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Abstract. Poor quality data may be detected and corrected by performing vari-
ous quality assurance activities that rely on techniques with different efficacy and
cost. In this paper, we propose a quantitative approach for measuring and com-
paring the effectiveness of these data quality (DQ) techniques. Our definitions
of effectiveness are inspired by measures proposed in Information Retrieval. We
show how the effectiveness of a DQ technique can be mathematically estimated
in general cases, using formal techniques that are based on probabilistic assump-
tions. We then show how the resulting effectiveness formulas can be used to eval-
uate, compare and make choices involving DQ techniques.
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1 Introduction

The poor quality of data constitutes a major concern world-wide, and an obstacle to
data integration efforts. Data of low quality may be detected and corrected by perform-
ing various quality assurance activities that rely on techniques with different efficacy
and cost under different circumstances. In some cases, these activities require addi-
tional data, changes in the database schema, or even changes in core business activities.
For example, consider the relation schema Person(sin, name, address), which intends
to record a person’s social insurance number, name and address. Due to the decision
to represent an address value as single string, no obvious integrity constraints or other
automatically enforceable techniques can be specified on the components of the ad-
dress value [1]. In particular, one cannot detect missing street, city, etc. using “not null”
constraints, because nothing is said in the schema about the exact format of address
values.

In [2], we proposed a goal-oriented database design process, and extended in [3] to
handle data quality goals. The quality design process starts with a conceptual schema,
which is then augmented by a set of high level data quality goals (e.g., “accurate stu-
dent data”). These goals are gradually decomposed into concrete data quality problems
to be avoided (e.g., no “misspelled student names”). For each such problem, a list of
risk factors (i.e., potential causes) and mitigation plans (i.e., potential solutions) is pre-
sented. The main component of a mitigation plan is a design proposal consisting of a
revised original schema and a set of data quality (DQ) techniques it supports.

P. van Eck, J. Gordijn, and R. Wieringa (Eds.): CAiSE 2009, LNCS 5565, pp. 171–185, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



172 L. Jiang et al.

In this paper, we take the next step of proposing a quantitative approach for mea-
suring and comparing the effectiveness of DQ techniques used in quality assurance
activities. The main contributions of this paper include: (i) the definitions of effective-
ness measures for DQ techniques, based on the well-established notions of precision,
recall and F-measure; (ii) formal techniques for estimating the expected effectiveness
scores for a technique (on a wider range of possible instances of a database), based on
probabilistic assumptions about the occurrence of errors in data values and confound-
ing factors; these techniques result in effectiveness formulas parametrized by variables
introduced by these assumptions; (iii) analysis and comparison of DQ techniques and
their respective strengths in terms of the subranges of values of the parameters in the
effectiveness formulas.

The rest of the paper is organized as follows. We first discuss briefly the main con-
cepts in our approach in Section 2. We then present the definitions of our effectiveness
measures in Section 3, and show examples of calculating effectiveness scores when a
database instance is available. Next, a general pattern is identified for the formal esti-
mation of the expected effectiveness scores based on the probabilistic assumptions, and
is applied to several DQ techniques in Section 4.1. The resulting effectiveness formulas
provide input for the what-if analysis in Section 4.2, in which we evaluate a single DQ
technique and compare multiple ones under different scenarios. Finally, we review the
related work in Section 5, and conclude and point out to our future work in Section 6.

2 Main Concepts

2.1 DQ Techniques

The core concept in our approach is a DQ technique, which is, broadly speaking, any
automatic technique that can be applied to data in a quality assurance activity, in order
to assess, improve and monitor its quality. This includes techniques to standardize data
of different formats, to match and integrate data from multiple sources, and to locate
and correct errors in data values[1]. In this paper, we focus on DQ techniques that
automatically enforce a rule of the form “if condition then action”, where condition
checks violation of some integrity constraint, and action produces either deterministic
or probabilistic decisions regarding quality of data being examined (e.g., to mark values
as possibly erroneous, to suggest possible corrections to erroneous values). Following
example illustrates two simple rules.

