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Abstract. We present an algorithm to estimate the 3D pose (location
and orientation) of a previously unseen face from low-quality range im-
ages. The algorithm generates many pose candidates from a signature to
find the nose tip based on local shape, and then evaluates each candidate
by computing an error function. Our algorithm incorporates 2D and 3D
cues to make the system robust to low-quality range images acquired
by passive stereo systems. It handles large pose variations (of ±90 ◦ yaw
and ±45 ◦ pitch rotation) and facial variations due to expressions or ac-
cessories. For a maximally allowed error of 30◦, the system achieves an
accuracy of 83.6%.

1 Introduction

Head pose estimation is the problem of finding a human head in digital im-
agery and estimating its orientation. It can be required explicitly (e.g., for gaze
estimation in driver-attentiveness monitoring [11] or human-computer interac-
tion [9]) as well as during a preprocessing step (e.g., for face recognition or facial
expression analysis).

A recent survey [12] identifies the assumptions of many state-of-the-art meth-
ods to simplify the pose estimation problem: small pose changes between frames
(i.e., continuous video input), manual initialization, no drift (i.e., short dura-
tion of the input), 3D data, limited pose range, rotation around one single axis,
permanent existence of facial features (i.e., no partial occlusions and limited
pose variation), previously seen persons, and synthetic data. The vast majority
of previous approaches are based on 2D data and suffer from several of those
limitations [12]. In general, purely image-based approaches are sensitive to illu-
mination, shadows, lack of features (due to self-occlusion), and facial variations
due to expressions or accessories like glasses and hats (e.g., [14,6]). However,
recent work indicates that some of these problems could be avoided by using
depth information [2,15].

In this paper, we present a method for robust and automatic head pose esti-
mation from low-quality range images. The algorithm relies only on 2.5D range
images and the assumption that the nose of a head is visible in the image. Both
assumptions are weak. Two color images (instead of one) are sufficient to com-
pute depth information in a passive stereo system, thus, passive stereo imagery is
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cheap and relatively easy to obtain. Secondly, the nose is normally visible when-
ever the face is (in contrast to the corners of both eyes, as required by other
methods, e.g., [17]). Furthermore, our method particularly does not require any
manual initialization, is robust to very large pose variations (of ±90 ◦ yaw and
±45 ◦ pitch rotation), and is identity-invariant.

Our algorithm is an extension of earlier work [1] that relies on high-quality
range data (from an active stereo system) and does not work for low-quality
passive stereo input. Unfortunately, the need for high-quality data is a strong
limitation for real-world applications. With active stereo systems, users are often
blinded by the bright light from a projector or suffer from unhealthy laser light.
In this work, we generalize the original method and extend it for the use of
low-quality range image data (captured, e.g., by an off-the-shelf passive stereo
system).

Our algorithm works as follows: First, a region of interest (ROI) is found in
the color image to limit the area for depth reconstruction. Second, the result-
ing range image is interpolated and smoothed to close holes and remove noise.
Then, the following steps are performed for each input range image. A pixel-
based signature is computed to identify regions with high curvature, yielding
a set of candidates for the nose position. From this set, we generate head pose
candidates. To evaluate each candidate, we compute an error function that uses
pre-computed reference pose range images, the ROI detector, motion direction
estimation, and favors temporal consistency. Finally, the candidate with the low-
est error yields the final pose estimation and a confidence value.

In comparison to our earlier work [1], we substantially changed the error
function and added preprocessing steps. The presented algorithm works on single
range images, making it possible to overcome drift and complete frame drop-outs
in case of occlusions. The result is a system that can directly be used together
with a low-cost stereo acquisition system (e.g., passive stereo).

Although a few other face pose estimation algorithms use stereo input or
multi-view images [8,17,21,10], most do not explicitly exploit depth information.
Often, they need manual initialization, have limited pose range, or do not gener-
alize to arbitrary faces. Instead of 2.5D range images, most systems using depth
information are based on complete 3D information [7,4,3,20], the acquisition of
which is complex and thus of limited use for most real-world applications. Most
similar to our algorithm is the work of Seemann et al. [18], where the disparity
and grey values are directly used in Neural Networks.

2 Range Image Acquisition and Preprocessing

Our head pose estimation algorithm is based on depth, color and intensity in-
formation. The data is extracted using an off-the-shelf stereo system (the Point
Grey Bumblebee XB3 stereo system [16]), which provides color images with a
resolution of 640× 480 pixels. The applied stereo matching algorithm is a sum-
of-absolute-differences correlation method that is relatively fast but produces
mediocre range images. We speed it up further by limiting the allowed disparity
range (i.e., reducing the search region for the correlation).
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(a) Input. (b) ROI only. (c) Interpolated.

