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Abstract. With the multiplication of sensors and instruments, size,
amount and quality of solar image data are constantly increasing, and
analyzing this data requires defining and implementing accurate and reli-
able algorithms. In the context of solar features analysis, it is particularly
important to accurately delineate their edges and track their motion, to
estimate quantitative indices and analyse their evolution through time.
Herein, we introduce an image processing pipeline that segment, track
and quantify solar features from a set of multispectral solar corona im-
ages, taken with eit EIT instrument. We demonstrate the method on
the automatic tracking of Active Regions from EIT images, and on the
analysis of the spatial distribution of coronal bright points. The method
is generic enough to allow the study of any solar feature, provided it can
be segmented from EIT images or other sources.
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1 Introduction

With the multiplication of both ground-based and onboard satellites sensors
and instruments, size, amount and quality of solar image data are constantly
increasing, and analyzing this data requires the mandatory definition and im-
plementation of accurate and reliable algorithms. Several applications can ben-
efit from such an analysis, from data mining to the forecast of solar activity or
space weather. More particularly, solar features, such as sunspots, filaments or
solar flares partially express energy transfer processes in the Sun, and detect-
ing, tracking and quantifying their characteristics can provide information about
how these processes occur, evolve and affect total and spectral solar irradiance
or photochemical processes in the terrestrial atmosphere.

The problem of solar image segmentation in general and the detection and
tracking of these solar features in particular has thus been addressed in many
ways in the last decade. The detection of sunspots [I822/27], umbral dots [21]
active regions [AT3123], filaments [I7T2/T925], photospheric [BII7] or chromo-
spheric structures [26], solar flares [24], bright points [8/9] or coronal holes [16]
mainly use classical image processing techniques, from region-based to edge-
based segmentation methods.

A.-B. Salberg, J.Y. Hardeberg, and R. Jenssen (Eds.): SCIA 2009, LNCS 5575, pp. 199208, 2009.
© Springer-Verlag Berlin Heidelberg 2009



200 V. Barra, V. Delouille, and J.-F. Hochedez

In this article we propose an image processing pipeline that segment, track
and quantify solar features from a set of multispectral solar corona images, taken
with eit EIT instrument. The EIT telescope [10] onboard the SoHO ESA-NASA
solar mission takes daily several data sets composed of four images (17.1 nm,
19.5 nm, 28.4 nm and 30.4 nm), all acquired within 30 minutes. They are thus
well spatially registered and provide for each pixel a collection of 4 intensities
that potentially permit to recognize the standard solar atmosphere region, or
more generally solar features, to which it belongs..

This paper is organized as follows : section 2lintroduces the general segmenta-
tion method. It basically recalls the original SPoCA algorithm, then specializes
it to the automatic segmentation and tracking of solar features, and finally in-
troduces some solar features properties suitable for the characterization of such
objects. Section Bl demonstrate some results on some EIT images of a 9-year im-
ages dataset spanning solar cycle 23, and section [ sheds lights on perspectives
and conclusion.

2 Method

2.1 Segmentation

We introduced in [2] and refined in [3] SPoCA, an unsupervised fuzzy clustering
algorithm allowing the fast and automatic segmentation of coronal holes, active
regions and quiet sun from multispectral EIT images. In the following, we only
recall the basic principle of this algorithm, and we more particularly focus on its
application for the segmentation of solar features.

SPoCA. Let I = (I')(1<i<py, I' = (I;){1§j§1v}, be the set of p images to be
processed. Pixel j, 1 < j < N is described by a feature vector z;. x; can be
the p-dimensional vector (I} --- T H )T or any r-dimensional vector describing local
properties (textures, egdes,...) of j. In the following, the size of z; will be denoted
as r. Let Nj denote the neighborhood of pixel j, containing j, and Card(N;) be
the number of elements in Aj. In the following, we note X = {x;,1 < j <
N,z; € R"} the set of feature vectors describing pixels j of I.

SPoCA is an iterative algorithm that searches for C' compact clusters in X
by computing both a fuzzy partition matrix U = (u;;),1 <i < C,1 < j < N,
u;,; = ui(x;) € [0,1] being the membership degree of x; to class ¢, and unknown
cluster centers B = (b; € R",1 < i < (). It uses iterative optimizations to find
the minimum of a constrained objective function:

N

c [N
Tspoca(B, U, X) =Y | > uil Y Brd(ar, bi) +m: Y (1 —uij)™ (1)

i=1 \j=1 kEN; j=1

N
subject for alli € {1---C} to Zuij < N,forallj € {l---N} tomaxu;; > 0,
j=1
where m > 1 is a fuzzification parameter [6], and
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1 if k=j
B = { Card(}\fj)—l otherwise (2)

Parameter 7; can be interpreted as the mean distance of all feature vectors x; to b;
such that u;; = 0.5. 7; can be computed as the intra-class mean fuzzy distance [14]:

N
j=1
’r)i = N

E m

Jj=1

The first term in () is the total fuzzy intra-cluster variance, while the second

term prevents the trivial solution U = 0 and relaxes the probabilistic constraint
N

Z u;; = 1,1 <14 < C, stemming from the classical Fuzzy-C-means (FCM) algo-
j=1

rithm [6]. SPoCa is a spatially-constrained version of the possibilistic clustering
algorithm proposed by Krishnapuram and Keller [I4], which allows memerships
to be interpreted as true degrees of belonging, and not as degrees of sharing
pixels amongst all classes, which is the case in the FCM method.

