
P. van Eck, J. Gordijn, and R. Wieringa (Eds.): CAiSE 2009, LNCS 5565, pp. 186–200, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Improving Model Quality Using Diagram Coverage
Criteria

Rick Salay and John Mylopoulos

Department of Computer Science, University of Toronto
Toronto, ON M5S 3G4, Canada

{rsalay,jm}@cs.toronto.edu

Abstract. Every model has a purpose and the quality of a model ultimately
measures its fitness relative to this purpose. In practice, models are created in a
piecemeal fashion through the construction of many diagrams that structure a
model into parts that together offer a coherent presentation of the content of the
model. Each diagram also has a purpose – its role in the presentation of the
model - and this determines what part of the model the diagram is intended to
present. In this paper, we investigate what is involved in formally characterizing
this intended content of diagrams as coverage criteria and show how doing this
helps to improve model quality and support automation in the modeling
process. We illustrate the approach and its benefits with a case study from the
telecommunications industry.

Keywords: Modeling, Model quality, Diagrams.

1 Motivation

All models are created for a purpose [4]. For example, in a software development
context, models may be used to communicate a software design, to help a designer
work through alternative ideas, to support the work of various stakeholders, to enable
a particular type of analysis, etc. The quality of a model corresponds to how well it
can support its purpose by providing the information required by it – i.e. the purpose
of a model determines its intended content. Thus, if the intended content can be char-
acterized in terms of content criteria such as the required notation, coverage, accu-
racy, level of abstraction, etc. we can consider model quality to be measured by the
degree to which the model meets these criteria.

In practice, a model is often manifested as a set of diagrams, possibly of different
types, that decompose and structure the content of the model. The prototypical example
of this is the UML which defines a single metamodel for UML models and identifies
thirteen types of diagrams that can be used with it [13]. Like the models they present,
each diagram has a purpose and plays a particular role in the presentation of model
content, hence they too have content criteria. In particular, the content criteria relating to
coverage, or coverage criteria, for a diagram identifies the part of the information car-
ried by a model that is intended to be presented within the diagram. For example, in a
UML model of a communication system, one class diagram may be intended to show
the different types of communicating entities while another is intended to show the
different types of messages that an entity of type Terminal can send.

 Improving Model Quality Using Diagram Coverage Criteria 187

Coverage criteria are not typically modeled and if they are made explicit at all, it is
only through some informal means such as comments or as part of the name of the
diagram. However, the explicit and precise expression of coverage criteria is a fruitful
activity because it helps improve the quality of models in several ways. Firstly, it
improves model comprehension because it provides information that allows model
consumers to properly interpret the content of diagrams and assess their overall qual-
ity. For example, without explicit coverage criteria it may not be clear whether the
associations in the class diagram of communicating entity types represent all or just
some of the associations between these entities. Secondly, it can be used to identify
types of defects that are not detectable through other means. For example, coverage
criteria can be used to detect when the class diagram of communicating entity types
contains classes it shouldn’t or doesn’t contain classes that it should. Finally, the cov-
erage criteria can be used with change propagation mechanisms to properly maintain
the intended content of diagrams as the model evolves.

In [11] we describe how the types of relationships that exist between models and
between diagrams play a role in describing the intentions about content. In this paper,
we explore the relationship between a diagram and a model in greater depth. In par-
ticular, we make the following contributions:

o The notion of diagram coverage criteria is introduced as a new kind of infor-
mation that can be included in a model.

o Four kinds of modeling defects are identified that can only be detected using
coverage criteria.

o A systematic approach for defining formal coverage criteria is presented and
the validity conditions that coverage criteria must satisfy are specified.

o A strategy for parameterizing coverage criteria is defined that allows reuse of
coverage criteria to reduce specification effort and to allow diagrams with
standard types of intentions to be auto-generated.

o Empirical results are presented of the application of the approach to a medium
size UML model with 42 diagrams.

The rest of the paper is structured as follows. Section 2 introduces the concepts re-
lated to diagram coverage criteria and illustrates them using examples. Section 3 for-
malizes these concepts and provides a systematic way of defining coverage criteria.
Section 4 describes the results of applying the approach to a UML case study in the
telecommunications domain. Finally in Section 5 we discuss related work and in
Section 6 make some concluding remarks.

