
Dependency Management in Smart Homes

Daniel Retkowitz and Sven Kulle

Department of Computer Science 3 (Software Engineering)
RWTH Aachen University

Ahornstr. 55, 52074 Aachen, Germany
retkowitz@i3.informatik.rwth-aachen.de,
svekul@i3.informatik.rwth-aachen.de

Abstract. In future smart homes functionality will be provided to the
inhabitants by software services decoupled from the underlying hard-
ware devices. While this will enhance flexibility and will allow to provide
cross-functionalities across multiple devices it will also lead to resource
conflicts. Future devices will provide basic functionalities which are used
by separate higher level services. Each person will use a number of dif-
ferent services and each environment can be inhabited by multiple users
at the same time. All respective services have to be executed based on a
limited number of devices, which will result in resource conflicts. In this
paper we describe how we extended our existing dependency manage-
ment approach for smart home services with a mechanism for monitoring
service bindings and handling access control based on priority groups.

1 Introduction

Today computing is associated with desktop or laptop computers. Research in
the field of ubiquitous computing aims at integrating small computing devices
into almost anything that surrounds us in our everyday life. While being unaware
of the individual devices, users will be supported in different ways by software
services running on such devices. Smart Homes, or eHomes as we call them,
are smart environments based on the ubiquitous computing paradigm especially
focusing on home environments, e. g. private residential buildings.

Component-based software engineering allows to reuse existing software easily
and facilitates dynamic composition. These characteristics are especially impor-
tant for eHome systems. To make low-cost eHomes available to a broad market,
ready-made components are used that are composed dynamically according to
the user’s needs and the current context. Typically an underlying middleware
infrastructure is used to support the development of service components. By
making use of middleware technology, the service development effort can be
greatly reduced as the developers can focus on the services’ application logic in-
stead of implementing infrastructure functionality, e. g. life cycle and dependency
management, time and again for each service. This way service development is
simplified and development costs are reduced. In addition, more consistency is
gained by moving cross-functionality to the middleware layer.

T. Senivongse and R. Oliveira (Eds.): DAIS 2009, LNCS 5523, pp. 143–156, 2009.
c© IFIP International Federation for Information Processing 2009



144 D. Retkowitz and S. Kulle

The idea of ubiquitous computing implies a separation of application func-
tionality and the devices used for realizing this functionality. Todays consumer
electronics are typically based on a tight coupling of functionality and hardware.
Either the functionality is directly implemented in hardware or it is implemented
as an embedded system, i. e. a specific software hardware composition. Ubiqui-
tous computing will lead to more general purpose devices and less highly in-
tegrated devices incorporating very specific functionalities. Thereby the direct
relationship between functionality and the corresponding hardware used for its
realization will disappear. While this will lead to positive effects in general, it
will nevertheless create problems with respect to resource usage. Each eHome
user can use a number of different services and different users can share the same
environment within an eHome. The numerous services on the one hand and the
limited number of hardware devices on the other hand will result in a dispro-
portion. Therefore services usually will have to share the resources available in
the respective environments. But in general not all resources may be used by
multiple services at the same time. If e. g. a speaker system is used by lots of
services at the same time, the user would only hear a chaotic noise. On the other
hand, if one service exclusively uses the speaker system for a longer period of
time, all other services depending on the speaker system will be blocked and can
only proceed after the speaker system is released. This may not be reasonable
in many cases.

To prevent such situations of resource conflicts a dynamic dependency man-
agement and resource allocation mechanism is needed to find a feasible trade-off
between getting exclusive usage access to devices and sharing resourceswith other
services. In this paper we will present our approach to tackle this issue and we will
describe how we manage the service bindings at runtime with respect to concur-
rent use of resources. This approach is based on a fine-grained notion of bindings
and corresponding usage relations, which enables interleaved resource access. Fur-
thermore, our approach includes a priority management mechanism for service
bindings, which is used to solve resource conflicts by prioritizing certain services
over others. This is especially useful in case of security related services.

