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Abstract. We give a simple and efficient algorithm for approximating
computation of disparities in a pair of rectified frames of an image se-
quence. The algorithm consists of rendering a sparse set of correspon-
dences, which are triangulated, expanded and corrected in the areas of
occlusions and homogeneous texture by a color distribution algorithm.
The obtained approximations of the disparity maps are refined by a semi-
global algorithm. The algorithm was tested for three data sets with rather
different data quality. The results of the performance of our method are
presented and areas of applications and future research are outlined.
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1 Introduction

Retrieving dense three-dimensional point clouds from monocular images is the
key-issue in a large number of computer vision applications. In the areas of
navigation, civilian emergency and military missions, the need for fast, accurate
and robust retrieving of disparity maps from small and inexpensive cameras
is rapidly growing. However, the matching process is usually complicated by
low resolution, occlusion, weakly textured regions and image noise. In order to
compensate these negative effects, robust state-of-the-art methods such as [2],
[10], [13], [20], are usually global or semi-global, i.e. the computation of matches
is transformed into a global optimization problem. Therefore all these methods
require high computational costs. On the other hand, the local methods, such as
[3], [12], are able to obtain dense sets of correspondences, but the quality of the
disparity maps obtained by these methods is usually below the quality achieved
by global methods.

In our applications, image sequences are recorded with handheld or airborne
cameras. Characteristic points are found by means of [8] or [15] and the funda-
mental matrices are computed from the point correspondences by robust algo-
rithms (such as a modification of RANSAC [16]). As a further step, the structure
and motion can be reconstructed using tools described in [9]. If the cameras are
not calibrated, the reconstruction can be carried out in a projective coordi-
nate system and afterwards upgraded to a metric reconstruction using methods
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of auto-calibration ([9], Chapter 19). The point clouds thus obtained have ex-
tremely irregular density: Areas with a sparse density of points arising from
homogeneous regions in the images are usually quite close to areas with high
density resulting from highly textured areas. In order to reconstruct the sur-
face of the unknown terrain, it is extremely important to obtain a homogeneous
density of points. In this paper, we want to enrich the sparse set of points by
a dense set, i.e. to predict the position in space of (almost) every pixel in ev-
ery image. It is always useful to consider all available information in order to
facilitate the computation of such dense sets. Beside methods cited above and
those which were tested in the survey due to Scharstein and Szeliski [21], there
are several methods which combine the approaches of disparity estimation and
surface reconstruction. In [1], for example, the authors propose to initialize lay-
ers in the images which correspond to (almost) planar surfaces in space. The
correspondences of layers in different images are thus given by homographies
induced by these surfaces. Since the surface is not really piecewise planar, the
authors introduce the distances between the point on the surface and its planar
approximation at each pixel as additional parameters. However, it is difficult to
initialize the layers without prior knowledge. In addition, the algorithm could
have problems in the regions which belong to the same segment but have depth
discontinuities. In [19], the Delaunay triangulation of points already determined
is obtained; [18] proposes using edge-flip algorithms in order to obtain a better
triangulation since the edges of Delaunay-triangles in the images are not likely to
correspond to the object edges. Unfortunately, the sparse set of points usually
produces a rather coarse estimation of disparity maps; also, this method can
not detect occlusions. In this paper, we will investigate to what extent disparity
maps can be initialized by triangular meshes in the images.

In the method proposed here, we will use the set of sparse point correspon-
dences x = x1 ↔ x2 to create initial disparity maps from the support planes
for the triangles with vertices in x. The set x will then be iteratively enriched.
Furthermore, in the areas of weak texture and gradient discontinuities, we will
investigate to what extent the color distribution algorithms can detect the out-
liers and occlusions among the triangle vertices and edges. Finally, we will use the
result of the previous steps as an initial value for the global method [10], which
uses a random disparity map as input. The necessary theoretical background
will be described in Sec. 2.1 and the three steps mentioned above in Sec. 2.2,
2.3, and 2.4. The performance of our method is compared with semi-global algo-
rithms without initial estimation of disparities in Sec. 3. Finally, Sec. 4 provides
the conclusions and the research fields of the future work.