2 Diagram Coverage Criteria

In order to illustrate the idea of diagram coverage criteria we utilize examples from a
UML case study taken from a standards document for the European Telecommunica-
tions Standards Institute (ETSI) [7]. The case study consists of three UML models: a
context model (4 diagrams), a requirements model (6 diagrams) and a specification
model (32 diagrams) and details the development of the Private User Mobility dynamic
Registration service (PUMR) – a standard for integrating telecommunications net-
works in order to support mobile communications. Thus, for example, PUMR allows

188 R. Salay and J. Mylopoulos

an employee using a mobile phone at her home company with a private exchange to
roam to other private exchanges seamlessly. More specifically, it describes the interac-
tions between Private Integrated Network eXchanges (PINX) within a Private Inte-
grated Services Network (PISN). The following is a description from the document:

“Private User Mobility Registration (PUMR) is a supplementary service that en-
ables a Private User Mobility (PUM) user to register at, or de-register from, any
wired or wireless terminal within the PISN. The ability to register enables the
PUM user to maintain the provided services (including the ability to make and
receive calls) at different access points.” [7, pg. 43]

Consider diagram 65 from the specification model as shown in Figure 1. The intent
of this class diagram is to show the detail for the types of response messages that can
be exchanged between communication entities when they are trying to connect. The
class PUM Responses is the abstract base class for these classes. This intention
implies that the following constraints must hold between diagram 65 and the
specification model:

1. Every class that is included in this diagram must either be PUM Responses or
be a direct subclass of it.

2. Every direct subclass of PUM Responses in the specification model is included
in this diagram.

3. For each class included in this diagram, every attribute in the specification
model is included in this diagram.

4. No associations are included in the diagram.

These constraints constitute the coverage criteria for diagram 65. Assume that we
identify three roles for stakeholders dealing with diagrams: definer, producer and
consumer. The diagram definer asserts that such a diagram must exist and what it is
intended to contain. The producer creates the content and the consumer uses it for
their purposes. Expressing the coverage criteria explicitly and precisely is useful for
all three roles. The definer can articulate the intent of the diagram and effectively
communicate this to the producer. The producer can use this to assess whether they
are conforming to this intent. Constraints (1) and (4) ensure that nothing is included
that does not belong in the diagram while constraints (2) and (3) ensure that every-
thing that does belong is included. The consumer can use the constraints to properly
interpret the content of the diagram. For example, without (3) it may not be clear to
the consumer whether or not the attributes for these classes shown in the diagram are
all the attributes for these classes or there are some more that have been omitted from
the diagram. Thus, while diagrams are typically assumed to be incomplete relative to
the model, the coverage criteria provide the consumer with information about the
ways in which the diagram is complete. If formalized, the coverage criteria are useful
for automated support of the management of the diagram content in order to ensure
that the intent of the diagram is maintained as the specification model evolves. For
example, if the producer adds a class to the model via diagram 65 and does not make
it a subclass of PUM Responses, this violates constraint (1) and can be flagged as
such. On the other hand, if a subclass of PUM Responses is added to the specification
model by some other means, such as manually through another diagram, change
propagation, round-trip engineering, etc., the violation of constraint (2) can trigger the
“repair” action of adding it to diagram 65.

 Improving Model Quality Using Diagram Coverage Criteria 189

PUM Responses

PumRegistrRes
<<communication message>>

pumNumber : PartyNumber
serviceOption : ServiceOption
sessionParams : SessionParams
argExtension : PumrExtension

PumInterrogRes
<<communication message>>

basicService : BasicService
hostingAddr : PartyNumber
serviceOption : ServiceOption
interrogParams : SessionParams
argExtension : PumrExtension

PisnEnqRes
<<communication message>>

pisnNumber : PartyNumber
dummyRes : DummyRes

Fig. 1. Diagram 65 is a class diagram showing PUMR response message types carried in a
connect signal

Note that the constraints in coverage criteria are different from constraints that are
expressed within the metamodel. Metamodel constraints include invariants that must
hold in the modeled domain (e.g. a class can’t be a subclass of itself), completeness
constraints from the modeling process (e.g. every use case requires an activity that
describes it) and stylistic constraints (e.g. only single inheritance is permitted). Since
diagrams do not exist within the model, these constraints do not address the content of
diagrams. In contrast, coverage criteria are wholly concerned with the relationship
between diagrams and the model. Furthermore, since the diagram intent is defined
relative to the model, the coverage criteria is comprised of information that exists at
the model level rather than at the metamodel level. For example, if model evolution
causes some coverage criterion to be violated, a valid response may be to change the
coverage criterion rather than the diagram. This represents a decision on the part of
the model definer that the intent of a diagram has evolved.