Example 1. Consider the relation schema Person again. Suppose we are especially con-
cerned with the quality of name values. In this case, we can modify this schema by
adding a second name attribute as in Person′(sin, name, address, name′), with the in-
tention of modifying the workflow so that names are entered twice (by the same or
different persons), and then detect errors by comparing the two name entries. The re-
vised schema makes it possible to specify and enforce following rule, “for each tuple
t inserted in Person′, if t.name �= t.name′ then mark the tuple 〈t.name,t.name′〉 as er-
roneous”. Another way to provide quality assurance for names, without changing the
schema of Person, is to keep a table of valid names, Lname . This allows to specify and
enforce the rule, “if ¬(t.name ∈ Lname), then mark t.name as erroneous”. �
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2.2 Effectiveness of DQ Techniques

Different DQ techniques may have different efficacy and cost under different circum-
stances. The effectiveness of a DQ technique is determined both by the nature of the
technique and the particular values and errors in the data being examined. Following
example explains the concept of effectiveness in the context of DQ techniques.

Example 2. Consider a simple conditional functional dependency φ = [country-code
= 44, area-code = 131] → [city-name = Edinburgh] [4,5]1. If it is the case that city
name has much higher possibilities of having errors than country code and area code,
violation of φ is more likely an indication of erroneous city name values than others.
In this case, a DQ technique may check for violation of φ, and mark the city name
value in a tuple as possibly erroneous whenever the tuple violates φ. A set of tuples
marked by this DQ technique then needs to be presented to a domain expert who will
make the final decision. To minimize human effort, ideally a city name value is actually
erroneous if and only if the tuple containing this value is in the returned set. How-
ever, this is unlikely to be true due to (comparably small amount of) errors in country
code and area code values. Effectiveness of φ measures its ability to produce “good”
sets of tuples compared to the ideal set, for a given database instance or a range of
instances. �

2.3 Effectiveness Measures, Scores and Formulas

With respect to a particular database instance, an effectiveness score is assigned to a DQ
technique. To obtain such effectiveness scores, the first step is to adopt a set of effec-
tiveness measures, such as precision, recall and F-measure from Information Retrieval.
Then, the DQ technique is applied to a database instance (for which quality of data is
already known, e.g., through manual assessment); and the effectiveness scores of the
DQ technique is calculated by comparing its output with existing knowledge of the in-
stance. There are several limitations for this approach. First, a database instance may
not always be available (e.g., when designing a new schema) or only partially available
(e.g., when modifying an existing schema). Second, the effectiveness scores only tell us
how the DQ technique performs on one snapshot of the database.

Therefore, it is often necessary to consider how a DQ technique performs on average
over a range of possible instances of the database. This leads to the expected effective-
ness score of a DQ technique. To obtain expected effectiveness score of a DQ technique,
one can first derive an effectiveness formula of the DQ technique. This requires making
probabilistic assumptions about the occurrence of errors in data values and confound-
ing factors. By confounding factors, we mean special events that may “confuse” a DQ
technique, making it less effective. For example, the country name “Australia” may
be misspelled as “Austria”, which is still a valid country name; such an error cannot
be detected using a technique based on a country name lookup table. The resulting
effectiveness formulas, can be evaluated and compared by fixing some parameters in
formulas and allowing the others to vary.

1 A conditional functional dependency is formally defined as a pair of a regular functional de-
pendency and a pattern tableau. Here we are using an abbreviated notation.
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3 Effectiveness Measures

In this section, we present the definitions for our effectiveness measures. We first ex-
plain the general idea and give the basic definitions for these measures, and then extend
them to accommodate errors of different types and data values from multiple attributes.

