
the implementation of pipeline architecture for both clustering and partitioning
process may be difficult.
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The goal of this paper is to present a novel pipeline architecture for the k-
means algorithm. The architecture adopts a low-cost and fast hardware divider
for centroid computation. The divider is based on simple table lookup, multipli-
cation and shift operations so that the division can be completed in one clock
cycle. The centroid computation therefore can be implemented as a pipeline. In
our design, the data partitioning process can also be implemented as a c-stages
pipeline for clustering a data set into ¢ clusters. Therefore, our complete k-means
architecture contains ¢ + 2 pipeline stages, where the first ¢ stages are used for
the data set partitioning, and the final two stages are adopted for the centroid
computation.

The proposed architecture has been implemented on field programmable gate
array (FPGA) devices [§] so that it can operate in conjunction with a softcore
CPU [12]. Using the reconfigurable hardware, we are then able to construct a
system on programmable chip (SOPC) system for the k-means clustering. The
applications considered in our experiments are the vector quantization (VQ) for
signal compression [4]. Although some VLSI architectures [II7JT1] have been pro-
posed for VQ applications, these architectures are used only for VQ encoding.
The proposed architecture is used for the training of VQ codewords. As com-
pared with its software counterpart running on Pentium IV CPU, our system
has significantly lower computational time for large training set. All these facts
demonstrate the effectiveness of the proposed architecture.

2 Preliminaries

We first give a brief review of the k-means algorithm for the VQ design. Consider
a full-search VQ) with ¢ codewords {yi,...,y.}. Given a set of training vectors
T = {x1,..., x4}, the average distortion of the VQ is given by

1<

D= Zd(xjaya(mj))7 (1)
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where w is the vector dimension, ¢ is the number of training vectors, «() is
the source encoder, and d(u, v) is the squared distance between vectors u and v.
The k-means algorithm is an iterative approach finding the solution of {y1, ..., y.}
locally minimizing the average distortion D given in eq.([]). It starts with a set of
initial codewords. Given the set of codewords, an optimal partition 17,75, ..., T,
is obtained by

T,={z:zeT alx) =i}, (2)
where
a(z) = arg éljlgcd(% Y;)- (3)

After that, given the optimal partition obtained from the previous step, a set of
optimal codewords is computed by

1
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The same process will be repeated until convergence of the average distortion D
of the V(Q is observed.

3 The Proposed Architecture

As shown in Fig. 1, the proposed k-means architecture can be decomposed into
two units: the partitioning unit and the centroid computation unit. These two
units will operate concurrently for the clustering process. The partitioning unit
uses the codewords stored in the register to partition the training vectors into
c clusters. The centroid computation unit concurrently updates the centroid
of clusters. Note that, both the partitioning process and centroid computation
process should operate iteratively in software. However, by adopting a novel
pipeline architecture, our hardware design allows these two processes to operate
in parallel for reducing the computational time. In fact, our design allows the
concurrent computation of ¢+2 training vectors for the clustering operations.

Fig. 2 shows the architecture of the partitioning unit, which is a c-stage
pipeline, where ¢ is the number of codewords (i.e., clusters). The pipeline fetch
one training vector per clock from the input port. The i-th stage of the pipeline
compute the squared distance between the training vector at that stage and the
i-th codeword of the codebook. The squared distance is then compared with
the current minimum distance up to the i-th stage. If distance is smaller than
the current minimum, then the i-th codeword becomes the new current optimal
codeword, and the corresponding distance becomes the new current minimum
distance. After the computation at the c-th stage is completed, the current op-
timal codeword and current minimum distance are the actual optimal codeword
and the actual minimum distance, respectively. The index of the actual optimal
codeword and its distance will be delivered to the centroid computation unit for
computing the centroid and overall distortion.

As shown in Fig. 2, each pipeline stage ¢ has input ports training vector in,
codeword in, D in, index in, and output ports training vector out, D out, in-
dex out. The training vector in is the input training vector. The codeword in is
the i-th codeword. The indezr in contains index of the current optimal code-
word up to the stage i. The D in is the current minimum distance. Each stage
1 first computes the squared distance between the input training vector and the
i-th codeword (denoted by D;), and then compared it with the D in. When
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Training vector Unit K
—>| Unit

Opverall distortion
—

Fig. 1. The proposed k-means architecture
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Fig. 2. The architecture of the partitioning unit
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Fig. 3. The architecture of the centroid computation unit

the squared distance is greater than D in, we have index out <« index in and
D out < D in. Otherwise, index out < i, and the D out « D;. Note that the
output ports training vector out, D out and index out at stage i are connected to
the input ports training vector in, D in, and indez in at the stage i+1, respec-
tively. Consequently, the computational results at stage i at the current clock
cycle will propagate to stage i+1 at the next clock cycle. When the training vec-
tor reaches the c-th stage, the final index out indicates the index of the actual
optimal codeword, and the D out contains the corresponding distance.