The coverage criteria for diagram 65 are constraints that are mostly expressed in
terms of the generic concepts in the metamodel (i.e. class, subclass, association, etc.)
except for the mention of the specific class PUM Responses. The diagram has a spe-
cial existential relationship to this element since it doesn’t make sense to have a dia-
gram that shows the subclasses of PUM Responses unless there exists a class in the
model called PUM Responses. Thus, we consider it to be a precondition for the exis-
tence of diagram 65 that the model contain this class. When the precondition for a
diagram is the required existence of a single model element, then the diagram is often
a “detailing” of this element. For example, diagram 65 could be considered to be a
detail view of the PUM Responses class. This special case has been leveraged by
modeling tools [5, 6] to define a natural navigation path between diagrams containing
the detailed element and the diagrams that are detail views of this element.

The coverage criteria for diagram 65 are strong enough that for any UML model that
satisfies the precondition, the content of the diagram is uniquely determined – i.e. the
coverage criteria constitutes a query on those specification models that satisfy the

190 R. Salay and J. Mylopoulos

PUM user

SpecifyProfile

Register PUM User at a Terminal
for Outgoing Calls

Specify Access Point for Incoming
Call

Authorized user

Specify Service Type

Fig. 2. Diagram 44 is a use case diagram showing the registration use cases

precondition. The intuition here is that when the producer fills in a diagram they must
always have some principle in mind by which they decide what should be included and
what should not be included and following this principle results in a unique diagram1.
This principle is exactly the coverage criteria. Thus, there is a general pattern for cover-
age criteria: there is a (possibly empty) precondition and the coverage criteria uniquely
determine the content of the diagram on any model satisfying the precondition.

Now consider diagram 44 from the requirements model shown in Figure 2. The in-
tent of this diagram is to show all use cases related to the registration of PUM users
within a network. The coverage criteria can be expressed as follows:

1. Every use case that is included this diagram is a registration use case.
2. Every registration use case (in the requirements model) is included in this dia-

gram.
3. Every actor (in the requirements model) associated with a use case included in

the diagram is also included in the diagram.
4. Every association (in the requirements model) between any elements in the

diagram is also included in the diagram.

Like the coverage criteria for diagram 65 this lists a set of diagram inclusion con-
straints that pick out a unique diagram for each model; however, unlike diagram 65,
the truth of these conditions cannot be fully determined from the content of the
requirements model alone. In particular, there is no information in the requirements
model that can be used to determine whether or not a particular use case is a
registration use case. This highlights another benefit of articulating the coverage crite-
ria – it exposes contextual information that is assumed when interpreting the diagram
and that may be missing from the model. One response to this is to extend the model

1 Note that we are not suggesting that the information in a diagram can only be presented in one

way but rather that what information is included in the diagram is determined completely by
the principle the producer is following.

 Improving Model Quality Using Diagram Coverage Criteria 191

to include this information. In this case, this could be done in several ways ranging
from formal to informal including: adding a use case called “Registration” which
these use cases specialize, adding a profile at the metamodel level with an attribute to
indicate the type of use case, using a naming convention on use cases to indicate the
type of use case, annotating the use cases with comments, etc.

Another response to this situation is to treat the inclusion of a use case in the dia-
gram as meaning that the use case is a registration use case. In this case, diagrams are
not only used as views on the model but also to extend the model itself. Since dia-
grams are typically considered to only be relevant to the presentation of a model and
not its content, this approach has the drawback that the information may not be pre-
served in further refinements of the model (e.g. into the code) and hence would be
lost. This suggests that the first response may be preferred if this information is
needed in downstream processes – i.e missing context information should be viewed
as a case of model incompleteness.

2.1 Parameterized Coverage Criteria

In many cases, it is possible to generalize the diagram intention and coverage criteria
by replacing certain constants by parameters. For example, let DirectSubclass[c:class]
represent the coverage criteria for a type of class diagram having the generalized
intention that the diagram shows a class c and the detail of all of its direct subclasses:

1. Every class that is included in this diagram must either be c or be a direct
subclass of it.

2. Every direct subclass of c in the specification model is included in this
diagram.

3. For each class included in this diagram, every attribute in the specification
model is included in this diagram.

4. No associations are included in the diagram.

Now the coverage criteria for diagram 65 in Figure 1 could be expressed as Di-
rectSubclass[PUM Response]. An obvious benefit of parameterized coverage criteria
is reuse as it reduces the incremental effort to define the coverage criteria for different
diagrams when the coverage criteria have the same form. However, there are other
benefits as well. Formalized parameterized coverage criteria can be used to define a
library of common types of diagrams that can then be used to automatically generate
diagrams of these types and hence reduce modeling effort. For example, a model that
is produced by a reverse engineering tool can be quickly structured by generating
diagrams using different parameterized coverage criteria and various parameters.
Furthermore, the generalized intent can be used to generate a meaningful diagram
name (and other metadata) that reflects the intent of the diagram. For example, Di-
rectSubclass[c:class] can be applied to various classes to produce the diagram of its
subclasses and generate the name “The direct subclasses of c” for each diagram.