The paper is structured as follows. In Section 2 we describe previous work
in our project that is used as basis for the dynamic dependency management
introduced in this paper. The following Section 3 constitutes the main part of
the paper in which we describe the extensions we made regarding binding types,
priorities, and the application of both at system runtime. In Section 4 we ex-
plain the mechanisms used to implement the extensions. Furthermore we give
an overview on some related work in Section 5. Finally, in Section 6, we conclude
the paper with a summary and an outlook.

2 eHome Systems

Inhabitants of future smart home environments will use services from different
domains as comfort, entertainment, communication, security, health care, or time
and energy saving. To facilitate services in these areas a powerful infrastructure



Dependency Management in Smart Homes 145

is needed to support development and later execution of services. Important
challenges we addressed in previous work are handling the dynamics that occur
in smart environments and enabling adaptivity and interoperability of heteroge-
neous services. In the following we give a brief description of our project and the
underlying system architecture.

2.1 System Architecture

In our prototype realization, we use the OSGi Service Platform as a component-
based service architecture for the implementation of eHome services [1].
In OSGi software components are called bundles which are deployed onto a service
platform. OSGi provides different capabilities needed to build and run a
component-based software system. Most importantly OSGi offers a concept for
modularization,which is only supported insufficiently in pure Java. Furthermore it
offers life-cycle management, allowing to add or remove bundles at system runtime.
A service registry allows to find and use registered services from other bundles.

While OSGi offers these important capabilities it provides only limited sup-
port for a dynamic and context-aware dependency management, which is needed
for services in the area of smart environments. For eHomes we need a more so-
phisticated model to handle special requirements like which service instance is
assigned to which room and how many devices of a certain type are available in
a room and are ready to use. Furthermore the user requirements change often
and the eHome system has to be reconfigured accordingly. These characteristic
requirements affect the configuration process of such systems.

Our system is based on a three-layered architecture of eHome services. The
upper layer consists of so-called top-level services. These are application services
that provide their functionality directly to the user. To provide this functionality
they typically rely on driver or integrating services. Driver services build up the
bottom layer. They provide access and control of available hardware devices in
the eHome. Integrating services are used in an optional intermediate layer which
allows to provide different steps of abstraction to connect top-level services to
driver services.

2.2 Dynamic Dependency Management

Any service which requires a certain functionality needs a corresponding service
providing that functionality. This relationship between services constitutes a de-
pendency. At runtime, when service instances are created, these dependencies
have to be fulfilled to allow the execution of the service instances. Dependencies
are fulfilled by creating a binding between service instances. We call this pro-
cess configuration. The purpose of the configuration process is to create a service
composition that matches the user requirements and the available device environ-
ment on the one hand and tries to meet all service dependencies if possible on the
other hand. The service specification affects the dependencies to other services.
For each dependency the composition behavior can be influenced by so-called
binding policies. These policies define whether a dependency is to be fulfilled au-
tomatically or manually and whether to bind as many services as possible or to



146 D. Retkowitz and S. Kulle

bind only the minimum requirements. Furthermore, binding constraints impose
restrictions on the service matching and thereby imply more specific service de-
pendencies. Binding constraints are defined in the service specification for each
required functionality. This way dependencies that relate to the current context
of the environment can be realized.

We developed a prototype tool called eHome Tool Suite to support dynamic
dependency management of eHome services as described above. Besides an ed-
itor for service specification the eHome Tool Suite also comprises a graphical
editor for managing the runtime phase of the eHome system. Runtime manage-
ment is implemented according to the so-called SCD Process [2] which consists
of the three phases specification, configuration, and deployment. The specifica-
tion can be modified by the user at any time using the graphical editor, e. g.
moving services from one location to another or by manually adjusting service
bindings. Based on this and the selected services’ specifications the configuration
of the system is generated or adjusted by the dependency management system
described above. Finally the (modified) system configuration is deployed to the
OSGi runtime environment in the deployment phase. This includes loading the
corresponding bundles, creating service instances, and setting the service ref-
erences according to the configured bindings. In contrast to other approaches
aiming at a fully automatic system management, we provide the eHome Tool
Suite as a means to visualize the current system state and to apply manual mod-
ifications to this state. In our view such means will be essential in future eHome
systems to keep the users in control of their environments.