Fig. 3 depicts the architecture of the centroid computation unit, which can
be viewed as a two-stage pipeline. In this paper, we call these two stages, the
accumulation stage and division stage, respectively. Therefore, there are ¢ + 2
pipeline stages in the k-means unit. The concurrent computation of ¢+2 training
vectors therefore is allowed for the clustering operations.

As shown in Fig. 4, there are ¢ accumulators (denoted by ACCi,i = 1,..,¢)
and c counters for the centroid computation in the accumulation stage. The i-th
accumulator records the current sum of the training vectors assigned to cluster
i. The i-th counter contains the current number of training vectors mapped to
cluster i. The training vector out, D out and index out in Fig. 4 are actually the
outputs of the c-th pipeline stage of the partitioning unit. The index out is used
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Fig. 4. The architecture of accumulation stage of the centroid computation unit

as control line for assigning the training vector (i.e. training vector out) to the
optimal cluster found by the partitioning unit.

The circuit of division stage is shown in Fig. 5. There is only one divider in
the unit because only one centroid computation is necessary at a time. Suppose
the final index out is i for the j-th vector in the training set. The centroid of the
i-th cluster then need to be updated. The divider and the i-th accumulator and
counter are responsible for the computation of the centroid of the i-th cluster.
Upon the completion of the j-th training vector at the centroid computation
unit, the i-th counter records the number of training vectors (up to j-th vector
in the training set) which are assigned to the i-th cluster. The i-th accumulator
contains the sum of these training vectors in the i-th cluster. The output of the
divider is then the mean value of the training vectors in the i-th cluster.

The architecture of the divider is shown in Fig. 6, which contains w units (w
is the vector dimension). Each unit is a scalar divider consisting of an encoder,
a ROM, a multiplier and a shift unit. Recall that the goal of the divider is to
find the mean value as shown in eq.(]). Because the vector dimension is w, the
sum of vectors ) ., @ has w elements, which are denoted by Si, ..., S, in the
Fig. 6.(a). For the sake of simplicity, we let S be an element of szTi x, and
Card(T;) = M. Note that both S and M are integers. It can then be easily
observed that .

S 2 &

Ve S x IV 2% (5)
for any integer k > 0. Given a positive integer k, the ROM in Fig. 6.(b) in
its simplest form have 2% entries. The m-th, m = 1,...,2%, entry of the ROM
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Fig. 5. The architecture of division stage of the centroid computation unit

contains the value f: Consequently, for any positive M < 2F, ?\; can be found

by a simple table lookup process from the ROM. The output of the ROM is
then multiplied by S, as shown in the Fig. 6.(b). The multiplication result is
then shifted right by k& bits for the completion of the division operation ]\5}

In our implementation, each f:mz = 1,...,2%, has only finite precision with
fixed-point format. Since the maximum value of fi is 2%, the integer part of f:

has k bits. Moreover, the fractional part of ka contains b bits. Each ka therefore
is represented by (k 4 b) bits. There are 2* entries in the ROM. The ROM size
therefore is (k + b) x 2F bits.

It can be observed from the Fig. 6 that the division unit also evaluates the
overall distortion of the codebook. This can be accomplished by simply accu-
mulating the minimum distortion associated with each training vector after the
completion of the partitioning process. The overall distortion is used for both
the performance evaluation and the convergence test of the k-means algorithm.

The proposed architecture is used as a custom user logic in a SOPC system
consisting of softcore NIOS CPU, DMA controller and SDRAM, as depicted in
Fig. 7. The set of training vectors is stored in the SDRAM. The training vectors
are then delivered to the proposed circuit one at a time by the DMA controller
for k-means clustering. The softcore NIOS CPU only has to activate the DMA
controller for the training vector delivery, and then collects the clustering re-
sults after the DMA operations are completed. It does not participate in the
partitioning and centroid computation processes of the k-means algorithm. The
computational time for k-means clustering can then be lowered effectively.
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Fig. 6. The architecture of divider: (a) The divider contains w units; (b) Each unit is
a scalar divider consisting of an encoder, a ROM, a multiplier, and a shift unit