3 Formalization

The objective of this section is to encode coverage criteria formally in order to be
precise about its structure, allow the definition of validity conditions that must hold

192 R. Salay and J. Mylopoulos

and for characterizing the types of defects that can be detected. In order to express
metamodels in a formal way, we have chosen to use order-sorted first order logic with
transitive closure (henceforth referred to as FO+) as the metamodeling formalism
rather than using either MOF or Ecore with OCL. There are a number of reasons for
this. Firstly, first order logic is widely known and has comparable expressive power to
the other metamodeling approaches. Secondly, it has a textual representation that is
more convenient when discussing formal issues. Finally, its semantics are formal and
notions such as logical consequence and consistency are well defined.

Using FO+ we can define the metamodel of a model type as a pair 〈Σ, Φ〉 where Σ
is called the signature and defines the types of model elements and how they can be
related while Φ is a set of axioms that defines the well-formedness constraints for
models. Thus, a metamodel 〈Σ, Φ〉 is an FO+ theory and each finite model (in the
model theoretic sense) of this theory will be considered to be a model (in the model-
ing sense) that is an instance of this metamodel.

For example, we define the metamodel (abstract syntax) of a simplified UML class
diagram as follows.

 CD = (1)

 sorts class, assoc, attr, string
 pred startClass: assoc × class

 endClass: assoc × class
 attrClass: attr × class
 className:class × string
 subClass: class × class

 constraints

 // startClass, endClass, attrClass and className are functions2

 ∀a:assoc ∃!c:class · startClass(a, c)

 ∀a:assoc ∃!c:class · endClass(a, c)

 ∀a:attr ∃!c:class · attrClass(a, c)

 ∀c:class ∃!s:string · className(c, s)

 // a class cannot be a subclass of itself

 ∀c:class · ¬TC(subClass(c, c))

The signature ΣCD consists of the pair 〈sortsCD, predCD〉 where sortsCD is the set of

element types that can occur in a model while predCD is a sets of predicates used to
connect the elements. We will say ΣT1 ⊆ ΣT to mean that sortsT1 ⊆ sortsT and predT1 ⊆

predT. The constraints section describes ΦCD. Note that the quantifier ∃! means
“there exists one and only one” and the operator TC takes a predicate and produces its
transitive closure.

2 In FO+ we express functions as appropriately constrained predicates rather than including

functions directly into the logic in order to treat this in a uniform way with other well-
formedness constraints.

 Improving Model Quality Using Diagram Coverage Criteria 193

Here we are treating a type of diagram (i.e. class diagrams) in the same way as a
type of model by giving it a metamodel defining its abstract syntax. We do this since
in this paper we are not interested in the notational aspects of a diagram, only in what
subsets of a model they can be used to present. Thus, we will take a diagram to be
equivalent to the submodel it picks out from a model.

Assume that T = 〈ΣT, ΦT〉 is the metamodel of some model type and T1 = 〈ΣT1,
ΦT1〉 is the metamodel for a type of submodel of T. For example, we could have UML
= 〈ΣUML, ΦUML〉 as the model type and CD = 〈ΣCD, ΦCD〉 as the type of submodel we
are interested in. Since T1 is a type of submodel of T we will assume that ΣT1 ⊆ ΣT.
Note that in general, the constraints of a type of submodel may be either stronger or
weaker than the constraints of the model. For example, in UML, communication dia-
grams can only represent interactions in which message overtaking does not take
place [13] and so the constraints on communication diagrams are stronger than on
interactions within a UML model.

Now assume that M:T is a model and Msub:T1 is intended to be a submodel of it.
We will interpret this to mean that the constraint Msub ⊆ M must hold. That is, each
element and relation instance in Msub must also be found in M. If in addition, we state
that Msub has coverage criteria CC(Msub, M), then intuitively this will mean that CC
contains the preconditions and the constraints that further limit which submodels Msub
can be. Formally, we can express CC as a set of constraints on the combined signatures
of T1 and T using a special type of metamodel that includes the metamodels of T1 and
T and additional constraints showing how these models are related [11]. As an exam-
ple, we will express the coverage criteria for diagram 65 as follows:

CCM65(M65:CD, M:UML) = M65.CD + M.UML + (2)

subsort M65.class ≤ M.class, M65.assoc ≤ M.assoc, M65.attr ≤ M.attr (3)

constraints
// precondition

∃ mc:M.class · M.className(c) = “PUM Responses” ∧ (4)

// inclusion constraints

 ∀c:M.class · (∃c1:M65.class · c1 = c) ⇔ (c = mc ∨ M.subClass(c, mc)) ∧ (5)

 ∀a:M.assoc · (∃a1:M65.assoc · a1 = a) ⇔ FALSE ∧ (6)

 ∀a:M.attr · (∃a1:M65.attr · a1 = a) ⇔ (∃ c:M65.class · M.attrClass(a) = c) ∧ (7)

 ∀c1, c2:M65.class · M65.subClass(c1, c2) ⇔ (M.subClass(c1, c2) ∧ c2 = mc) ∧ (8)

 ∀a:M65.attr, c:M65.class · M65.attrClass(a, c) ⇔ M.attrClass(a, c) ∧ (9)

 ∀c:M65.class, s:M65.string · M65.className(c, s) ⇔ M.className(c, s) (10)

Line (2) indicates that CCM65 imports the signature and constraints for CD and

UML and to avoid name clashes these are “namespaced” with “M65” and “M”, re-
spectively. Thus, for example, the sort M65.class is distinct from the sort M.class.
Line (3) asserts that the elements in M65 are subsets of the elements in M. The
precondition (4) asserts the constraints that must hold in M for the diagram to exist –
in this case that M must contain a class named “PUM Responses”. The use of a

194 R. Salay and J. Mylopoulos

precondition distinguishes the case of a diagram not existing from the case that the
diagram exists but is empty.

The inclusion constraints define the constraints that must hold between the content
of M65 and M and are defined in the scope of the precondition so that the variable
mc is bound. These encode the constraints for diagram 65 expressed in words in
section 2. Thus, constraints 1 and 2 are expressed by (5), constraint 3 is expressed by
(7) and (9) and constraint 4 is expressed by (6). Note that parameterized coverage
criteria can be defined by allowing free variables in the definition. For example, if we
allow mc to remain a free variable in the above then we define the parameterized
coverage criteria DirectSubclass(M65:CD, M:UML)[mc: class].

The coverage criteria above are written in a standardized form. If we assume that
we are expressing coverage criteria CC(Msub:T1, M:T) then the form is:

 CC(Msub:T1, M:T2) = Msub.T1 + M.T2 + (11)

 subsort for each S ∈ sortsT1, Msub.S ≤ M.S

 constraints
 // precondition

 precondition ∧

 // inclusion constraints
 for each S ∈ sortsT1,

 ∀x:M.S · (∃x1:Msub.S · x1 = x) ⇔ QS(x) ∧

 for each predicate P:S1 × … × Sn ∈ predT1

 ∀ x1:Msub.S1, …, xn:Msub.Sn ·
 Msub.P(x1, …, xn) ⇔ M.P(x1, …, xn) ∧ QP(x1, …, xn) ∧

In each inclusion constraint, Qi represents a formula called the inclusion condition that

may involve bound variables in the precondition. Intuitively, the inclusion conditions
pick out the parts of M that belong in Msub and provide a systematic way of defining
coverage criteria. Based on this form, the coverage criteria can be seen to consist more
simply of the precondition and a set of inclusion conditions. For example, the coverage
criteria for diagram 65 could be expressed more compactly as the set of definitions:

precondition := ∃ mc:M.class · M.className(c) = “PUM Responses”

Qclass(c) := (c = mc ∨ M.subClass(c, mc))

Qassoc(a) := FALSE

Qattr(a) := ∃ c:M65.class · M.attrClass(a, c)

QsubClass(c1, c2) := (c2 = mc)
QattrClass(a, c) := TRUE
QclassName(c, s) := FALSE
QstartClass(a, c)3 := FALSE
QendClass(a, c) := FALSE

(12)

3 Inclusion constraints for startClass and endClass were omitted in (11) since these must always

be empty relations because there are no associations.

