Development Framework for
Mbobile Social Applications

Alexandre de Spindler, Michael Grossniklaus, and Moira C. Norrie

Institute for Information Systems, ETH Zurich
CH-8092 Zurich, Switzerland
{despindler,grossniklaus,norrie}@inf.ethz.ch

Abstract. Developments in mobile phone technologies have opened the
way for a new generation of mobile social applications that allow users to
interact and share information. However, current programming platforms
for mobile phones provide limited support for information management
and sharing, requiring developers to deal with low-level issues of data
persistence, data exchange and vicinity sensing. We present a framework
designed to support the requirements of mobile social applications based
on a notion of P2P data collections and a flexible event model that con-
trols how and when data is exchanged. We show how the framework can
be used by describing the development of a mobile application for col-
laborative filtering based on opportunistic information sharing.

Keywords: Mobile Social Applications, Development Framework, Adap-
tive Middleware.

1 Introduction

The increased computational power and storage capacity of mobile phones now
makes them capable of hosting a wide range of multimedia services and appli-
cations. In addition, the integration of sensing devices such as GPS and connec-
tivity such as Bluetooth and WiFi has made it easier to support location-based
services and new forms of information sharing.

As a result of these technical innovations, service providers and application de-
velopers are keen to exploit a new potential market for mobile social applications
that allow users to interact and share data via their mobile phones. However,
programming platforms for mobile phones currently provide little support for
flexible forms of information management and sharing. In a rapidly emerging
and highly competitive market, this presents companies with a major challenge
in terms of the effort required to prototype and validate potential applications.

To address this problem, we have designed an application development frame-
work to support the requirements of mobile social applications. The frame-
work ensures that developers can work at the level of the application domain
model, without having to deal with the low-level mechanisms provided in current

P. van Eck, J. Gordijn, and R. Wieringa (Eds.): CAiSE 2009, LNCS 5565, pp. 275-289] 2009.
© Springer-Verlag Berlin Heidelberg 2009

276 A. de Spindler, M. Grossniklaus, and M.C. Norrie

platforms for dealing with peer-to-peer (P2P) information sharing, data persis-
tence and location sensing. Instead, applications can be designed around a novel
concept of P2P collections of persistent data coupled with a flexible event model
that can determine how and when data is exchanged and processed.

In this paper, we present the requirements of mobile social applications along
with the limitations of existing platforms with respect to these requirements. We
then provide the details of our framework and demonstrate its use by describ-
ing how we developed an application for collaborative filtering based on P2P
information sharing in mobile environments.

Section [2] discusses the limitations of existing platforms for mobile phones
with respect to the goal of supporting the development of mobile social applica-
tions. In Sect. 3l we then examine the requirements of mobile social applications
in detail and describe how our framework supports these requirements. Details
of P2P collections and the event model are given in Sect. dl and Sect. Bl re-
spectively. In Sect. [0, we describe how the collaborative filtering application was
implemented using the framework. Concluding remarks are given in Sect. [1

2 Background

Mobile phones are no longer simply regarded as communication devices, but
rather as computing devices capable of, not only hosting a range of applications,
but also communicating with each other. This has led to a great deal of interest
in mobile social applications which can take advantage of these capabilities to
allow users to interact and share information in innovative ways. Applications
have been proposed that exploit ad-hoc network connections between phones
via Bluetooth or WiFi to support user awareness of social contexts [12] or to
automatically exchange data between users in shared social contexts [34]. In
particular, physical copresence has been used as a basis for forming a weakly
connected community of users with similar tastes and interests [5l6].

A variety of development toolkits for mobile phones are available. These range
from vendor-specific solutions such as iPhone SD7 Windows Mobile Editior%,
Symbiarﬁ and Google Androidd to the platform independent Java WTK (Wire-
less Toolkit). These provide integrated emulation environments along with sup-
port for the development of user interfaces. They also provide access to typical
phone features such as personal information management (PIM) data, the cam-
era, Bluetooth, Internet access and GPS. However, the development of mobile
social applications using these toolkits still requires considerable effort since
they provide no high-level primitives to support vicinity sensing, location aware-
ness, information sharing and data persistence. As a result, developers have to

! http://developer.apple.com/iphone

2 http://www.microsoft.com /windowsmobile
3 http://www.symbian.com

* http://code.google.com/android

Development Framework for Mobile Social Applications 277

implement components to handle requirements related to these issues for each
application and each target platform.