We showed in [2] that U and B could be computed as

. N
> Brd(ar, bi) \ " > oul Y Brwe

kENj Jj=1 kENj

wij = |1+ and b; = N
22 i
j=1

i

SPoCA provides thus coronal holes (CH), Active regions (AR) and Quiet Sun
(QS) fuzzy maps U; = (u;;) for i € {CH,QS, AR}, modeled as distributions of
possibility 7; [I1] and represented by fuzzy images. Figure[ll presents an example
of such fuzzy maps, processed on a 19.5 nm EIT image taken on August 3, 2000.

To this original algorithm, we added [3] some pre and post processings (tem-
poral stability, limb correction, edge smoothing, optimal clustering based on a
sursegmentation), which dramatically improved the results.

Original Image CH map mcn QS map mQs AR map mar

Fig. 1. Fuzzy segmentation of a 19.5 nm EIT image taken on August 3, 2000
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Segmentation of Solar Features. From coronal holes (CH), Active regions
(AR) and Quiet Sun (QS) fuzzy maps, solar features can then be segmented using
both memberships and expert knowledge provided by solar physicists. The basic
principle is to find connected components in a fuzzy map being homogeneous
with respect to some statistical criteria, related to the physical properties of the
features, and/or having some predefined geometrical properties. Some region
growing techniques and mathematical morphology are thus used here to achieve
this segmentation process. Typical solar features that can directly be extracted
from EIT images only include coronal bright points (ﬁgure or active regions

(figure .

(a) Bright points from (b) Active regions from (c¢) Filaments from H-«
EIT image (1998-02-03) EIT image (2000-08-04) image

Fig. 2. Several solar features

Additional information can also be added to these maps to allow the segmen-
tation of other solar features. We for example processed in [3] the segmentation of
filaments from the fusion of EIT and H-« images, from Kanzelhoehe observatory

(figure [2(c)).

2.2 Tracking

In this article, we propose to illustrate the method on the automatic tracking
of Active Regions. We more particularly focus on the largest active region, and
algorithm [3] gives an overview of the method.

The center of mass Gy_1 of AR;_ is translated to Gy, such that the vector
with start point Gy—1G¢ equals the displacement field vg observed at pixel
Gt_1. The displacement field between images I; 1 and I; is estimated with the
opticalFlow procedure, a multiresolution version of the differential Lucas and
Kanade algorithm [15]. If I(x,y,t) denote the gray-level of pixel (z,y) at date t,
the method assumes the conservation of image intensities through time:

I(.T7y,t) :I(-T—U7y—’l)70)

wherev = (u, v)isthevelocity vector. Under the hypothesis of small displacements,
a Taylor expansion of this expression gives the gradient constraint equation:



Segmentation of Solar Features from EIT Images 203

Data: (I;---In) N EIT images
Result: Timeseries of parameters of the tracked AR
// Find the Largest connected component on the AR fuzzy map of [;
AR, =FindLargestCC(I{*F)
// Compute the Center of mass of AR;
G1=ComputeCenterMass(AR;)
for t=2 to N do
// Compute the Optical flow between I;_; and I;
Fi_y=opticalFlow(l;—1, It)
// Compute the New center of mass, given the velocity field
G = Forecast(Gi—1, Fy_1)
// Find the Connected component in AR fuzzy map of [;, centered
on Gy
AR; = FindCC(Gy)

// Timeseries analysis of regions AR;--- AR
return Timeseries(AR1 --- ARN)

Fig. 3. Active region tracking

VI(ey 0Ty + ) (59,0 =0 g

Equation (@) allows to compute the projection of v in the direction of VI, and
the other component of v is found by regularizing the estimation of the vector
field, through a weighted least squares fit of (B]) to a constant model for v in
each of small spatial neighborhood {2:

oI 2

. ) .

Mzn( E)GQW (z,y) {Vl(x,y,t) v+ ot (z,y,1) (4)
@y

where W (z, y) denotes a window function that gives more influence to constraints
at the center of the neighborhood than those at the surroundings. The solution
of (@) is given by solving

ATW?Av = ATW?b
where for n points (x;,y;) € 2 at time ¢

A= (VI(z1,y1,t) - VI(:rmyn,t))T
W= diag(W(xl, le) T W(xna yn))

a1 a1 T
b= (_ ot (‘rluylvt)"' - ot (mnvynat)>

A classical calculus of linear algebra directly gives v = (ATW?2A4)~1ATW?2p.

In this work, we applied a multiresolution version of this algorithm : the images
were downsampled to a given lowest resolution, then the optical flow algorithm
was computed for this resolution, and serves as an initialization for the compu-
tation of optical flow at the next resolution. This process was iteratively applied
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until the initial resolution was reached. This allows a coarse-to-fine estimation
of velocities. This procedure is simple and fast, and hence allows for a real-time
tracking of AR.