 Improving Model Quality Using Diagram Coverage Criteria 195

When the coverage criteria is expressed in terms of inclusion conditions it is clear
that for every M that satisfies the precondition, the inclusion constraints specify a
unique submodel Msub of M. This is because there is a constraint for each sort and
predicate of Msub that determines exactly what subset of these from M are included
in Msub. To ensure that the resulting submodel Msub is also always well formed – i.e.
that it satisfies the constraints ΦT1 – we must add the following validity conditions:

M.ΦT ∪ Msub.ΦT1 ∪ ΦCC FALSE (13)

M.ΦT ∪ ΦCC Msub.ΦT1 (14)

Here, M.ΦT and Msub.ΦT1 are the imported versions of the constraints of T and T1
found in CC(Msub:T1, M:T2) and ΦCC are the set of subsort, precondition and inclu-
sion constraints. Condition (13) says that the constraints in CC must be consistent and
condition (14) guarantees that the submodel defined by the coverage criteria for each
T-model is a well formed T1-submodel. As a simple example of a case where candi-
date coverage criteria does not satisfy condition (14), consider that in (12) we can
change the definition of the inclusion condition Qattr(a) to be Qattr(a) := TRUE. This
now says that M65 contains all attribute elements of M but still only a subset of the
class elements. This clearly can result in M65 being an ill-formed class diagram since
it can now contain attributes with no corresponding class – i.e. attrClass is no longer
necessarily a function. In particular, this is due to the fact that for the modified con-
straints

65MCCΦ we have that:

ΦUML ∪
65MCCΦ ∀a:M65.attr ∃!c:M65.class · attrClass(a, c) (15)

We can directly relate the structure of coverage criteria to the types of defects that
coverage criteria can be used to detect as shown in Table 1. The first two types of
defects can occur when an instance of the submodel violates the coverage criteria –
either by excluding intended information or by including unintended information. The
third type of potential defect indicates that the coverage criteria cannot be fully char-
acterized using information in M. This was the case with diagram 44 discussed in
Section 2 since the inclusion condition identifying a registration use case could not be
expressed. As discussed there, the corrective action required depends on whether the
information represented by the inclusion conditions is considered to be needed by
downstream processes using the model. The fourth type of potential defect is the case
where the inclusion condition can be specified using information in the model but this
information is only “weakly modeled” using some informal scheme such as naming
conventions. For example, if a convention is used to prefix all registration use cases
with the string “Reg_”, this would allow the inclusion condition to be defined by
checking for this prefix. The potential problem with this is that the semantics of these
conventions may be lost in downstream uses of the model unless they are recorded
with the model in some way. Thus it may be preferable to promote this information to
“first class” status by modeling it directly – e.g. assuming registration use cases all
specialize a use case called “Registration”.

196 R. Salay and J. Mylopoulos

Table 1. Defect types

Defect Type Description Occurrence criteria
Missing
information
in Msub

Msub does not contain
some information from
M that it should.

An instance of an inclusion
constraint in which right hand
side is satisfied but the left hand
side is not.

Too much
information
in Msub

Msub contains some
information in M that it
should not.

An instance of an inclusion
constraint in which the left hand
side is satisfied but the right hand
side is not.

Missing
information in M

The coverage criteria of
Msub cannot be formally
expressed in terms of the
content of M.

One or more formulas Qi cannot
be formally expressed using
information in M.

Weakly modeled
information in M

The coverage criteria of
Msub is expressed in
terms of content in M
that is not modeled in the
metamodel of M.

One or more formulas Qi are
expressed using informal criteria
such as naming conventions.

4 Application to the PUMR Example

In this section we discuss the results of our analysis to express the content criteria for
the 42 diagrams over the three UML models in the PUMR example. Since we did not
have access to the original definers of these diagrams, we relied on the documentation
[7] of the diagrams to infer their intentions. Fortunately, the documentation is sub-
stantial and detailed so that we have a high level of confidence that our results are
reasonable. To give a sense for the diversity of coverage criteria of the PUMR dia-
grams, we summarize a few in Table 2.

Figures 3 summarizes the defects found due to our analysis. The bars correspond to
the types of defects described in Table 1. To some extent, the low number of miss-
ing/additional info defects found for Msub could be attributed to the fact that in

0
1
2
3
4
5
6
7
8

Missing
Info Msub

Additional
Info Msub

Missing
Info M

Weak info
M

Number of
Cases

Fig. 3. Defects found in PUMR example

 Improving Model Quality Using Diagram Coverage Criteria 197

Table 2. Examples of coverage criteria from PUMR analysis

Diagram Diagram Type Summary of coverage criteria
62 Class Diagram The communication classes in the QSIG package

that are used by classes in the PUMR package.
73 Class Diagram All error code classes in the PUMR package and

their attributes.
52 Object Diagram All the objects and links used in registration and

de-registration interactions.
58 Statemachine

Diagram
The content of statemachine “Registration Proc-
essing” except the content of composite state
“Registration Request” (the content of
“Registration Request” is shown in diagram 59).