For example, Java WTK uses a simple key-value store for data persistence
which means that developers have to define and implement the mapping
between Java application objects and key-value pairs for each application. This
contrasts with development platforms for PCs such as db4ad that support Java
object persistence. Support for information sharing is also limited in these plat-
forms and data sharing must be implemented based on sockets able to send and
receive binary data. The developer must therefore implement the facilities to
serialise and deserialise data, to open and listen to sockets and stream data.
Short-range connectivity such as Bluetooth or WiFi can be used to react to
peers appearing in the physical vicinity. Using Java WTK, the developer has to
implement two listeners, one registered for the discovery of a device and another
which is notified about services discovered on a particular device. For each scan
of the environment, both listeners must be registered and the developer must
also implement the coupling of peer discovery with data sharing.

Frameworks have been developed specifically for P2P connectivity including
Mobile Web Services [7] and JXTA [§], but these tend to focus on lower-level
forms of data exchange rather than information sharing. For example, JXTA
provides the notion of a peer group as a central concept of their metamodel.
A group mainly provides facilities for peer discovery, service publishing and
message routing. Application development consists of specifying message formats
and how they are processed in terms of request and response handling similar to
that of service-oriented architectures. This results in a blending of the application
logic typically embedded in an object-oriented data model and the collaboration
logic specified based on a request-response scheme. Efforts to provide higher
level abstractions of P2P networks have either focussed on the allocation and
retrieval of identifiers to resources in fixed networks without considering any
notion of handling [9] or they offer only a few limited collaboration primitives
and lack support for vicinity awareness [L0/IT].

Within the database research community, a number of P2P database systems,
overlay networks and middlewares have been developed including Pastry [12], Pi-
azza [13], PeerDB [14], Hyperion [15], P-Grid [16] and GridVine [I7]. However,
research efforts have tended to focus on issues of object identity, schema match-
ing and query reformulation, distributed retrieval, indexing and synchronisation
as well as transaction management. To date, there has been little effort on sup-
porting developers of mobile applications that utilise P2P connectivity to share
information opportunistically with other users in the vicinity.

Based on our own experiences of developing mobile social applications using
existing platforms, we realised that there was a need for an application framework
that offers functionality for P2P information sharing as high-level primitives. In
the next section, we examine the requirements of such a framework in detail
before presenting an overview of the framework that we have developed.

® http://www.db4o.com

278 A. de Spindler, M. Grossniklaus, and M.C. Norrie
3 Framework

A distinguishing feature of mobile social applications is the notion of collabo-
ration. Each peer follows a set of application-specific rules which determine its
behaviour within the collaborative environment. This behaviour includes the lo-
cal creation, storage and processing of data as well as interacting with other
peers by sending, receiving and forwarding data. Such behaviour may be trig-
gered automatically or explicitly by the user. Each peer offers the services of the
application to the user independently of the other peers, but the effectiveness of
these services depends on the combined effects of local peer behaviour.

To examine the requirements of mobile social applications and illustrate how
our framework supports these requirements, we will consider the example of a
recommender system. Due to space limitations, a more comprehensive exam-
ination cannot be presented here. In previous work [I8], we have shown how
collaborative filtering (CF) algorithms can be adapted to mobile settings using
physical copresence in social contexts as a basis for measuring user similarity.
Figure [Il will be used to illustrate how such an application works. Assume users
rate items such as music, films or places to go and this data is stored as a collec-
tion C of triples (u,?,r) where u is a user, 7 an item and r a rating. Essentially,
we can view the collaborative filtering process as some function f that is applied
to C to return the result recommendation R as a list of items. The details of the
function f are not relevant to this discussion, but what is important is that each
peer has an instance of C' and will locally compute f(C') when the recommender
service is called. We refer to such application-specific services as the application
logic of the system, and they may be executed either automatically or upon an
explicit request by the user.

An application may have multiple data collections defined by a schema shared
by all peers, say {C7,Cs,...Cy,} and a set of participating peers { Py, Pa,...Py, }.

data C={(u,,r)}
appln R =f(C)
/ P, ceenem T publish g(C)

P4
data C={(u,r)} |
! data C={(u,ir)}

appin R=f(C)

' ! appln R =f(C)
publish q(C)

\ publish q(C)
C={(uirn}

appin R =f(C)

publish q(C)

Fig. 1. Collaborative Filtering as a Mobile Social Application

Development Framework for Mobile Social Applications 279

Each peer will have its own instance of each of the application collections and we
use C;|P; to denote the instance of the collection C; stored on peer P;. Note that
we prefer to refer to C;|P; as an instance of collection C; rather than as a part of
some global collection C; since the application services running on P; will operate
only on the locally stored collection of the appropriate name, independently of
the collections stored on other peers. In the case of the collaborative filtering
application illustrated in Fig. [l there are four peers each of which has a single
data collection C' containing rating triples of the form (u,4,7) and an application
to compute the CF result denoted by R = f(C).