2.3 Example Scenario

In the rest of this section we will describe an example scenario to illustrate
the problems evolving from the disproportion of used services and available
resources.

Peter lives in an eHome and uses a web-enabled speaker system allowing to
play different audio streams from network resources. The speakers are placed in
the different rooms of Peter’s apartment. His speaker system is used by several
services, e. g. an alarm service for intrusion detection, a music service, a wake-up
service, and a TV service. All these services depend on the speaker system.

Coming home from work, Peter’s personal music service starts to play his
favorite music. While walking through his apartment the music service is follow-
ing automatically to his current location. After a while Peter wants to watch the
news on TV. Because the music service has bound all speakers in the living room,
he has to perform several manual reconfiguration steps such that the music ser-
vice is stopped and the TV gets connected to the speakers. He also configures
his wake-up service to wake him up at 6.00 am the next morning because he has
an important meeting that day. After watching TV for a while Peter falls asleep
in the living room. In the morning Peter wakes up at 6.30 am, fortunately not
yet too late, wondering why he did not notice the wake-up call. The wake-up
service could not use the speakers because they are still in use by the TV service
and therefore could not be used by the wake-up service.



Dependency Management in Smart Homes 147

This problem also applies to other categories of resources. Considering a gen-
eral heating service which keeps the temperature of a room at a certain level
depending on the time of the year and the day we can easily imagine conflicts
with personalized services relying on heating functionality. The wake-up service
e. g. should be able to increase the bathroom temperature shortly before waking
up the user. Therefore it needs to withdraw resources from the heating service.

These examples show that there will be a lot of standard services in future
eHomes which make use of common resources. Even more services have to be
taken into account if several users live in an eHome together. Especially an
alarm service should be active at all times without requiring a constant manual
reconfiguration of the system. It should always get access to resources that are
currently used by other services due to the high security relevance.

3 Dependency Management

As we have seen in Section 2 the eHome prototype deals with common dynamic
situations, like the dynamic reconfiguration of a user’s music service to adapt
to his movement. The reason for the occurrence of resource conflicts lies in the
limited number of available resources. At some point, required resources will
be unavailable which will lead to conflicts. But services do not need required
resources during their entire runtime. If services would share resources efficiently
during the time they are unused a lot of conflicts could be avoided. Based on
this idea we present a solution to address this problem in the following.

3.1 Different Binding Types

The service developer enriches each service with a specification consisting of
functional and non-functional meta-data, e. g. the service dependencies. This
information is required for the (re-)configuration of an eHome system. Figure 1
illustrates the specification and configuration of the music service scenario and a
wake-up service. On the left hand side the specification is shown. Both services
require the functionality Audio Output provided by the speaker driver service.
On the right hand side both services are installed in the living room. The music
service is not usable and marked as invalid due to unavailable speakers. On the
contrary the wake-up service is valid and can be used. Furthermore the wake-up
service can use the speakers and the corresponding bindings respectively at any
point in time until it gets undeployed. One resulting problem is the permanent
locking of the speakers even though the wake-up service uses them only for a few
minutes per day, e. g. in the morning when the user wants to be wakened. This
problem does not only apply to the wake-up service. Most services do not use
their assigned resources permanently. Nevertheless services cannot use resources
bound by other services whether they are actually in use at the moment or not.

Since this is not a preferable solution, we extended our existing dynamic
binding concept to allow a shared resource usage. Instead of only having bindings
reserving resources permanently, we suggest an additional type of bindings which



148 D. Retkowitz and S. Kulle

Fig. 1. Exemplary specification and configuration of eHome services

only locks a resource during the time it is actually using it. Bindings, allowing
the shared use of resources are called concurrent bindings while bindings, only
allowing the exclusive use of resources are called exclusive bindings. The extended
dynamic binding concept is based on three main ideas: (1) Concurrent bindings
get established independently of the actual availability of a resource. This is a
substantial difference to exclusive bindings. As a consequence the availability of
a service is computed differently. Unlike exclusive bindings concurrent bindings
consume a provided functionality only while the binding is actually used. (2) If
a service actually tries to use a concurrent binding the service framework must
examine whether it is currently available or not. This binding check is performed
by a so-called interceptor component. (3) Services trying to use a concurrently
bound resource which is momentarily unavailable get notified about the failed
use attempt. They are notified again when the resource becomes available again.