Table 3. Parameterized coverage criteria used in the PUMR example

Parameterized coverage
criterion

Diagram
Type

Summary of coverage
criteria

Inst.

DirectSubSuper[class]
Class
Diagram

Immediate subclasses and
superclasses of the class

2

DirectSubclass[class]
Class
Diagram

Immediate subclasses of the
class

4

DirectAgg[class]
Class
Diagram

Classes directly aggregated by
the class

3

NameContains[string]
Class
Diagram

Classes whose name contains
the string

6

FullActivity[activity]
Activity
Diagram

The full contents of the
activity

4

FullSequence[interaction]
Sequence
Diagram

The full contents of the
interaction

5

FullState[state]

State
machine
Diagram

The full contents of a
composite state

1

expressing the coverage criteria we were trying to find the criteria that would best fit
the existing diagrams. It is interesting that despite this, there were some clear errors
that we were able to find. Cases that exhibited the third type of defect included dia-
gram 44 shown in Figure 2 where there was no way to express the inclusion condition
on registration use cases using information in the model. All of the examples of the
fourth type of defect relied on naming conventions to identify a type of element. For
example, diagram 70 shows the different enquiry message classes. These are all iden-
tifiable by having the stereotype “communication message” and by having a name
with the prefix “PumEnq”.

Of the 42 diagrams, 25 could be seen to clearly be instances of more general pa-
rameterized coverage criteria types. This is elaborated in Table 3. Certain “large ob-
jects” (e.g. activities, interactions and statemachines) in a UML model have dedicated

198 R. Salay and J. Mylopoulos

diagram types. The most common coverage criteria is to show the full content of these
objects in a diagram (e.g. FullActivity[activity], FullSequence[interaction]). The vari-
ety of coverage criteria that can be associated with these depend on their ability to
show partial information. For example, statemachine diagrams can also be used to
show the content of a single composite state and so we have FullState[state]. This
capability can be used to decompose the presentation of a large statemachine across
several diagrams. This is the case with diagrams 58 and 59 – together they depict the
statemachine showing registration processing. A similar possibility exists with large
interactions and activities but no instances of these occur in the PUMR example.

5 Related Work

Most of the work relating to diagrams deals with their role in providing a notation for
a model. For example, in [1] Baar formalizes the relationship between the metamod-
els for the concrete syntax and the abstract syntax, in [2], Gurr defines conditions
under which a notation is effective, etc. In contrast, our interest is in how diagrams
delineate submodels and impose structure on a model and this bears a closer connec-
tion to the work on heterogeneous collections of related models.

The problem of inter-view consistency has been much studied, especially with
UML (e.g. see [3]) and along with this, investigations into generic constraint man-
agement mechanisms such as change propagation and conformance detection have
been pursued [10, 9]. Our focus is on the identification and elaboration of a new class
of constraints that can characterize an aspect of modeling intention and can be of use
in modeling. Thus, our concerns are somewhat orthogonal to but complementary with
this work.

In another direction, generic configurable modeling environments have emerged
such as MetaEdit+[6] and the Generic Modeling Environment (GME) [5]. The use of
the diagram structure here is for the navigation from model elements in one diagram
to other diagrams showing more detail about the element (e.g. its internal structure).
Such a navigation approach is limited to expressing the intent of diagrams that detail
model elements and cannot express more complex intentions such as the “depend-
ency” class diagram containing all classes in package P1 used by classes in package
P2. Furthermore, the types of detailing diagrams that can be expressed are restricted
to those that can be defined by revealing/hiding particular element types defined in
the metamodel. More complex coverage criteria such as only showing “direct” sub-
classes in diagram 65 are not possible.

Aspect oriented modeling (AOM) bears some similarity to our work and a wide va-
riety of approaches for AOM have been proposed [12]. Here the idea is to provide a
means for separately maintaining and developing aspects - subsets of the information
in a model relating to particular concerns such as security or customization - and then
allowing these to be woven together to produce the complete model when necessary.
Since there is no consensus on what exactly an aspect is, it is difficult to clearly dif-
ferentiate our work from this – is every diagram with an intent a valid aspect? The
practice of AOM suggests otherwise. Aspects are typically associated with software
concerns that crosscut the model whereas we have no such bias. The motivation of
AOM is to provide techniques for separating concerns in a manageable way whereas

 Improving Model Quality Using Diagram Coverage Criteria 199

ours is to articulate the intent of diagrams in order to improve the quality of models.
AOM emphasizes the independence of aspects whereas we focus on how submodels
are related and are interdependent.