Computing user similarity in centralised CF algorithms can be computation-
ally expensive. In mobile settings, a much simpler approach can be used which
takes advantage of the fact that local data comes only from the owner of the de-
vice, or from users with similar tastes and interests. The underlying assumption
is that users who are close enough to exchange data through ad-hoc connections
between mobile devices share social contexts and hence are likely to have similar
tastes and interests. Detailed studies related to this assumption have been car-
ried out in a number of projects, see for example [HJ6/18], and it is beyond the
scope of this paper to discuss this aspect in detail. Our interest here is the fact
that mobile social applications often involve some form of opportunistic sharing
of information based on ad-hoc connectivity between mobile devices, or possi-
bly mobile and stationary devices. It is therefore important that a development
framework for mobile social applications supports a notion of vicinity awareness.

At a given time ¢, the vicinity of a peer P; is the set of peers to which P;
is connected, and we denote this by Vi(P;) = {Pi,..., Py}. In Fig. [l we use
a dashed circle to denote the connectivity range of P, at time ¢ and, hence,
Vi(P1) = {P», P3}. If P; € Vi(P;) then it is possible for peers P; and P; to
exchange data. The collaboration logic of an application will specify if, when
and what data is shared. We will discuss the details of how the if and when can
be specified later in the paper when we present the details of our framework.
The what is specified by associating a query expression g; with each application

collection C;. We use P; P} to denote an exchange of data from P; to Pj. This
means that if P; and Py both have instances of collections {C1, Cs,...C,,} then

PPy YCi € {1, Ca, ...Cn}, Ci| Py == ;(Ci| P;) U G| Py

Figure [1l shows a case where P; and P, exchange data bilaterally, meaning
that each peer sends rating tuples to the other peer and adds the data to its local
C collection. The query expression g acts as a filter on the data to be published.
In the case of collaborative filtering, only the data pertaining to the actual user
of the device, and hence the user currently in the same social context, will be
sent to the other peer. In the case of the connection between P; and Ps, Ps
sends data to P; but P3 does not receive data from P;. This is indicated in the
figure by the fact that the connection between P; and Ps; has an arrow in only
one direction. It could be the case that P; had previous encounters with P; and
found their data unreliable and hence placed them on some sort of black list to
indicate that they did not want to receive data from them in the case of future

280 A. de Spindler, M. Grossniklaus, and M.C. Norrie

Application Logic

)
a P2P Collection
A
Data Data Vicinity
Sharing Management || Awareness
A LI RN ¥ o A
A J A J

Collaboration Logic

P4 P, Ps
Fig. 2. Framework Overview

encounters. Note that, in practice, it might be that P; would publish the data,
but Ps; would simply choose not to receive it. Details of this will be given in later
sections.

Generally, it should be possible for mobile social applications to have flexibility
in determining how and when peers exchange data. For example, there are many
ways in which applications might want to control the exchange of data for reasons
of privacy. Within our framework, we provide a flexible event processing model
that allows applications to determine how and when they share data.

Having looked at the general operation and key requirements of mobile social
applications, we see that there are three main functionalities that a framework
needs to support. First, it needs to provide basic services for the management
and querying of data collections. Second, it should offer developers high-level
abstractions to enable data from those collections to be shared via ad-hoc con-
nections to peers. Third, it needs to provide vicinity awareness. At the same
time, it is important to separate the concerns of application logic and collabora-
tion logic to ensure maximum flexibility in meeting the requirements of a broad
spectrum of users, devices and applications. Figure [2] presents an overview of
our framework. The concept of a P2P collection is the central component which
encapsulates persistent data storage, data sharing and the ability to sense peers
entering and leaving a peer’s physical vicinity. As an interface to application
logic and user interaction, the framework offers standard data management fa-
cilities such as the creation, retrieval, manipulation and deletion of data (a).
These facilities are offered in terms of a database management system which
includes transaction management support. Furthermore, it offers a second inter-
face allowing collaboration logic to be specified and executed in terms of events
and their handling (d,e). By keeping these interfaces independent, we are able to
achieve the required separation of concerns. The actual scanning of the physical
environment (f) and data sharing (b,c) is encapsulated by the framework.

In the next section, we will present the concept of P2P collections in detail
before going on to describe how the collaboration logic can be specified by means
of the event processing system.