Fig. 1. a) The range image, b) after background noise removal, c) after interpolation

The data is acquired in a common office setup. Two standard desk lamps
are placed near the camera to ensure sufficient lighting. However, shadows and
specularities on the face cause a considerable amount of noise and holes in the
resulting depth images.

To enhance the quality of the range images, we remove background and fore-
ground noise. The former can be seen in Fig. 1(a) in form of the large, isolated
objects around the head. These objects originate from physical objects behind
the user’s head or due to erroneous 3D estimation. We handle such background
noise by computing a region of interest (ROI) and ignoring all computed 3D
points outside (see result in Fig. 1(b)). For this purpose, we apply a frontal 2D
face detector [6]. As long as both eyes are visible, it detects the face reliably.
When no face is detected we keep the ROI from the previous frame. In Fig. 1(b),
foreground noise is visible, caused by the stereo matching algorithm. If the stereo
algorithm fails to compute depth values, e.g., in regions that are visible for one
camera only, or due to specularities, holes appear in the resulting range image.
We fill such holes by linear interpolation to remove large discontinuities on the
surface (see Fig. 1(c)).

3 Finding Pose Candidates

The overall strategy of our algorithm is to find good candidates for the face pose
(location and orientation) and then to evaluate them (see Sec 4). To find pose
candidates, we try to locate the nose tip and estimate its orientation around
object-centered rotation axes as local positional extremities. This step needs
only local computations and thus can be parallelized for implementation on the
GPU.

3.1 Finding Nose Tip Candidates

One strategy to find the nose tip is to compute the curvature of the surface,
and then to search for local maxima (like previous methods, e.g., [3]). However,
curvature computation is very sensitive to noise, which is prominent especially
in passively acquired range data. Additionally, nose detection in profile views
based on curvature is not reliable because the curvature of the visible part of the
nose significantly changes for different poses. Instead, our algorithm is based on
a signature to approximate the local shape of the surface.
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(a) (b) (c) (d)

Fig. 2. a) The single signature Sx is the set of orientations o for which the pixel’s
position x is a maximum along o compared to pixels in the neighborhood N(x). b)
Single signatures Sj of points j in N ′(x) are merged into the final signature S′

x. c) The

resulting signatures for different facial regions are similar across different poses. The
signatures at nose and chin indicate high curvature areas compared to those at cheek
and forehead. d) Nose candidates (white), generated based on selected signatures.

To locate the nose, we compute a 3D shape signature that is distinct for regions
with high curvature. In a first step, we search for pixels x whose 3D position is
a maximum along an orientation o compared to pixels in a local neighborhood
N(x) (see Fig. 2(a)). If such a pixel (called a local directional maximum) is
found, a single signature Sx is stored (as a boolean matrix). In Sx, one cell
corresponds to one orientation o, which is marked (red in Fig. 2(a)) if the pixel
is a local directional maximum along this orientation. We only compute Sx for
the orientations on the half sphere towards the camera, because we operate on
range data (2.5D).

The resulting single signatures typically contain only a few marked orienta-
tions. Hence, they are not distinctive enough yet to reliably distinguish between
different facial regions. Therefore, we merge single signatures Sj in a neighbor-
hood N ′(x) to get signatures that are characteristic for the local shape of a
whole region (see Fig. 2(b)).

Some resulting signatures for different facial areas are illustrated in Fig. 2(c).
As can be seen, the resulting signatures reflect the characteristic local curvature
of facial areas. The signatures are distinct for large, convex extremities, such as
the nose tip and the chin. Their marked cells typically have a compact shape
and cover many adjacent cells compared to those of facial regions that are flat,
such as the cheek or forehead. Furthermore, the signature for a certain facial
region looks similar if the head is rotated.

3.2 Generating Pose Candidates

Each pose candidate consists of the location of a nose tip candidate and its re-
spective orientation. We select points as nose candidates based on the signatures
using two criteria: first, the whole area around the point has a convex shape,
i.e., a large amount of the cells in the signature has to be marked. Secondly, the
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(a) (b)

Fig. 3. The final output of the system: a) the range image with the estimated face
pose and the signature of the best nose candidate, b) the color image with the output
of the face ROI (red box), the nose ROI (green box), the KLT feature points (green),
and the final estimation (white box). (Best viewed in color)

point is a “typical” point for the area represented by the signature (i.e., it is
in the center of the convex area). This is guaranteed if the cell in the center of
all marked cells (i.e., the mean orientation) is part of the pixel’s single signa-
ture. Fig. 2(d) shows the resulting nose candidates based on the signatures of
Fig. 2(c). Finally, the 3D positions and mean orientations of selected nose tip
candidates form the set of final head pose candidates {P}.