2 Our Method

2.1 Preliminaries

Suppose that we have obtained the set of sparse point correspondences and the
set of camera matrices in a projective coordinate system, for several images
of an airborne or handheld image sequence. The fundamental matrix can be
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extracted from any pair of cameras according to the formula (9.1) of [9]. In order
to facilitate the search for correspondences in a pair of images, we perform image
rectification, i.e. we transform the images and points by two homographies to
make the corresponding points (denoted by x1,x2) have the same y-coordinates.
In the rectification method we chose, [14], the epipoles e1, e2 must be transformed
to the point at infinity (1, 0, 0)T , therefore e1, e2 must be bounded away from
the image domain in order to avoid significant distortion of the images. We can
assume that such a pair of images with enough overlap can be chosen from
the entire sequence. We also assume that the percentage of outliers among the
points in x = x1 is low because most of the outliers are supposed to be eliminated
by robust methods. Finally, we remark that we are not interested to compute
correspondences of all points inside of the overlap of both rectified images (which
will be denoted by I1 respectively I2) but restrict ourselves to the convex hull
of the points in x. Computing point correspondences of pixels outside of the
convex hulls does not make much sense since they often do not lie in the overlap
area and, especially in the case of uncalibrated cameras, suffer more from the
lens distortion effects. One should better use another pair of images to compute
disparities for these points.

Now suppose we have a partition of x into triangles. Hereafter, p̆ denotes
the homogeneous representation of a point p; T represents a triple of integer
numbers; thus, x1,T are the columns of x1 specified by T . By p1 ∈ T , we will
denote that the pixel p1 in the first rectified image lies in triangle x1,T . Given
such a partition, every triangle can be associated with its support plane which
induces a triangle-to-triangle homography. This homography only possesses three
degrees of freedom which are stored in its first row since the displacement of a
point in a rectified image only concerns its x-coordinate.

Result 1: Let p1 ∈ T and let x1,T ,x2,T be the coordinates of the triangle
vertices in the rectified images. The homography induced by T maps x1 onto
the point p2 = (X2, Y ), where X2 = vp̆1, v = x2,T (x̆1,T )−1, and x2,T is the row
vector consisting of x-coordinates of x2,T .

Proof: Since triangle vertices x1,T ,x2,T are corresponding points, their cor-
rect locations are on the corresponding epipolar lines. Therefore they have pair-
wise the same y-coordinates. Moreover, the epipole is given by e2 = (1, 0, 0)T

and the fundamental matrix is F = [e2]×. Inserting this information into
Result 13.6 of [9], p. 331 proves, after some simplifications, the statement of
Result 1.

Determining and storing the entries of v = vT for each triangle, option-
ally refining v for the triangles in the big planar regions by error minimization
and calculating disparities according to Result 1 provide, in many cases, a
coarse approximation for the disparity map in the areas where the surface is
approximately piecewise planar and does not have many self-occlusions.
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2.2 Initialization of Disparity Maps Given from Triangulations

Starting from the Delaunay-Triangulation obtained from several points in the
image, we want to expand, because the first approximation is too coarse, the
quantity of points. Since the fundamental matrix obtained from structure-from-
motion algorithms is noisy, it is necessary to search for correspondences not only
in the direction along the epipolar lines but also in the vertical direction. We
suppose that the distance of a pair of corresponding points to the corresponding
epipolar lines to be bounded by 1 pel. Therefore, given a point p1 = (X1, Y1) ∈ T ,
we consider the search window in the second image given by:

Ws = [X1 + Xmin; X1 + Xmax] × [Y − 1; Y + 1],
Xmin = max(dmin − ε, min(sT )), Xmax = min(dmax + ε, max(sT )) (1)

where ε = 3 is a fixed scalar, sT are the x-coordinates of at most six intersection
points between the epipolar lines at Y, Y − 1, Y + 1 and the edges of x1,T and
dmin, dmax are the estimates of smallest and biggest possible disparities which
can be obtained from the point coordinates.

The search for correspondent points succeeds by means of the normalized cross
correlation (NCC) algorithm between the quadratic window I1(W (p1)) of size
between 5 and 10 pixels and I2(Ws). However, in order to avoid including mis-
matches into the set of correspondences, we impose three filters on the result of
the correlation. A pair of points p1 = (X1, Y ) and p2 = (X2, Y ) is added to the
set of correspondences if and only if: 1. the correlation coefficient c0 of the winner
exceeds a user-specified value cmin (= 0.7-0.9 in our experiments), 2. the win-
dows have approximately the same luminance, i. e. ‖I1(W (p1)) − I2(W (p2))‖1 <
|W |umax where |W | is the number of pixels in the window and umax = 15 in our
experiments, and, 3. in order to avoid erroneous correspondences along epipolar
lines which coincide with edges in the images, we eliminate the matches where
the ratio of the maximal correlation coefficient in the sub-windows

([Xmin; X2 − 1] ∪ [X2 + 1; Xmax]) × [Y − 1; Y + 1], (2)

and c0 (second-best to best) exceeds a threshold γ, which is usually 0.9. Here
Xmin, Xmax in (2), are specified according to (1). An alternative way to handle
the mismatches is using more cameras, as described, for example, in [7]. Further
research on this topic will be part of our future work.