The three concepts mentioned above are implemented by the two newly intro-
duced binding types. Exclusive bindings grant an independent and permanent
access to the resource. But if no providing service is available no binding can
be established. In that case the corresponding service is invalid if the binding is
not specified as optional. In Figure 1 this applies to the music service which is
invalid and cannot be used. Concurrent bindings always can be established but
are not permanently usable, therefore each single attempt to use a concurrent
binding is monitored and can either proceed or fail.

As mentioned above concurrently bound resources are locked temporarily de-
pending on the actual use by other services. One important question is how to
determine the time frame a concurrent binding is used. An idea coming first to
mind is that the use of a binding begins with a call of a method and ends when
the execution of the method is finished. But regarding the music service as an ex-
ample, this would imply that after pressing the play button the bound speakers
become instantly available to other services. This is because the music service is
calling control operations on other services and resources. In case of the speaker



Dependency Management in Smart Homes 149

Music Service

Living Room

Wake-Up Service

Speaker 1 Speaker 2

Concurrent Binding, Active Session 

Concurrent Binding, Inactive Session

Speaker 3

Alarm Service

Service, Device

Fig. 2. Runtime configuration based on the extended dynamic binding concept

system the music service would pass certain parameters like the URL of a music
streaming resource. Most top-level services have a controlling character like the
music service. This means the actual playback of the music does not involve the
controlling service itself and the time period during which the binding is actually
used by a method call is very small. In most cases the resource is required for a
much longer period of time. In case of the music service pushing the button is
only a point in time but playing the song is not.

To overcome these difficulties, the dynamic binding concept has been extended
to include a session concept. An active session indicates that the concurrent bind-
ing is used and therefore the availability of the resource is limited for other ser-
vices. On the contrary, an inactive session indicates that the concurrent binding
is not used and therefore the resource is available to other services. In previ-
ous work we introduced a concept allowing to map service functionalities onto
a domain-specific ontology to enable semantic matching and service adaptation
[3]. This concept is further used for semantical tagging of methods and in this
context we use it for begin session and end session annotations. This way the
service developer can express that with pressing the play button a session begins
and the speakers are used by the music service until the user presses the stop
button and the session ends. If the user pauses the music or changes the track
then the session status remains unchanged. This also means that a resource can
only be used if the session is already active or some method is called which starts
a session. If the user e. g. pushes the next track button while no music is played
there is no active session and nothing will happen.

Figure 2 shows a runtime configuration of three eHome services based on the
extended dynamic binding concept. For the time being all three services have
bound speakers and are therefore valid. The wake-up service is bound concur-
rently to the third speaker and also uses this speaker at the moment. All three
speakers are bound to the music service but only speakers one and two are used
by the service since the third speaker is already occupied by the wake-up service.



150 D. Retkowitz and S. Kulle

The alarm service is also valid and has bound all speakers in the environment.
At the moment the service does not need the resources, therefore the respec-
tive sessions are not active. However, with this concept problems can still arise.
Some types of services, e. g. affecting the users’ safety as the alarm service in
our example scenario, are not executable under certain circumstances. Figure 2
shows a configuration where the alarm service could not access any speaker at all
which is not acceptable in an intrusion situation when the alarm service needs
to access the speakers to raise an alarm signal. Therefore we use a simple but
effective priority concept for concurrent bindings.