4 Evaluating Pose Candidates

To evaluate each pose candidate Pcur corresponding to the nose candidate Ncur,
we compute an error function. Finally, the candidate with the lowest error yields
the final pose estimation:

Pfinal = arg min
Pcur

(αenroi + βefeature + γetemp + δealign + θecom) (1)

The error function consists of several error terms e (and their respective weights),
which are described in the following subsections. The final error value can also
be used as a (inverse) confidence value.

4.1 Error Term Based on Nose ROI

The face detector used in the preprocessing step (Sec. 2) yields a ROI contain-
ing the face. Our experiments have shown that the ROI is always centered close
to the position of the nose in the image, independent of the head pose. Thus,
we compute ROInose, a region of interest around the nose, using 50% of the
size of the original ROI (see Fig. 3(b)). Since we are interested in pose candi-
dates corresponding to nose candidates inside ROInose, we ignore all the other
candidates.

In practice, instead of a hard pruning, we introduce a penalty value χ for
candidates outside and no penalty value for candidates inside the nose ROI:

enroi =
{

χ if Ncur /∈ ROInose

0 otherwise (2)
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This effectively prevents candidates outside of the nose ROI from being selected
as long as there is one other candidate within the nose ROI.

4.2 Error Term Based on Average Feature Point Tracking

Usually, the poses in consecutive frames don’t change dramatically. Therefore, we
further evaluate pose candidates by checking the temporal correlation between
two frames. The change of the nose position between the position in the last
frame and the current candidate is defined as a motion vector Vnose and should
be similar to the overall head movement in the current frame, denoted as Vhead.
However, this depends on the accuracy of the pose estimation in the previous
frame. Therefore, we apply this check only if the confidence value of the last
estimation is high (i.e., if the respective final error value is below a threshold).

To implement this error term, we introduce the penalty function

efeature =
{ |Vhead − Vnose| if |Vhead − Vnose| > Tfeature

0 otherwise. (3)

We estimate Vhead as the average displacement of a number of feature points
from the previous to the current frame. Therefore, we use the Kanade-Lucas-
Tomasi (KLT) tracker [19] on color images to find feature points and to track
them (see Fig. 3(b)). The tracker is configured to select around 50 feature points.
In case of an uncertain tracking result, the KLT tracker is reinitialized (i.e., new
feature points are identified). This is done if the number of feature points is too
low (in our experiments, 15 was a good threshold).

4.3 Error Term Based on Temporal Pose Consistency

We introduce another error term etemp, which punishes large differences between
the estimated head pose Pprev from the last time step and the current pose
candidate Pcur. Therefore, the term enforces temporal consistency. Again, this
term is only introduced if the confidence value of the estimation in the last frame
was high.

etemp =
{ |Pprev − Pcur| if |Pprev − Pcur| > Ttemp

0 otherwise. (4)

4.4 Error Term Based on Alignment Evaluation

The current pose candidate is further assessed by evaluating the alignment of
the corresponding reference pose range image. Therefore, an average 3D face
model was generated from the mean of an eigenvalue decomposition of laser
scans from 97 male and 41 female adults (the subjects are not contained in our
test dataset for the pose estimation). In an offline step, this average model (see
Fig. 4(a)) is then rendered for all possible poses, and the resulting reference pose
range images are directly stored on the graphics card. The possible number of
poses depends on the memory size of the graphics card; in our case, we can
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(a) (b)

Fig. 4. a) The 3D model. b) An alignment of one reference image and the input.

store reference pose range images with a step size of 6 ◦ steps within ±90 ◦ yaw
and ±45 ◦ pitch rotation. The error ealign consists of two error terms, the depth
difference error ed and the coverage error ec

ealign = ed(Mo, Ix) + λ · ec(Mo, Ix), (5)

where ealign is identical with [1]; we refer to this paper for details. Because ealign

only consists of pixel-wise operations, the alignment of all pose hypotheses is
evaluated in parallel on the GPU.

The term ed is the normalized sum of squared depth differences between
reference range image Mo and input range image Ix for all foreground pixels
(i.e., pixels where a depth was captured), without taking into account the actual
number of pixels. Hence, it does not penalize small overlaps between input and
model (e.g., the model could be perfectly aligned to the input but the overlap
consists only of one pixel). Therefore, the second error term ec favors those
alignments where all pixels of the reference model fit to foreground pixels of the
input image.

4.5 Error Term Based on Rough Head Pose Estimate

The KLT feature point tracker used for the error term efeature relies on motion,
but does not help in static situations. Therefore, we introduce a penalty function
that compares the current pose candidate Pcur with the result Pcom from a simple
head pose estimator.