Three concluding remarks will be given at the end of present subsection:

1. It is not necessary to use every point in every triangle for determining corre-
sponding points. It is recommendable not to search corresponding points in
lowly textured areas but to take the points with a maximal (within a small
window) response of a suitable point-detector. In our implementation, it is
the Harris-operator, see [8], so the structural tensor A for a given image as
well as the ”cornerness” term trace(A) − 0.04 det(A) can be precomputed
and stored once for all.
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2. It also turned out to be helpful to subdivide only triangles with area
exceeding a reasonable threshold (100-500 pel2 in our experiments) and non-
compatible with the surface, which means that the highest correlation coef-
ficient for the barycenter p1 of the triangle T was obtained at X2 and for
v = vT computed according to Result 1, we have |vp̆ − X2| > 1. After
obtaining correspondences, the triangulation could be refined by using edge-
flipping algorithms, but in the current implementation, we do not follow this
approach.

3. The coordinates of corresponding points can be refined to subpixel values,
according to one of four methods discussed in [23]. For the sake of computa-
tion time, subpixel coordinates for correspondences are computed according
to correlation parabolas. We denote by c− and c+ the correlation values in
the pixels left and right from X2. The correction term X̂2 in x-direction is
then given by:

X̂2 = X2 − c+ − c−
2(c− + c+ − 2c0)

.

Also the value of X2 is corrected for triangles compatible with the surface
according to Result 1.

2.3 Color-Distribution Algorithms for Occlusion Detection

The main drawback of the initialization with an (expanded) set of disparities are
the outliers in the data as well as the occlusions since the sharp edge of depth
in the triangle on the left and on the right of edge with disparity discontinuities
will be blurred. While the outliers can be efficiently eliminated by means of
disparities of their neighbors (a procedure which we apply once before and once
after the expansion), in the case of occlusions, we shall investigate how the color-
distribution algorithms can restore the disparities at the edges of discontinuities.

At present, we mark all triangles for which the standard deviation of dispari-
ties at the vertexes exceeds a user-specified threshold (σ0 = 2 in our experiments)
as unfeasible. Given a list of unfeasible triangles, we want to find similar triangles
in the neighborhood. In our approach this similarity is based on color distribu-
tion represented by three histograms, each for a different color in the color space
RGB (red, green and blue).

A histogram is defined over the occurrence of different color values of the
pixels inside the considered triangle T . Each color contains values from 0 to 255,
thus each color histogram has b bins with a bin size of 256/b. Let the number of
pixels in a triangle be n. In order to obtain the probability of this distribution
and to make it independent of the size of the triangle, we obtain for the i-th bin
of the normalized histogram

HT (i) =
1
n
· #

{
p

∣∣∣∣p ∈ T and
256 · i

b
≤ I1(p) <

256 · (i + 1)
b

}
.

The three histograms HR
T , HG

T , HB
T represent the color distribution of the con-

sidered triangle. It is also useful to split big, inhomogeneous, unfeasible triangles
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into smaller ones. To perform splitting, characteristic edges ([4]) are found in
every candidate triangle and saved in form of a binary image G(p).

To find the line with maximum support, we apply the radon transformation
([6]) to G(p):

Ğ(u, ϕ) = R{G(p)} =
∫ ∞

−∞

∫ ∞

−∞
G(p)δ(pT eϕ − u)dp

with the Dirac delta function δ(x) = ∞ if x = 0 and 0 otherwise and line
parameters pT eϕ − u, where eϕ = (cosϕ, sinϕ)T is the normal vector and u the
distance to origin. The strongest edge in the triangle is found if the maximum
of Ğ(u, ϕ) is over a certain threshold for the minimum line support. This line
intersects the edges of the considered triangle T in two intersection points. We
disregard intersection points too close to a vertex of T . If new points were found,
the original triangle is split in two or three smaller triangles. These new smaller
triangles consider the edges in the image.