3.2 Priority Concept

The priority concept is based on a ranking of the installed eHome services. If
required this ranking can be used to determine which service is allowed to use a
shared resource. In Figure 2 the alarm service should have the highest priority
so that the service can use all the speakers if needed. It is not reasonable to
assign a priority number to each eHome service at development time. eHomes
are dynamic systems and at specification time it is not known which services are
installed later on that have to share common resources at runtime. Therefore no
ranking can be specified beforehand. Instead we have to regard the specification
of a function and the respective providing and requiring services in the service
setup of a specific eHome system. At runtime the user can create an individual
ranking and assign to each providing functionality of a service a corresponding
priority list consisting of the installed services requiring this specific functionality.
This is shown at the top of Figure 3. The leftmost service has the highest priority
and the rightmost service has the smallest one. For practical reasons the services
can be arranged in priority groups. Services within the same group also have the
same priority. This means it is not determined which service is of higher priority
and thus no service can withdraw resources from other services of the same group.
If a higher priority service accesses a resource in use by a lower priority service,
the resource is withdrawn from the lower priority service and reassigned to the
higher priority service. The lower priority service then receives a notification and
the corresponding session is closed. This procedure is based on the assumption
that resources are fully interruptable and hence the withdrawal of concurrently
bound resources is always possible. Anyway, the concurrent bindings remain
established while resources are reassigned. When a required resource becomes
available again a waiting service is notified and can continue using the resource.

4 Implementation

This section briefly describes the implementation of the extended dynamic bind-
ing concept. As mentioned before an interceptor component is used to monitor
concurrent bindings at runtime. This component consists of two parts: The first
part is responsible for detecting the actual use of a binding. The second part
deals with access control, session handling, and the priority management.



Dependency Management in Smart Homes 151

Speaker Service

Music Service Wake-Up Service

Audio
Output

Cell Phone Service

Alarm Service TV Service

provides provides

requires

requiresrequires

requires

Music ServiceWake-Up ServiceAlarm Service TV Service

Group A Group B Group C

Fig. 3. Connection between services, functions, and priorities

Resources get accessed through method calls, e. g. playMusic() for the
music service. After such a call is detected the eHome framework must decide
whether the method call should be allowed or rejected. As explained above the
use of a dynamic binding depends on the resource’s actual usability. This check
is related to the second part of the interceptor. According to the interceptor’s
result the method call can proceed or is rejected. In the second case, the service
needs to be notified about the invalid access to be able to react correctly. For
that purpose we use Java’s exception mechanism. Similar to other frameworks
like e. g. iPOJO [4] the eHome services mostly implement pure application logic.
In general the service developer does not need to know much about the eHome
framework to be able to develop services. In this case the developer must only
be aware of the fact that some binding may not be usable and an exception is
thrown. But this is a general requirement anyway in ubiquitous computing and
especially eHome systems. Due to the dynamics in such environments, required
resources may not be available or accessible at all times.

To monitor concurrent bindings we use aspect-oriented programming [5]. In
our case the aspect-oriented language AspectJ is used, which is a seamless exten-
sion of the Java programming language. AspectJ enables a clean modularization
of cross-cutting concerns such as error checking, logging, monitoring etc. We use
especially the load-time weaving mechanism of AspectJ to implement the inter-
ception mechanism. This feature enables code injection into bundles that are
already loaded and running.

In line 1 of Listing 1.1 the pointcut functionMethods is defined, which is
responsible for the method call detection. Each call of a method within the
ehome.interfaces package will be intercepted. These calls correspond to using
a service binding. Pointcuts only match specific points in the control flow of
a program, which are called join points. To actually inject code or implement
cross-cutting concerns an advice is used. If a join point is reached corresponding
advices are executed. AspectJ supports different kinds of advices. Line 3 shows an
around advice which interrupts execution at respective join points and executes



152 D. Retkowitz and S. Kulle

1 pointcut functionMethods(EhService usedSrv) : target(usedSrv)
&& call(public * ehome.interfaces.*.*(..));

2
3 Object around(EhService usedSrv) throws

BindingUnusableException : functionMethods(usedSrv) {
4 ...
5 String rString = interceptor.intercept(usingSrv, usedSrv,

methodSig, interfaceName);
6
7 if (...) { // if binding usage is allowed
8 ...
9 proceed(usedSrv);