Development Framework for Mobile Social Applications 281

4 P2P Collections

Programming languages such as Java and C++ have standard libraries that
offer various types of collections in terms of interface definitions that declare
operations to insert, retrieve and remove data along with concrete implemen-
tations that provide the corresponding functionality. Following this paradigm,
the central component of our framework—the peer collection—is an alternative
collection implementation that provides additional functionality to address the
requirements of mobile social applications.

Most programming systems define collections in terms of a collection be-
haviour and a member type. For example, Java offers collection implementa-
tions for sets, lists and maps that, through the use of generics, can be bound
to a member type that restricts the possible members of the collection. Our
definition of a peer collection follows this approach but extends it to cope with
more specific requirements. Generally, a peer collection is characterised by its
name n, its member type ¢t and its behaviour b. As we will see, the use of a
name to identify the collection is motivated by the requirements of data shar-
ing in a peer-to-peer environment that makes it necessary to identify collections
across peers. Our framework introduces additional collection behaviours to sup-
port data management. The behaviour b € {set, bag, sequence, ranking}, where
{set, bag} are unordered, {sequence, ranking} are ordered and {set, ranking}
have no duplicates while {bag, sequence} do.

Similar to common programming environments, methods to add, retrieve and
remove data to/from a collection provide basic data management. Peer collec-
tions can optionally be marked as persistent with the effect that not only the
collection, but also the members are automatically made persistent in a trans-
parent way. In addition, our framework has support for events that get triggered
whenever elements are added to, or removed from, peer collections. In Sect. [l
we will discuss how this mechanism can be leveraged to support the decoupling
of the collaboration logic.

Our framework also features a low-level query facility that surpasses the data
retrieval mechanisms offered by current collection implementations. A query is
specified by building a query tree where the inner nodes represent query op-
erations and leaf nodes contain query arguments. Once a query tree has been
constructed, its root node is passed to the query evaluator component of the
framework which processes the query and returns the result. While a complete
presentation of our query facility is outside the scope of this paper, Tab. [gives
an overview of the most important nodes including those we refer to in this
paper. A node may have child nodes and attributes. For example, a selection
node has a collection from which members are to be selected as a child and
an attribute containing the selection predicates. In order to simplify the task of
creating frequently used queries, a query tree builder is provided with the frame-
work. Given the required parameters, it automatically builds the query tree and
returns its root node.

Peer collections also address the requirements of data sharing. This additional
functionality is provided through a set of methods that can be used to make

282 A. de Spindler, M. Grossniklaus, and M.C. Norrie

Table 1. Example query tree nodes, their children and attributes

Node #Child Nodes Attributes
Selection 1 predicates
Intersect 2 -

Union 2 —

Map 1 function
Attribute Access 1 attribute
Collection - collection

a collection available for sharing, connect it to other peers and exchange its
members. In order for two peers P, and P, to share data, both peers have to
make the collection to be shared available. When the two peers enter in each
other’s vicinity, available collections can be connected if they have the same
name n and member type ¢t. Once two peer collections are connected, all or some
of the collection members from each peer are sent to the other peer. A query
expression attached to the collection determines which members are sent.

Based on these basic sharing capabilities, our framework also provides a flexi-
ble mechanism to control what data is exchanged. This can be done in two ways.
A selection query can be bound to a collection to filter data sent to peers. These
filter queries are also expressed and evaluated based on the framework’s query
facilities presented above. In addition, white and black lists can be used to con-
trol with which peers data is exchanged. Thus, a collection that has been made
available is associated with a positive and negative neighbourhood of peers. The
positive neighbourhood contains those peers with which members are shared if
they appear in vicinity, while other peers in vicinity will be ignored. If the posi-
tive neighbourhood is empty, members will be shared with any peer appearing in
vicinity. The negative neighbourhood optionally contains those peers that should
not be considered for data sharing even if they appear in vicinity. Similar to the
positive neighbourhood, if that collection is empty, no restrictions are assumed
to exist. These two neighbourhoods therefore enable a user to define constraints
over the social network within which data is shared.

Our framework offers support for vicinity awareness which is used to react
upon the appearance or disappearance of peers in the physical vicinity. As well
as triggering events to connect collections and share data as described above,
an application may react on such events directly. We will present the event
mechanism offered by the framework in more detail in the next section.

Based on the Java programming language in conjunction with Java WTK
platform, we will now describe how the framework can be implemented. Other
programming languages such as C++ or Objective C as well as other platforms
such as Symbian, iPhone SDK or Google Android can be supported analogously.