Next the similarity of two neighboring triangles has to be calculated by means
of the color distribution. Two triangles are called neighbors if they share at
least one vertex. There are a lot of different approaches measuring the distance
between histograms [5]. In our case we define the distance of two neighboring
triangles T1 and T2 as follows:

d(T1, T2) = wR · d (
HR

T1
, HR

T2

)
+ wG · d (

HG
T1

, HG
T2

)
+ wB · d (

HB
T1

, HB
T2

)
(3)

where wR, wG, wB are different weights for the colors. The distance between two
histograms in (3) is the sum of absolute differences of their bins.

In the next step, the disparity in the vertices of unfeasible triangles will be
corrected. Given an unfeasible triangle T1, we define

T2 = argminT {d(T1, T )|area (T ) > A0, d(T1, T ) < c0 and T is not unfeasible} ,

where c0 = 2, A0 = 30 and d(T1, T ) is computed according to (3). If such T2

does exist, we recompute the disparities of pixels in T1 with vT2 according to
Result 1. Usually this method performs rather well as long as the assumption
holds that neighboring triangles with similar color information lie indeed in the
same planar region of the surface.

2.4 Refining of the Results with a Global Algorithm

Many dense stereo correspondence algorithms improve their disparity map esti-
mation by minimizing disparity discontinuities. The reason is that neighboring
pixels probably map to the same surface in the scene, and thus their disparity
should not differ much. This could be achieved by minimizing the energy

E(D) =
∑
p

{
C(p, dp) + P1 · Np(1) + P2 ·

∞∑
i=2

Np(i)

}
, (4)

where C(p, d) is the cost function for disparity dp at pixel p; P1, P2, with P1 < P2

are penalties for disparity discontinuities and Np(i) is the number of pixels q in
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the neighborhood of p for which |dp − dq| = i. Unfortunately, the minimization
of (4) is NP-hard. Therefore an approximation is needed. One approximation
method yielding good results, while simultaneously being computational fast
compared to many other approaches, was developed by Hirschmüller [10].

This algorithm, called Semi-Global Matching (SGM), uses mutual informa-
tion for matching cost estimation and a path approach for energy minimization.
The matching cost method is an extension of the one suggested in [11]. The
accumulation of corresponding intensities to a probability distribution from an
initial disparity map is the input for the cost function to be minimized. The
original approach is to start using a random map and iteratively calculate im-
proved maps, which are used for a new cost calculation. To speed up this process,
Hirschmüller first iteratively halves the original image by downsampling it, thus
creating image pyramids. The random initialization and first disparity approxi-
mation take place at lowest scale and are iteratively upscaled until the original
scale is achieved.

To approximate the energy functional E(D), paths from 16 different directions
leading into one pixel are accumulated. The cost for one path in direction r
ending in pixel p is recursively defined as: Lr(p, d) = C(p, d) for p near image
border and

Lr(p, d) = C(p, d)+min[Lr(p−r, d), Lr(p−r, d±1)+P1, min
i

(Lr(p − r, i))+P2]

otherwise. The optimal disparity for pixel p is then determined by summing up
costs of all paths of the same disparity and choosing the disparity with the lowest
result. Our method comes in as a substitution for the random initialization and
iterative improvement of the matching cost. The disparity map achieved by our
algorithm is simply used to compute the cost function once without iterations.

In the last step, the disparity map in the opposite direction is calculated.
Pixels with corresponding disparities are considered correctly estimated, the
remaining pixels occluded.

3 Results

In this section, results from three data sets will be presented. The first data set
is taken from the well known Tsukuba benchmark-sequence. No camera recti-
fication was needed since the images are already aligned. Although we do not
consider this image sequence as characteristic for our applications, we decided
to demonstrate the performance of our algorithm for a data set with available
ground truth. In the upper row of Fig. 1, we present the ground truth, the re-
sult of our implementation of [10] and the result of depth maps estimation ini-
tialized with ground truth. In the bottom row, one sees from left to right, the
result of Step 1 of our algorithm described in Sec. 2.2, the correction of the result
as described in Step 2 (Sec. 2.3) and the result obtained by Hirschmüller
algorithm as described in Sec. 2.4 with initialization. The disparities are drawn in
pseudo-colors and with occlusions marked in black.
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Fig. 1. Top row, left to right: the ground truth from the sequence Tsukuba, the result
of disparity map rendered by [10], the result of disparity map rendered by [10] initial-
ized with ground truth. Bottom row, left to right: initialization of the disparity map
created Step 1 by our algorithm, initialization of the disparity map created Step 2 by
our algorithm and the result of [10] with initialization. Right: color scale representing
different disparity values.