10 } else { // binding is not usable, raise an exception
11 int hashCode = Integer.valueOf((rString.split(";")[1]));
12 throw new BindingUnusableException(usingSrv.toString()+",

"+usedSrv.toString(), hashCode);
13 }
14 }

Listing 1.1. Aspect intercepting service communication

the advice instead of the original method call. The given parameter usedSrv is
the service which requests to use the binding. In line 5 the interceptor component
checks if the service usingSrv is allowed to use the binding. If access is granted,
line 9 redirects to the original method call. Otherwise the around advice throws
an exception in line 12 to notify the calling service about the invalid access.

The second part of the interceptor component is called from within the advice
discussed above and is modeled as a Fujaba story diagram. Fujaba is a UML-
based development tool which allows to generate Java code from UML diagrams
[6]. Besides the data model so called story diagrams, which are a combination
of UML activity and collaboration diagrams, are used to model the application
logic. This way executable Java code can be directly generated from the model.
Since the whole story diagram modeling the interceptor component is quite com-
plex, we will discuss a simplified view depicted in Figure 4. The interception
process consists of four important steps. First the binding in question must be
determined. The interception process only continues if the binding is a concur-
rent one, otherwise it returns with proceed which means the original method call
will be executed by the around advice. The next steps depend on the state of the
session and the binding’s current usability. If the session is already established
(cf. diamond Active Session?) then the method call is valid and can be allowed
to execute. But before that, the interceptor checks if the session is to be closed.
Like explained in Section 3 it is possible to semantically annotate methods with
an end session tag. This annotation is read by the interceptor. If a service re-
quests to use a resource and the session is not active then the interceptor must
check if a session is to be opened (cf. diamond Open Session?). If this is not



Dependency Management in Smart Homes 153

START

Concurrent
Binding? Proceed STOP

Close
Session?

Binding
Usable?

Close Session

STOP

Active 
Session?

New Session STOP

Open
Session?STOP

Priorities

Determine
Binding

Proceed

Proceed
no yes

no

yes

no

yes

yes yes

no

no

Fig. 4. Evaluation of intercepted service communication

the case the around advice rejects the method call. Otherwise a usability check
is performed (cf. diamond Binding Usable?). The interceptor counts the active
sessions and exclusive bindings to determine if a binding can be used. If no more
active sessions are allowed, service priorities are taken into account to check if
some active session has to be withdrawn from a service with lower priority. If
the binding is still not usable the method call will be rejected. Otherwise a new
session is opened and the method call is executed.

The described mechanism has been implemented and integrated into our pro-
totype system. So far, we only performed a qualitative validation based on the
eHomeSimulator, a software tool we developed to simulate different smart en-
vironments [7]. The results show that our approach actually allows to resolve
resource conflicts. However, a quantitative evaluation is still pending.

5 Related Work

In service-oriented architectures, applications are composed from several services
which often appear or disappear dynamically. Dependency management is there-
fore a key aspect and a lot of research is going on in this field.

A number of approaches are based on the OSGi Service Platform which also
provides dependency management. Dependencies between bundles and depen-
dencies between services are handled differently in OSGi. The first ones are
package dependencies and are related to the OSGi module layer. The bundle
developer specifies these dependencies in the bundle manifest. The OSGi frame-
work resolves these bundle dependencies and only if all constraints are satisfied
the bundle can be loaded. Service dependencies on the other hand are related to



154 D. Retkowitz and S. Kulle

the service layer. An OSGi service is a normal Java object registered at the ser-
vice registry under one or more Java interfaces. In general, a service can use the
service registry to search for required services registered by other bundles. But
this type of dependency management does not support automatic resolution.

Since release 4 of the OSGi Service Platform, the Declarative Services speci-
fication is available which evolved from the Service Binder project [8]. It sepa-
rates two important responsibilities: Implementing the application logic on the
one hand and dependency management on the other hand. This allows service
developers to focus on the application logic while dependency management is
outsourced into a special framework bundle. Similar to our approach bundles
get enriched with meta-data descriptors of their provided and required function-
alities. In contrast to Declarative Services, our dependency management allows
to bind services depending on context information, e. g. bind only services within
the living room. Further on, OSGi does not provide a priority concept, which is
needed in the domain of eHomes as we have shown.