3.1 Basic Definition

Effectiveness represents the ability to produce a desired result (in order to accomplish
a purpose). For DQ techniques, the purpose is to assess, improve, etc. quality of data.
This gives rise to measures for assessability, improvability, etc. In what follows, we
concentrate on assessability measures; we defer a detailed treatment of other types of
effectiveness measures to a later report.

Assessability represents an DQ technique’s ability to effectively detect erroneous
data values. Normally, this ability can only be measured if we have access to the real-
ity (i.e., is an erroneous value marked by a DQ technique really an error). When not
accessible, we need an approximation of the reality, possibly obtained through some
manual quality assurance activity. The precise meaning of “assessability” depends on
what do we mean by “erroneous” and “data value”. To begin with, we assume that each
DQ technique assesses quality of data in a single attribute, and classifies the attribute
values into two categories: those with some error, and those without. In Section 3.2, we
relax these limitations.

Inspired by Information Retrieval, we define assessability measures in terms of pre-
cision, recall and F-measure [6]. More specifically, let S be a relation schema, A be an
attribute in S, and I be an instance of S. Consider a DQ technique T , which is applied
to I in order to assess quality of A values. Equation 1 and 2 defines the precision and
recall [6] for T with respect to I and A; these two measures are combined in Equation
3 into F-measure [6], where β is a constant that represents the importance attached to
recall relative to precision.

precision(T, I, A) =
TP (T, I, A)

TP (T, I, A) + FP (T, I, A)
(1)

recall(T, I, A) =
TP (T, I, A)

TP (T, I, A) + FN(T, I, A)
(2)

Fβ(T, I, A) =
(1 + β2) × precision(T, I, A) × recall(T, I, A)

β2 × precision(T, I, A) + recall(T, I, A)
(3)

The values TP , FP and FN represent the number of true positives, false posi-
tives and false negatives respectively, and are explained more clearly below. Example 3
shows how the assessability scores can be calculated using the sampling approach.

– TP(T, I, A) = the number of erroneous A values in I , correctly marked by T as
being erroneous

– FP(T, I, A) = the number of non-erroneous A values in I , incorrectly marked by T
as being erroneous
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– FN(T, I, A) = the number of erroneous A values in I , not marked by T as being
erroneous, but should have been

Example 3. Consider the Person schema again. Suppose from one of its instances,
IPerson, 10 tuples are selected as the sample. After performing some manual quality
assurance activity on the sample, 3 erroneous name values are identified and the correct
values are obtained. Table 1(a) shows the result of this manual activity, where the name
value is erroneous iff err = “1”; namenew is used to record the suggested name values2.

Now consider a DQ design proposal P1(Person′(sin, name, address, name′), Tequal),
in which the Person schema is revised to Person′, and Tequal is a DQ technique that
enforces the rule: “for each tuple t inserted in an instance of Person′, if t.name �=
t.name′ then mark t.name as erroneous.” An instance IPerson′ of Person′ is gener-
ated by starting with data from IPerson and obtaining independent values for the new
attribute name′.

Suppose we need to know how effective Tequal is in assessing name values in
IPerson′ . First, we select the same 10 tuples from IPerson′ as the sample, and obtain
the quality assessments on the sample using Tequal, as shown in column err of Table
1(b). By comparing Table 1(b) with Table 1(a), we obtain following numbers TP = 2
(due to Tuple 006 and 009), FP = 2 (due to Tuple 001 and 008), and FN = 1 (due
to Tuple 004). The assessability scores for Tequal on this sample (when β = 1) are:
precision(Tequal, IPerson′ , name) = 0.5, recall(Tequal, IPerson′ , name) = 0.67, and
F1(Tequal, IPerson′ , name) = 0.57. �

Table 1. Calculation of effectiveness scores using the sampling approach

(a) Quality of name values in
IPerson

sin name err namenew

001 Kelvin 0
002 Michelle 0
003 Jackson 0
004 Alexander 1 Alexandre
005 Maria 0
006 Tania 1 Tanya
007 Andrew 0
008 Christopher 0
009 Michale 1 Michael
010 Matthew 0