The implementation of the framework consists of two parts. First, there is
the application programming interface (API) visible to the developer of a mo-
bile social application together with the implementation of functionality that
is common to all platforms. Then, there is the service provider interface (SPI)
which needs to be implemented to support the peer collection framework on a

Development Framework for Mobile Social Applications 283

Collection<T>

add(T)
remove(T)
iterator(): Iterator<T>

/i

ObservableCollection<T>

addHandler(Handler<T>) 0.* Handler<T>

removeHandler(Handler<T>)
setPersistent()
setTransient()

action(ObservableCollection, T)

neighbourhood+ Z> neighbourhood-
P2PCollection<T> QueryNode<T>
name: String List<QueryNode<?>>

setAvailable(QueryNode<T>)
setUnavailable()

5 \ |

T
P2PSet H P2PBag H P2PSequence H P2PRanking

result(): Collection<T>

Fig. 3. API of the peer collection framework

given mobile phone and, thus, represents the platform-specific implementation.
While other frameworks such as Java WTK address a similar problem, they
usually do not cover the entire range of existing devices. In the remainder of
this section, we will describe both parts of the framework in turn. Figure [3] gives
an overview of the peer collection framework API that is based on the concepts
described above. At the top of the figure, a simplified version of the existing Java
collection interface is shown, highlighting the methods for adding, retrieving and
deleting collection members. Our framework extends the Java collection interface
and introduces an interface ObservableCollection<T>. Observable collections
support the registration of handlers that are invoked whenever an event is trig-
gered through the addition or removal of a collection element. A peer collection
is represented by interface P2PCollection<T> that defines a collection name as
well as methods to make the peer collection available or unavailable. The four
different collection behaviours are provided through dedicated implementations
of the peer collection interface. Finally, the query facility of the framework is sup-
ported by QueryNode<T> which serves as the common interface of the various
query nodes discussed earlier.

The peer collection framework SPI defines the interfaces for three platform-
dependent components and is shown in Fig. @l One component offers persistent
data storage, another the connection technology and a third the scanning of the
physical vicinity for other peers. Note that, in contrast to existing platforms,
these components have to be implemented once per platform rather than once
per application. All persistence mechanisms make use of a single class offering
database facilities such as storing, retrieving and deleting objects. This class is

284 A. de Spindler, M. Grossniklaus, and M.C. Norrie

StorageProvider SharingProvider Scanner
implements implements

register(Collection) <<Observable>> <<Observable>>
unregister(Collection)
store(Collection, Object) turnOn(Peer) scan()
delete(Collection, Object) turnOff() start(Frequency)
select(Collection, Predicate): Collection send(Object, Peer, Map<String, Object>) stop()
intersect(Collection, Collection): Collection notify(Object, Map<String, Object>) notify(Collection<Peer>)
union(Collection, Collection): Collection
collection(String): Collection

Fig. 4. SPI of the peer collection framework

defined in terms of interface StorageProvider and the framework makes use of
it based on this interface only which allows it to be adapted to any underlying
persistent storage technology such as a record store in the case of Java WTK.

To send and receive data, our framework makes use of a component that is
dependent on the connection technology. The implementation of this component
is abstracted through interface SharingProvider. Developers may turn on and
off its availability within the collaborative environment. When turned on, the
technology-specific information for reaching the local peer must be provided. In
the case of Java sockets, this information includes a host identifier and a port
number. Once the peer is turned on, collections may be made available. The peer
can be turned off at any time, in which case, no more collections are available and
the local peer is no longer available to other peers. This component is defined
by a generic interface and can thus be implemented for different connection
technologies such as Java sockets, WiFi and Bluetooth.

Finally, connection technologies such as Bluetooth and WiFi are used to scan
the physical environment of a peer and discover other peers nearby. As with the
other two components, the scanning is implemented by a platform-dependent
component which is defined by and used through the interface Scanner. This
interface declares the means to perform a single scan as well as starting a periodic
scan with a frequency that can be specified.

5 Event Processing

Within our framework, it is the appearance of a peer in the vicinity of another
that drives the sharing process. Thus, data sharing is linked with an event system
composed of events for which handlers can be registered to be notified. While
events and handlers can be specified by an application developer, predefined
system events exist. Table [2] shows these events along with the arguments to
which they are attached and the parameters passed to the registered handlers.
To register a handler for an event, the developer needs to implement interface
Handler<T> shown in Fig. Bl and specify an action method to be executed.