In [4] Escoffier et al. propose a service-oriented component model to simplify
OSGi application development. Like with Declarative Services the application
logic is separated from the non-functional requirements. In iPOJO each service
is encapsulated inside a container, which is used to inject non-functional require-
ments to manage e. g. service bindings or the service lifecycle. Each container is
composed by handlers managing these non-functional requirements. If a required
service becomes available, the appropriate handler directly injects the needed
objects. If a required service disappears and cannot be replaced, the depending
services become invalid. Since iPOJO employs a decentralized composition ap-
proach, each container has its own dependency manager. Thus no global view
is available and features like our resource management based on priority groups
cannot be supported.

In [9] Bottaro et al. discuss several requirements for software architectures
in home environments. The requirement of service continuity addresses rebind-
ing problems due to stateful services. If a resource has an internal state and is
replaced by another resource at runtime, the state information has to be trans-
ferred to the new resource. The authors propose to handle state transfer on the
application level since an automatic approach is only possible in specific appli-
cations. This is also the case in our approach. However, the problem of how to
handle the rebinding of services in the first place while allowing shared resource
usage is not addressed in [9].

In [10] the problem of disconnections regarding component bindings in dis-
tributed environments is addressed. The authors argue that top-level compo-
nents are rarely usable if disconnections occur frequently. The proposed solution
is to activate and deactivate required interfaces according to their current avail-
ability and to allow component execution even if some required interfaces are
deactivated. In that case the top-level component may still be usable though
with restricted functionality. In contrast to our approach, the component de-
veloper is required to take care of testing the interface status before invoking



Dependency Management in Smart Homes 155

methods. Our mechanism does not require such tests. However, the developer
has to handle events in case of failed use attempts in our approach.

In [11] the authors describe an approach called COMITY for runtime conflict
detection in pervasive computing environments based on the PCOM component
model. The presented approach analyzes the effects that pervasive applications
take on the environments they are executed in and how this affects other applica-
tions and users. The proposed system consists of a conflict manager component
connected to a database that stores a context model representing the current
state of the environment. A second database stores conflict specifications which
determine what kind of situations are considered to be conflicting. Based on
this, the conflict manager detects conflicting situations at runtime. In contrast
to our approach COMITY does not focus on conflicts regarding resource usage
but rather on conflicts resulting from different user interests. We do not address
these conflicts as we believe they will require manual resolution by the users in
most real-life scenarios.

In previous work at our department an approach to rule-based conflict de-
tection has been developed [12]. The presented conflict detection mechanism
assumes that each resource in the system is specified in form of an ω-automaton
describing its behavior. Together with a set of rules which formalize the different
conflict types a monitor component can detect conflicting situations at runtime.
This approach is similar to COMITY but it is based on a different infrastructure.
It requires services to provide a semantic specification describing their behavior
and it forces top-level services to be realized in a rule-based approach. We do
not impose such strong requirements on service development, instead service
developers can focus on the core task of implementing application logic.

6 Summary and Outlook

In this paper we described our approach to support dependency management
for eHome systems dealing specifically with the resource constraints arising in
ubiquitous computing scenarios. The general idea of our solution is to monitor
and manage service communication based on the current state of the system
configuration. All this is realized with minimal impact on the service implemen-
tation, so that the service development process is not affected unnecessarily. We
introduced a session concept based on tagging service methods. Together with
the interception of service communication this information is used to manage the
utilization of bindings at runtime. In addition to that we allow to define priority
groups at runtime to allow an automatic resolution of conflicts.

There are several issues which are to be addressed in future work. Up to now,
we tested our approach using a testbed fully implemented in software. We still
need to perform a quantitative evaluation in a larger scenario to analyze the scal-
ability of our implementation. Furthermore, it is still an open question how to
simplify the definition of priority groups to support automatic conflict resolution.
In real-world systems we also need a simple but useful mechanism for solving con-
flicts manually at runtime without bothering the users with permanent requests
for interaction.