(b) DQ annotation for name values
in IPerson′ using Tequal

sin name name′ err

001 Kelvin Kelvn 1
002 Michelle Michelle 0
003 Jackson Jackson 0
004 Alexander Alexander 0
005 Maria Maria 0
006 Tania Tanya 1
007 Andrew Andrew 0
008 Christopher Christophor 1
009 Michale Michael 1
010 Matthew Matthew 0

(c) DQ annotation for name values in
IPerson′ using Tequal−prob

sin name name′ err err′

001 Kelvin Kelvn 0.5 0.5
002 Michelle Michelle 0 0
003 Jackson Jackson 0 0
004 Alexander Alexander 0 0
005 Maria Maria 0 0
006 Tania Tanya 0.5 0.5
007 Andrew Andrew 0 0
008 Christopher Christophor 0.5 0.5
009 Michale Michael 0.5 0.5
010 Matthew Matthew 0 0

3.2 Extensions

We may be interested in measuring the effectiveness of a DQ technique with respect
to particular types of errors, instead of considering all possible ones. For example, a
lookup-table based DQ technique is very effective in detecting syntactic but not se-
mantic accuracy errors [1]. In this case, the assessability scores can be calculated using
Equation 1 and 2 in the same way as before, except that we only consider errors of the
specified types when counting TP , FP and FN .

2 The address values are omitted here and thereafter.
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Equation 1 and 2 work for DQ techniques whose output involve a single attribute. In
some case, the result of a DQ technique may involve values of a set X = {A1, . . . , An}
of attributes. There are two ways to look at this situation, which lead to two different
solutions. In one view, we may treat a tuple t.X as a single value (i.e., t.X is erro-
neous if any of t.A1, . . . , t.An is). Then we can calculate assessability scores of a DQ
technique using modified versions of Equation 1 and 2, where precision(T, I, A) and
recall(T, I, A) are replaced with precision(T, I, X) and recall(T, I, X) respectively.
In another view, we introduce the notion of uncertainty. This leads to a more general
solution. When a DQ technique marks a tuple t.X as being erroneous, it essentially
marks each individual value t.A1, . . . , t.An in the tuple as being erroneous with certain
probability. If those probabilities can be estimated, we can still treat each attribute in-
dividually, but allow the assessment result to be a number between 0 and 1. Example 4
illustrates the second view.

Example 4. Let us consider another DQ design proposal P2(Person′(sin, name, address,
name′), Tequal−prob), where Tequal−prob is same as Tequal in P1, except that it marks
the whole tuple t[name, name′] as being erroneous when t.name �= t.name′. Following
the second view, if we assume that a name and name′ value have the same probability
of being wrong, Table 1(c) shows the output of Tequal−prob applied to the same sample
of IPerson′ (as in Example 3). Notice, err = “0.5” (respectively err′ = “0.5”) means the
name (respectively name′) value is marked as erroneous with the 0.5 probability.

In this case, a real erroneous name value, being marked as erroneous with 0.5 proba-
bility (e.g., Tuple 006), counts for 0.5 toward TP and 0.5 toward FN. By comparing this
table with Table 1(a), we can obtain following numbers: TP = 1 (due to Tuple 006 and
009), FP = 1 (due to Tuple 001 and 008) and FN = 2 (due to Tuple 004, 006 and 009).
The assessability scores for Tequal−prob on this sample can then be calculated using this
numbers. �

4 Estimating and Comparing Expected Effectiveness Scores

4.1 Formal Approach

The above examples show the calculation of assessability scores for a DQ technique
on a particular database instance. In this section, we show how assessability scores
can be estimated without applying the DQ technique to data. More specifically, we
show how to obtain the expected assessability scores for a DQ technique based on
probabilistic assumptions. This approach can be divided into four steps: (1) setting the
stage, (2) making probabilistic assumptions, (3) calculating probabilities for the events
of interests, and (4) formulating assessability scores. In what follows, we illustrated this
approach on several DQ techniques.