As part of the framework, a system collection Vicinity is provided. This
collection is maintained by the framework and its members represent those peers
that are currently in the physical vicinity. Whenever a new peer is detected, a new
object is created and added to the Vicinity collection. When a peer moves away,

Development Framework for Mobile Social Applications 285

Table 2. Events, their arguments and parameters passed to the handlers

Event Argument Parameters

New Object — Object

Object Changed Object Object, Attribute

Member Added Collection Collection, Member

Member Received Collection Collection, Member, Source Peer
Member Removed Collection Collection, Member

the respective member is removed from the collection. Note that this collection is
not set to be persistent. Since our event model generally supports the triggering
of actions when objects are added to collections, vicinity awareness is realised
based on addition events associated with the Vicinity collection that will be
triggered when a new peer enters the physical vicinity. If a collection is made
available, a predefined handler for sending collection members is automatically
registered with this addition event.

As explained previously, when a collection is made available, the root node of
a selection query is passed along. The query is handed over to the handler. The
handler action consists of executing the query and sending the result.

6 Collaborative Filtering

To show how our framework is used, we present the implementation of the rec-
ommender system introduced in Sect. Bl as a use case. A detailed description of
the system has been presented in [I8]. A fundamental ability of recommender
systems is to infer a rating for a requesting user about a target item unknown
to the user. Based on this query, all items known to the system can be sorted
according to the inferred rating for a requesting user. In order to recommend an
item, the best ranked item(s) can be presented to the user.

Ratings are tuples that contain references to a user and item and the rating
value. Consequently, a new tuple is created whenever a user makes a rating. In
order to process the fundamental query, a filtering algorithm such as user-based
collaborative filtering processes the collection of tuples as follows.

1. Compute the similarity of the requesting user to all other users.
2. Select n most similar users.
3. Aggregate the rating values of the users selected in step 2 for the target item.

The resulting aggregation is the rating value inferred for the requesting user
about the target item. However, as was mentioned in Sect. [3 the first two steps
can be omitted in a mobile setting where users exchange their own ratings when-
ever they are in each other’s vicinity. Therefore, the main components of this
recommender application can be summarised as follows. The application model
consists of user and item entities and a relationship representing rating tuples.
The application logic performs the rating inference by retrieving all rating tuples

286 A. de Spindler, M. Grossniklaus, and M.C. Norrie

stored locally which contain the target item and aggregating their rating values.
The collaboration consists of sending rating tuples made by the local user when-
ever that user encounters other users in the vicinity while consuming items. Note
that peers do not share tuples as soon as they are in each other’s vicinity but
wait for a configurable amount of time before starting the data transmission.

For illustration, we now describe how this application is implemented using
the Java WTK platform. In a first step, the application model is mapped to the
Java object model. The concepts of a user and an item are described by classes
User and Item, respectively. These classes declare at least one identifier attribute
allowing their instances to be recognised as equal when they are shared among
peers. Additionally, attributes such as names and descriptions can be added
to provide the users with meaningful information. Finally, we define the class
RatingTuple to represent ratings as shown below.

public class RatingTuple {
User user;
Item item;
float rating;

}

To access and share ratings, we create a peer collection named RatingTuples
with set behaviour and RatingTuple as its member type. The following code
shows the creation of this collection and how it is set to be persistent.

P2PSet<RatingTuple> ratingTuples =new P2PSet<RatingTuple>("RatingTuples");
ratingTuples.setPersistent () ;

Having modelled the application in Java, the developer uses the data manage-
ment facilities provided by peer collections to implement the application logic.
In our simple example, the application logic consists of two main components.
First, it needs to give the user the possibility of generating ratings and storing
them persistently. Second, it needs to be able to infer ratings about items un-
known to the user. The following example shows how to store a user rating by
creating a new member of the RatingTuples collection. Note that the amount
of code is equivalent to that required for existing Java collections.

RatingTuple tuple = new RatingTuple(localUser, item, rating);
ratingTuples.add(tuple);

To infer ratings, all members of RatingTuples containing the target item must
be selected. To do so, the query in Fig. [is used. It consists of a selection
operation where the attribute comparison predicate constrains the item attribute
to point to the target item. An attribute access node performs a projection to
obtain the rating values of all tuples returned by the selection node.

Using the query tree builder, the code required to construct this query is given
below. At runtime, once this query has been executed, the application logic can
simply aggregate the rating values returned by the projection node.