156 D. Retkowitz and S. Kulle

References

1. The OSGi Alliance: OSGi Service Platform Core Specification. Release 4.1 (April
2007), http://www.osgi.org/Specifications/HomePage#Release4

2. Retkowitz, D., Stegelmann, M.: Dynamic Adaptability for Smart Environments.
In: Meier, R., Terzis, S. (eds.) DAIS 2008. LNCS, vol. 5053, pp. 154–167. Springer,
Heidelberg (2008)

3. Retkowitz, D., Pienkos, M.: Ontology-based Configuration of Adaptive Smart
Homes. In: Täıani, F., Cerqueira, R. (eds.) Proceedings of the 7th Workshop on
Reflective and Adaptive Middleware (ARM 2008) held at the 9th International
Middleware Conference, pp. 11–16. ACM, New York (2008)

4. Escoffier, C., Hall, R.S., Lalanda, P.: iPOJO: an Extensible Service-Oriented Com-
ponent Framework. In: IEEE International Conference on Services Computing
(SCC 2007), pp. 474–481 (July 2007)

5. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J.M.,
Irwin, J.: Aspect-Oriented Programming. In: Aksit, M., Matsuoka, S. (eds.)
ECOOP 1997. LNCS, vol. 1241, pp. 220–242. Springer, Heidelberg (1997)

6. Fischer, T., Niere, J., Torunski, L., Zündorf, A.: Story Diagrams: A new Graph
Rewrite Language based on the Unified Modeling Language. In: Engels, G., Rozen-
berg, G. (eds.) TAGT 1998. LNCS, vol. 1764, pp. 296–309. Springer, Heidelberg
(2000)

7. Armac, I., Retkowitz, D.: Simulation of Smart Environments. In: Proceedings
of the IEEE International Conference on Pervasive Services 2007 (ICPS 2007),
pp. 257–266. IEEE, Los Alamitos (2007)

8. Cervantes, H., Hall, R.S.: Automating Service Dependency Management in a
Service-Oriented Component Model. In: Crnkovic, I., Schmidt, H., Stafford, J.,
Wallnau, K. (eds.) Proceedings of the 6th ICSE Workshop on Component-Based
Software Engineering (CBSE6), pp. 379–382 (May 2003)

9. Bottaro, A., Gérodolle, A., Lalanda, P.: Pervasive Service Composition in the Home
Network. In: 21st International Conference on Advanced Information Networking
and Applications (AINA 2007), pp. 596–603 (May 2007)

10. Hoareau, D., Mahéo, Y.: Constraint-Based Deployment of Distributed Components
in a Dynamic Network. In: Grass, W., Sick, B., Waldschmidt, K. (eds.) ARCS 2006.
LNCS, vol. 3894, pp. 450–464. Springer, Heidelberg (2006)

11. Tuttlies, V., Schiele, G., Becker, C.: COMITY – Conflict Avoidance in Pervasive
Computing Environments. In: Meersman, R., Tari, Z., Herrero, P. (eds.) OTM-WS
2007, Part II. LNCS, vol. 4806, pp. 763–772. Springer, Heidelberg (2007)

12. Armac, I., Kirchhof, M., Manolescu, L.: Modeling and Analysis of Functionality
in eHome Systems: Dynamic Rule-based Conflict Detection. In: Proceedings of
the 13th Annual IEEE International Symposium and Workshop on Engineering
of Computer Based Systems (ECBS 2006), Washington, DC, USA, pp. 219–228.
IEEE, Los Alamitos (2006)


	Dependency Management in Smart Homes
	1 Introduction
	2 eHomeSystems
	2.1 System Architecture
	2.2 Dynamic Dependency Management
	2.3 Example Scenario

	3 Dependency Management
	3.1 Different Binding Types
	3.2 Priority Concept

	4 Implementation
	5 Related Work
	6 Summary and Outlook
	References