Ethernet PHY
Chip

LEDs, etc. LCD Screen

| Buttons,

Altera FPGA
— 2
[=]
Nios It General-
DMA Ethernet LCD
Processor Controller MAC P"%’se Display
’I M M s s
l Avalon Switch Fabric (Avalon Bus) |
s s s s s s
Avalon Tristate
Bridge SDRAM C-Means sys Res
[v] Controller Circuit UART Timer Timer
s s E Avalon Master Port
Flash SRAM e
Memory Memory b Avalon Slave Port
Chip Chip Chip (5] Avatonstave po

Fig. 7. The architecture of the SOPC using the proposed k-means circuit as custom

user logic

4 Experimental Results

This section presents some experimental results of the proposed architecture. The
k-means algorithm is used for VQ design for image coding in the experiments.
The vector dimension is w = 2 x 2. There are 64 codewords in the VQ. The
target FPGA device for the hardware design is Altera Stratix IT 2560.
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Fig. 8. The performance of the proposed k-means circuit for various sets of parameters
kand b

We first consider the performance of the divider for the centroid computation
of the k-means algorithm. Recall that our design adopts a novel divider based
on table lookup, multiplication and shift operations, as shown in eq.(H). The
ROM size of the divider for table lookup is dependent on the parameters k and
b. Higher k and b values may improve the k-means performance at the expense
of larger ROM size.

Fig. 8 shows the performance of the proposed circuit for various sets of pa-
rameters k and b. The training set for VQ design contains 30000 training vectors
drawn from the image “Lena” [I3]. The performance is defined as the average
distortion of the VQ defined in eq.( ). All the VQs in the figure starts with
the same set of initial codewords. It can be observed from the figure that the
average distortion is effectively lowered as k increases for fixed b. This is be-
cause the parameter k set an upper bound on the number of vectors (i.e., M
in eq.(@))) in each cluster. In fact, the upper bound of M is 2*. Higher k values
reduce the possibility that actual M is larger than 2*. This may enhance the
accuracy for centroid computation. We can also see from Fig. 8 that larger b can
reduce the average distortion as well. Larger b values increase the precision for
the representation of f: ; thereby improve the division accuracy.

The area cost of the proposed k-means circuit for various sets of parameters k
and b is depicted in Fig. 9. The area cost is measured by the number of adaptive
logic modules (ALMs) consumed by the circuit. It can be observed from the
figure that the area cost of our circuit reduces significantly when k and/or b
becomes small. However, improper selection of k£ and b for area cost reduction
may increase the average distortion of the VQ. We can see from Fig. 8 that
the division circuit with b = 8 has performance less susceptible to k. It can
be observed from Fig. 8 and 9 that the average distortion of the circuit with
(b = 8,k = 11) is almost identical to that of the circuit with (b = 8,k = 14).
Moreover, the area cost of the centroid computation unit with (b = 8,k = 11) is
significantly lower than that of the circuit with (b = 8,k = 14). Consequently,
in our design, we select b = 8 and k = 11 for the divider design.
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200

150 4

Speed up

100

50 - . number of training
4000 8000 16000 32000 vectors

Fig. 10. Speedup of the proposed system over its software counterpart

Our SOPC system consists of softcore NIOS CPU, DMA controller, 10 M
bytes SDRAM and the proposed k-means circuit. The k-means circuit consumes
13253 ALMs, 8192 embedded memory bits and 288 DSP elements. The NIOS
softcore CPU of our system also consumes hardware resources. The entire SOPC
system uses 17427 ALMs and 604928 memory bits.

Fig. 10 compares the CPU time of our system with its software counterpart
running on 3 GHz Pentium IV CPU for various sizes of training data set. It can
be observed from the figure that the execution time of our system is significantly
lower than that of its software counterpart. In addition, gap in CPU time enlarges
as the the training set size increases. This is because our system is based on
efficient pipelined computation for partitioning and centroid operations. When
the training set size is 32000 training vectors, the CPU time of our system is
only 3.95 mini seconds, which is only 0.54% of the CPU time of its software
counterpart. The speedup of our system over software implementation is 185.18.

5 Concluding Remarks

The proposed architecture has been found to be effective for k-means design.
It is fully pipelined with simple divider for centroid computation. It has high
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throughput, allowing concurrent partitioning and centroid operations for ¢ + 2
training vectors. The architecture can be efficiently used as an hardware accel-
erator for a general processor. As compared with the software k-means running
on Pentium IV, the NIOS-based SOPC system incorporating our architecture
has significantly lower execution time. The proposed architecture therefore is
beneficial for reducing computational complexity for clustering analysis.
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