QueryNode<RatingTuple> collection = Queries.collection("RatingTuples");
QueryNode<RatingTuple> selection =

Queries.select(collection, "item", targetItem);
QueryNode<Float> projection = Queries.project(selection, "rating");

Development Framework for Mobile Social Applications 287

° -- rating value

N

° --1 item = [target item] ° --1 user = [local user]

N N
-- [RatingTuples] -- [RatingTuples]

Fig. 5. A query selecting rating tuples Fig. 6. A query selecting rating tuples
containing the target item containing the local user

To implement the opportunistic sharing of rating tuples, the query to be executed
when a peer appears in the vicinity must be specified. Since we only want to
send those rating tuples containing the local user, the selection query shown in
Fig. [@] is built using the statements given below.

QuerNode<RatingTuple> selection =
Queries.select(collection, "user", localUser);

This selection query is given as an argument when the RatingTuples collection
is made available.

ratingTuples.setAvailable(selection);

We now compare the effort required to implement this application with that
required if using Java WTK. Figure [{l compares the components needed and
the amount of interaction required to implement data management, vicinity
awareness and data sharing using Java WTK, on the left hand side, and our
framework, on the right hand side. To implement the application logic using
Java WTK, a Java collection is used to maintain all rating tuples. Consequently,
when all tuples with a particular item must be selected, all tuples would have
to be accessed in order to select those having the required attribute value. The
program code implementing this behaviour would be part of the application
logic whereas, using our framework, it is hidden away from the developer by the
query facility. The transparent persistence mechanism is a great improvement
compared to Java WTK where application objects have to be serialised manually
and stored using key-value records. In order to store objects of a particular type
based on key-value pairs, an application developer has to program a database-
like component and put a lot of effort into overcoming the impedance mismatch
between objects and key-value pairs. If objects of different types must be stored,
the required effort increases even further and, allowing stored objects to reference
each other, would make this even more challenging. As opposed to the simple
vicinity awareness mechanism provided by our framework, the developer of a
Java WTK application needs to implement the scanning of the environment
based on low-level connection technologies such as Bluetooth or WiFi. Moreover,

288 A. de Spindler, M. Grossniklaus, and M.C. Norrie

i s m——————— E
1 Java WTK ' Peer Collections
i I

\‘ Application H Serialiser H RecordStore H DiscoveryAgent H DiscoveryListener H StreamConnection H DataO H Datalnpt M icati H P2PCollection
|

RecordStore.openRecordStore (..) I
Serialiser.serialise(Object)
RecordStore.addRecord (..) N
RecordStore.getRecord(..) h
Seriliaser.deserialise(.)
RecordStore.closeRecordStore () Iy ‘sct?crslstcnt() ‘

I
I
|
|
|
I
I
I
I
I
I
|
|
|
I
DiscoveryAgent.startInquiry(..) N |
DiscoveryListener.deviceDiscovered(..) i \
I

I

I

|

|

|

I

I

I

I

I

I

I

|

|

I

I

I

I

i

I

I

I

I

I

I

i

} DiscoveryListener.inquiryCompleted () I
1 DiscoveryAgent.searchServices (..) I
} DiscoveryListener.servicesDiscovered(..) h
I

I

I

I

I

I

I

I

I

i

I

I

I

I

setAvailable (..)
peerDiscovered(..)

DiscoveryListener.serviceSearchCompleted () I

Serialiser.serialise (Object) h
StreamConnection.openDataOutputStream () I
StreamConnection.openDatalnputStream() I
DataOutputStream.write (..)

DatalnputStream.readFully(..) I
DataOutputStream.close () h
DatalnputStream.close () i
StreamConnection.close () I
Serialise.deserialise(..)

Fig. 7. Comparison of using Java WTK (left) and our framework (right)

using our framework, the application developer does not have to bother with low-
level socket-based connectivity and data transmission in terms of serialisation
and deserialisation. The fact that the developer can work at the level of the
application model by deciding how data collections should be shared presents a
significant contribution to the development of mobile social applications.

7 Conclusions

We have motivated a set of novel requirements introduced by the emerging class
of mobile social applications. Due to the limitations and heterogeneity of mobile
phone development platforms, we have proposed to address these requirements
with a framework based on a notion of peer collections. A peer collection en-
capsulates data management, data sharing and vicinity awareness, all of which
are recurring issues in the development of mobile social applications. Further,
through the provision of both declarative queries and events associated with
peer collections, our framework decouples application and collaboration logic.
The merits of our approach have been shown by comparing the implementation
of a collaborative filtering application based on our framework with one based
on an existing mobile phone platform.

We are currently experimenting with extending our framework to accommo-
date further mobile social application requirements. Vicinity awareness is cur-
rently provided in terms of a real-time representation. One extension is to keep
track of peers previously encountered which enables applications to take into
account frequencies of encounters and to recognise social contexts. We are also
considering support for access control by providing the possibility of associating
multiple selection queries with a P2P collection to represent user groups or social
contexts.