6 Conclusions and Future Work

All models and diagrams of a model have a purpose that circumscribes their contents
through content criteria. Moreover, their quality can be assessed by how well their
content meets these content criteria. In this paper, we focus on a particular type of
content criteria for diagrams called coverage criteria. Coverage criteria for a diagram
specify the part of the model that a given diagram is intended to contain. Although
coverage criteria are not typically expressed explicitly, we propose that doing so can
improve the quality of models by improving model comprehension by stakeholders,
allowing the detection of defects that previously could not be detected and supporting
automated change propagation and generation of diagrams. We have specified a sys-
tematic way of defining coverage criteria using preconditions and inclusion condi-
tions and we have formally defined the conditions under which these conditions are
valid. Finally, we have shown the results of applying these concepts to an actual UML
case study consisting of 42 diagrams and the concrete benefits we obtained.

As part of future work, we are investigating how to extend this research to express-
ing coverage criteria about collections of diagrams. The motivating observation here
is that the collection of diagrams presenting a model are typically structured further
into related subgroups. For example, diagram 44 in Figure 2 can be grouped with
another similar use case diagram (diagram 48) that shows the deregistration use cases
and together, these two diagrams decompose the full set of use cases in the require-
ments model. If we take this subgroup of diagrams to be a kind of model (a multi-
model [11]) then it can have its own coverage criteria that says that it consists of a set
of use case diagrams that decompose the use cases in the requirements model. In this
way, we hope to extend the ideas in this paper to characterize the intentions about the
way collections of diagrams are structured.

Acknowledgments. We are grateful to Alex Borgida for his insightful comments on
earlier drafts of this paper.

References

1. Baar, T.: Correctly defined concrete syntax for visual models. In: Nierstrasz, O., Whittle,
J., Harel, D., Reggio, G. (eds.) MoDELS 2006. LNCS, vol. 4199, pp. 111–125. Springer,
Heidelberg (2006)

2. Gurr, C.: On the isomorphism, or lack of it, of representations. In: Marriott, K., Meyer, B.
(eds.) Visual Language Theory, pp. 293–306. Springer, Heidelberg (1998)

3. Huzar, Z., Kuzniarz, L., Reggio, G., Sourrouille, J.L.: Consistency problems in uml-based
software development. In: Jardim Nunes, N., Selic, B., Rodrigues da Silva, A., Toval Al-
varez, A. (eds.) UML Satellite Activities 2004. LNCS, vol. 3297. pp. 1—12. Springer,
Heidelberg (2005)

200 R. Salay and J. Mylopoulos

4. Ladkin, P.: Abstraction and modeling, research report RVS-Occ-97-04, University of
Bielefeld (1997)

5. Ledeczi, A., Maroti, M., Bakay, A., Karsai, G., Garrett, J., Thomason IV, C., Nordstrom,
G., Sprinkle, J., Volgyesi, P.: The Generic Modeling Environment. In: Workshop on Intel-
ligent Signal Processing, May 17 (2001)

6. MetaEdit+ website, http://www.metacase.com
7. Methods for Testing and Specification (MTS); Methodological approach to the use of ob-

ject-orientation in the standards making process. ETSI EG 201 872 V1.2.1 (2001-2008),
http://portal.etsi.org/mbs/Referenced%20Documents/
eg_201_872.pdf

8. MOFTM Query / Views / Transformations (QVT) – Final Spec.,
http://www.omg.org/cgi-bin/doc?ptc/2005-11-01

9. Nentwich, C., Capra, L., Emmerich, W., Finkelstein, A.: xlinkit: a consistency checking
and smart link generation service. ACM TOIT 2(2), 151–185 (2002)

10. Nuseibeh, B., Kramer, J., Finkelstein, A.: A Framework for Expressing the Relationships
Between Multiple Views in Requirements Specifications. IEEE TSE 20(10), 760–773
(1994)

11. Salay, R., Mylopoulos, J., Easterbrook, S.: Managing Models through Macromodeling. In:
Proc. ASE 2008, pp. 447–450 (2008)

12. Schauerhuber, A., Schwinger, W., Retschitzegger, W., Wimmer, M.: A Survey on Aspect-
Oriented Modeling Approaches (2006),
http://wit.tuwien.ac.at/people/schauerhuber

13. UML 2.0 Metamodel,
http://www.omg.org/cgi-bin/apps/doc?ptc/04-10-05.zip

	Improving Model Quality Using Diagram Coverage Criteria
	Motivation
	Diagram Coverage Criteria
	Parameterized Coverage Criteria

	Formalization
	Application to the PUMR Example
	Related Work
	Conclusions and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