Fig. 2. Top row: left: a rectfied image from the sequence Old House with the mesh from
the point set in the rectified image; right: initialization of the disparity map created by
our algorithm. Bottom row: results of [10] with and without initialization. Right: color
scale representing disparity values.
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Fig. 3. Top row: left: a frame from the sequence Bonnland; right: the rectified image
and mesh from the point set. Bottom row: initialization of the disparity map created
by our algorithm with the expanded point set and the result of [10] with initialization.

The data set Old House shows a view of a building in Ettlingen, Germany,
recorded by a handheld camera. In the top row of Fig. 2, the rectified image
with the triangulated mesh of points detected with [8] as well as the disparity
estimation by our method is shown. The bottom row shows the results of the
disparity estimation with (left) and without (right) initialization drawn with
pseudo-colors and with occlusions marked in black.

The data set Bonnland was taken from a small unmanned aerial vehicle which
carries a small inexpensive camera on board. The video therefore suffers from
reception disturbances, lens distortion effects and motion blur. However, ob-
taining fast and feasible depth information from these kinds of sequences is
very important for practical applications. In the top row of Fig. 3, we present a
frame of the sequence and the rectified image with triangulated mesh of points.
The convex hull of the points is indicated by a green line. In the bottom row,
we present the initialization obtained from the expanded point set as well as
the disparity map computed by [10] with initialization and occlusions marked
in red.

The demonstrated results show that in many practical applications, the ini-
tialization of disparity maps from already available point correspondences is a
feasible tool for disparity estimation. The results are the more feasible, the more
the surface is piecewise planar and the less occlusions as well as segments of
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the same color lying in different support planes there are. The algorithm maps
well triangles of homogeneous texture (compatible with the surface), while even
a semi-global method produces mismatches in these areas, as one can see in
the areas in front of the house in Fig. 2 and in some areas of Fig. 3. The re-
sults obtained with the method described in Sec. 2.2 and 2.3 usually provide an
acceptable initialization for a semi-global algorithm. The computation time for
our implementation of [10] without initialization was around 80 seconds for the
sequence Bonnland (two frames of size 823× 577 pel, the algorithm run twice in
order to detect occlusions) and with initialization about 10% faster. The differ-
ence of elapsed times is approximately 7 seconds and it takes approximately the
same time to expand the given point set and to compute the distance matrix for
correcting unfeasible triangles.

4 Conclusions and Future Work

The results presented in this paper indicate that it is possible to compute ac-
ceptable initialization of the disparity map from a pair of images by means of a
sparse point set. The computing time of the initialization does not depend on the
disparity range and is less dependent on the image size as state-of-the-art local
and global algorithms since a lower point density not necessarily means worse re-
sults. Given an appropriate point detector, our method is able to consider pairs of
images with different radiometric information. In this contribution, for instance,
we extract depths maps from different frames of the same video sequence, so the
correspondences of points are likely to be established from intensity differences;
but in the case of pictures with significantly different radiometry, one can take
the SIFT-operator ([15]) as a robust point detector and the cost function will be
given by the scalar product of the descriptors.

The enriched point clouds may be used as input for scene and surface recon-
struction algorithms. These algorithms benefit from a regular density of points,
which makes the task of fast and accurate retrieving additional 3D-points (espe-
cially) in the areas of low texture extremely important. It is therefore necessary
to develop robust color distribution algorithms to perform texture analysis and
to correct unfeasible triangles, as we have indicated in Sec. 2.3.

The main drawback of Sec. 2.2 are outliers among the new correspondences as
well as occlusions which are not always corrected at later stages. Since the ini-
tialization of disparities is spanned from triangles, the complete regions around
these points will be given wrong disparities. It has been shown that using redun-
dant information given from more than two images ([22], [7]) can significantly
improve the performance; therefore we will concentrate our future efforts on
integration of multi-view-systems into our triangulation networks. Another in-
teresting aspect will be the integration of 3D-information given from calibrated
cameras into the process of robust determination of point correspondences, as
described, for example, in [17], [7]. Moreover, we want to investigate how the ex-
panded point clouds can improve the performance of the state-of-the-art surface
reconstruction algorithms.
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