We apply the idea of [13], where the center of the bounding box around the
head (we use the ROI from preprocessing) is compared with the center of mass
com of the face region. Therefore, the face pixels S are found using an ad-hoc
skin color segmentation algorithm (xr,g,b are the values in the color channels)

S = {x|xr > xg ∧ xr > xb ∧ xg > xb ∧ xr > 150 ∧ xg > 100} . (6)

The error term ecom is then computed as follows:

ecom =
{ |Pcom − Pcur| if |Pcom − Pcur| > Tcom

0 otherwise (7)

The pose estimation Pcom is only valid for the horizontal direction and not very
precise. However, it provides a rough estimate of the overall viewing direction
that can be used to make the algorithm more robust.
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Fig. 5. Pose estimation results: good (top), acceptable (middle), bad (bottom)

5 Experiments and Results

The different parameters for the algorithm are determined experimentally and
set to [Tfeature, Ttemp, Tcom, χ, λ] = [40, 25, 30, 10000, 10000]. The weights of the
error terms are chosen as [α, β, γ, δ, θ] = [1, 10, 50, 1, 20]. None of them is par-
ticularly critical. To obtain test data with ground truth, a magnetic tracking
system [5] is applied with a receiver mounted on a headband each test person
wears. Each test person used to evaluate the system is first asked to look straight
ahead to calibrate the magnetic tracking system for the ground truth. However,
this initialization phase is not necessary for our algorithm. Then, each person is
asked to freely move the head from frontal up to profile poses, while recording
200 frames. We use 15 test persons yielding 3000 frames in total1.

We first evaluate the system qualitatively by inspecting each frame and judg-
ing whether the estimated pose (superimposed as illustrated in Fig. 5) is accept-
able. We define acceptable as whether the estimated pose has correctly captured
the general direction of the head. In Fig. 5 the first two rows are examples of
acceptable poses in contrast to the last row. This test results in around 80%
correctly estimated poses. In a second run, we looked at the ground truth for
the acceptable frames and found that our instinctive notion of acceptable corre-
sponds to a maximum pose error of about ±30◦. We used this error condition in
a quantitative test, where we compared the pose estimation in each frame with
the ground truth. This results in a recognition rate of 83.6%.

We assess the isolated effects of the different error terms (Sec. 4) in Table 1,
which shows the recognition rates when only the alignment term and one other
1 Note that outliers (e.g., a person looks backwards w.r.t.the calibration direction) are

removed before testing. Therefore, the effect of some of the error terms is reduced
due to missing frames, hence the recognition rate is lowered – but more realistic.
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Table 1. The result of using different combinations of error terms

Error term Error ≤ 15◦ Error ≤ 30◦

Alignment 29.0% 61.4%

Nose ROI 36.7% 75.7%
Feature 36.4% 68.7%
Temporal 37.7% 73.4%
Center of Mass 34.0% 66.4%

All 47.3% 83.6%

term is used. In [1], a success rate of 97.8% is reported, while this algorithm
achieves only 29.0% in our setup. The main reason is the very bad quality of the
passively acquired range images. In most error cases, a large part of the face is
not reconstructed at all. Hence, special methods are required to account for the
quality difference, as done in this work by using complementary error terms.

There are mainly two reasons for the algorithm to fail. First, when the nose
ROI is incorrect, nose tip candidates far from the nose could be selected (es-
pecially those at the boundary, since such points are local directional maxima
for many directions); see middle image of last row in Fig. 5. The nose ROI is
incorrect when the face detector breaks for a longer time period (and the last
accepted ROI is used). Secondly, if the depth reconstruction of the face surface is
too flawed, the alignment evaluation will not be able to distinguish the different
pose candidates correctly (see right and left image of the last row in Fig. 5). This
is mostly the case if there are very large holes in the surface, which is mainly
due to specularities or uniformly textured and colored regions.

The whole system runs with a frame-rate of several fps. However, it could be
optimized for real-time performance, e.g., by consistently using the GPU.

6 Conclusion

We presented an algorithm for estimating the pose of unseen faces from low-
quality range images acquired by a passive stereo system. It is robust to very large
pose variations and for facial variations. For a maximally allowed error of 30◦, the
system achieves an accuracy of 83.6%. For most applications from surveillance or
human-computer interaction, such a coarse head orientation estimation system
can be used directly for further processing.

The estimation errors are mostly caused by a bad depth reconstruction. There-
fore, the simplest way to improve the accuracy would be to improve the quality
of the range images. Although better reconstruction methods exist, there is a
tradeoff between accuracy and speed. Further work will include experiments with
different stereo reconstruction algorithms.
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