Although we can suppose here that because of the slow motion between I; 1
and Iy, G; will lie in the trace of AR;_; in I; (and thus a region growing technique
may be sufficient, directly starting from G; in I;), we use the optical flow for
handling non successive images I; and I;;,j >> 1, but also for computing some
velocity parameters of the active regions such as the magnitude, the phase, etc,
and to allow the tracking of any solar feature, whatever its size (cf. section B.3).

2.3 Quantifying Solar Features

Several quantitative indices can finally be computed on a given solar feature,
given the previous segmentation. We investigate here both geometric and pho-
tometric (irradiance) indices for a solar feature S; segmented from image I; at
time ¢:

location L, given as as function of the latitude on the solar disc

— area a; = ffSt dzdy,

Integrated and mean intentities: i, = [ [ I(z,y,t)dzdy and m(t) = i/a
fractal dimension, estimated using a box counting method

All of these numerical indices give relevant information on Sy, and more impor-
tant, the analysis of the timeseries of these indices can reveal important facts on
the birth, the evolution and the dead of solar features.

3 Results

3.1 Data

We apply our segmentation procedure on subsets of 1024x1024 EIT images
taken from 14 February 1997 up till 30 April 2005, thus spanning more than
8 years of the 11-year solar cycle. During the 8 years period, there were two
extended periods without data: from 25 June up to 12 October 1998, and during
the whole month of January 1999. Almost each day during this period, EIT
images taken with less than 30 min apart were considered. These images did
not contain telemetry missing blocks, and were preprocessed using the standard
eit prep procedure of the solar software (ssw) library. Image intensities were
moreover normalized by their median value.

3.2 First Example: Automatic Tracking of the Biggest Active
Region

Active regions (AR) are areas on the Sun where magnetic fields emerge through
the photosphere into the chromosphere and corona. Active regions are the source
of intense solar flares and coronal mass ejections. Studying their birth, their
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evolution and their impact on total solar irradiance is of great importance for
several applications, such as space weather.

We illustrate our method with the tracking and the quantification of the
largest AR of the solar disc, during the first 15 days of August, 2000. Figure [
presents an example on a sequence of images, taken from 2000-08-01 to 2000-
08-10. Active Regions segmented from SPoCA are highlighted with red edges,
the biggest one being labeled in white. From this segmentation, we computed
and plotted several quantitative indices, and we illustrate the timeseries of area,
maximum intensity and fractal dimension over the period showed in figure [

2000-08-04 2000-08-05 2000-08-06

2000-08-07 2000-08-08 2000-08-09

Fig. 4. Example of an AR tracking process. The tracking was performed on an active
region detected on 2000-08-04, up to 2000-08-09.
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Fig. 5. Example of AR quantification indices for the period 2000-08-04 - 2000-08-09
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Such results demonstrate the ability of the method to track and quantify active
regions. It is now important not only to track such a solar feature over a solar
rotation period, but also to record its birth and capture its evolution through
several solar rotations. For this, we now plan to characterized solar features with
their vector of quantification indices, and to recognize new features appearing
on the limb, among the set of solar feature already been registered, using an
unsupervised pattern recognition algorithm.

3.3 Second Example: Distribution of Coronal Bright Points

Coronal Bright Points (CBP) are of great importance for the analysis of the
structure and dynamics of solar corona. They are identified as small and short-
lived (< 2 days) coronal features with enhanced emission, mostly located in
quiet-Sun regions and coronal holes. Figure[f] presents a segmentation of CBP of
an image taken on February, 2nd, 1998. This image was chosen so as to compare
the results with the one provided by [20] Several other indices can be computed
from this analysis, such as N/S assymetry, timeseries of the number of CBP,
intensity analysis of CBP...

Sgmentation of CBP using 19.5 nm EIT image CBP [20]

Latitudinal distribution of BPs

Locitudinnl discribution of BPa
T T T

L -

50 0 50 o ™
Latitude (deg) it

Number of CBP as a function of latitude same from [20)]

Fig. 6. Number of CBP as a function of latitude: comparison with [20]
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4 Conclusion

We proposed in this article an image processing pipeline that segment, track and
quantify solar features from a set of multispectral solar corona images, taken with
eit EIT instrument. Based on a validated segmentation scheme, the method is
fully described and illustrated on two preliminary studies: the automatic track-
ing of Active Regions from EIT images taken during solar cycle 23, and the
analysis of spatial distribution of coronal bright points on the sular surface. The
method is generic enough to allow the study of any solar feature, provided it
can be segmented from EIT images or other sources. As stated above, our main
perspective is to follow solar feature and to track their reappearance after a solar
rotation .S. We plan to use the quantification indices computed on a given solar
feature F' to characterize it and to find, over new solar features appearing on the
solar limb at time ¢ + .5/2, the one closest to F'. We also intend to implement a
multiple activity region tracking, using a natural extension of our method.
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