Development Framework for Mobile Social Applications 289

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

Eagle, N., Pentland, A.S.: Reality mining: sensing complex social systems. Personal
Ubiquitous Comput. 10(4) (2006)

Nicolai, T., Yoneki, E., Behrens, N., Kenn, H.: Exploring social context with the
wireless rope. In: OTM 2006 Workshops (2006)

. Borcea, C., Gupta, A., Kalra, A., Jones, Q., Iftode, L.: The mobisoc middleware

for mobile social computing: challenges, design, and early experiences. In: Proc.
1st Intl. Conf. on MOBILe Wireless MiddleWARE, Operating Systems, and Ap-
plications (2007)

Eagle, N., Pentland, A.: Social serendipity: mobilizing social software. Pervasive
Computing, IEEE 4(2) (2005)

Counts, S., Geraci, J.: Incorporating Physical Co-presence at Events into Digital
Social Networking. In: Proc. CHI 2005 (2005)

. Lawrence, J., Payne, T.R., Roure, D.D.: Co-presence Communities: Using Perva-

sive Computing to Support Weak Social Networks. In: Proc. Intl. Workshop on
Distributed and Mobile Collaboration (2006)

Srirama, S.N., Jarke, M., Prinz, W.: Mobile web services mediation framework. In:
Proc. 2nd Workshop on Middleware for Service Oriented Computing (2007)
Traversat, B., Arora, A., Abdelaziz, M., Duigou, M., Haywood, C., Hugly, J.C.,
Pouyoul, E., Yeager, B.: Project JXTA 2.0 Super-Peer Virtual Network. Technical
report, Sun Microsystems, Inc. (2003)

Aberer, K., Alima, L..O., Ghodsi, A., Girdzijauskas, S., Haridi, S., Hauswirth, M.:
The Essence of P2P: A Reference Architecture for Overlay Networks. In: Proc. 5th
IEEE Intl. Conf. on Peer-to-Peer Computing (2005)

Wang, A.I., Bjornsgard, T., Saxlund, K.: Peer2Me - Rapid Application Framework
for Mobile Peer-to-Peer Applications. In: Intl. Symp. on Collaborative Technologies
and Systems (2007)

Kortuem, G., Schneider, J., Preuitt, D., Thompson, T.G., Fickas, S., Segall, Z.:
When Peer-to-Peer comes Face-to-Face: Collaborative Peer-to-Peer Computing in
Mobile Ad hoc Networks. In: Proc. Intl. Conf. on Peer-to-Peer Computing (2001)
Rowstron, A.I.T., Druschel, P.: Pastry: Scalable, decentralized object location, and
routing for large-scale peer-to-peer systems. In: Guerraoui, R. (ed.) Middleware
2001. LNCS, vol. 2218, pp. 329-350. Springer, Heidelberg (2001)

Tatarinov, 1., Ives, Z., Madhavan, J., Halevy, A., Suciu, D., Dalvi, N., Dong, X.L.,
Kadiyska, Y., Miklau, G., Mork, P.: The piazza peer data management project.
SIGMOD Rec. 32(3) (2003)

Ooi, B.C., Tan, K.L., Zhou, A., Goh, C.H., Li, Y., Liau, C.Y., Ling, B., Ng, W.S.,
Shu, Y., Wang, X., Zhang, M.: Peerdb: peering into personal databases. In: Proc.
ACM SIGMOD Intl. Conf. on Management of Data (2003)

Rodriguez-Gianolli, P., Kementsietsidis, A., Garzetti, M., Kiringa, I., Jiang, L.,
Masud, M., Miller, R.J., Mylopoulos, J.: Data sharing in the hyperion peer database
system. In: Proc. 31st VLDB Conf. (2005)

Aberer, K., Datta, A., Hauswirth, M., Schmidt, R.: Indexing data-oriented overlay
networks. In: Proc. 31st VLDB Conf. (2005)

Cudré-Mauroux, P., Agarwal, S., Budura, A., Haghani, P., Aberer, K.: Self-
organizing schema mappings in the gridvine peer data management system. In:
Proc. 33rd VLDB Conf. (2007)

de Spindler, A., Norrie, M.C., Grossniklaus, M.: Recommendation based on Oppor-
tunistic Information Sharing between Tourists. Information Technology & Tourism
(to appear)

	Development Framework for Mobile Social Applications
	Introduction
	Background
	Framework
	P2P Collections
	Event Processing
	Collaborative Filtering
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