Introducing Redundancy. Although duplicating an attribute as we have shown in
previous examples may seem simplistic, the idea of using redundancy checks (e.g.,
checksum) to protect the integrity of data has long been practiced in computer com-
munication, and also been proposed for detecting corruption in stored data [7]. More
generally, partial redundancy is the basis of many integrity constraints (e.g., correlations
between phone area codes and postal codes).
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Step 1: setting the stage. In general, given a relation schema S, we are interested in
DQ design proposals of the form Predundancy(S′, TB �=f(X)), where S′ contains all
attributes in S plus a new attribute B, and TB �=f(X) enforces the rule “for each tuple
t inserted in an instance of S′, if t.B �= f(t.X) then mark t.X as erroneous”; here X
is a subset of attributes in S, and f represents some computable function. For example,
X may contain a single attribute birthdate and B is the attribute age; f computes the
current age from the date of birth3. In what follows, we illustrate the formal approach
for the case where X contains a single attribute A and f is the identity function, i.e., for
the DQ technique TB �=A. More general cases can be handled in a similar way.

Step 2: making probabilistic assumptions. The main factor that affects the assessability
scores for TB �=A is the occurrence of errors in the attributes A and B. For the rest of the
paper, we make several independence assumptions about values and errors in general:
(i) the probability that a value will be wrong is independent of the value itself, and (ii)
the probability of an error occurring in one attribute is independent of those of the other
attributes.

To simplify the analysis here, we will assume that the probability of a A value
or B value being incorrect is the same — denoted by p. If we use Errt.A to name
the event that the recorded value in t.A does not correspond to the real one and use
Cort.A to mean the converse, this assumption can be stated symbolically as pr(Errt.A)
= pr(Errt.B) = p, where pr(E) represents the probability of an event E. Before we pro-
ceed further, we need to recognize that there is the possibility that both t.A and t.B are
incorrect yet contain the same erroneous value; in this case, these errors “cancel out” as
far as the DQ technique TB �=A is concerned (since they cannot be detected by TB �=A).
We call this situation “error masking”, which is a particular type of confounding factors.
Let us say that such masking will happen only with probability 1 − c1.

Step 3: calculating probabilities for the events of interests. To estimate the assessability
scores, we are interested in events concerning a tuple t (i) whether t.A has an error, and
(ii) whether a DQ problem is signaled by TB �=A. This estimation has to be adjusted for
error masking. To compute the expected values for TP, FP and FN, we will actually
compute the probabilities of events concerning a particular tuple t, and then multiply
this by the number of tuples in the relation.

First, true positives occur when t.A has an error (probability p) that is correctly
signaled by TB �=A. This happens when either t.B is correct (prob. (1 − p)) or t.B is
incorrect (prob. p) but different from t.A (prob. c1); this yields probability: pr(Errt.A
∧

Cort.B) + pr(Errt.A
∧

Errt.B
∧

(t.A �= t.B)) = p × (1 − p) + p × p × c1.
False negatives occur when t.A has an error that is not signaled by TB �=A, because

error masking occurs (which requires t.B to contain the exact same error); this has
probability: pr(Errt.A

∧
Errt.B

∧
(t.A = t.B)) = p × p × (1 − c1).

False positives occur when t.A has no error yet TB �=A signals a problem, which
arises according to our rule when t.B �= t.A (i.e., when t.B has an error); this has
probability: pr(t.Acor

∧
t.Berr) = (1 − p) × p.

3 A variant of TB �=f(X) replaces the condition “t.B �= f(t.X)” with “d(t.B, f(t.X)) > δ”;
so instead of requiring t.B and f(t.X) to be exactly the same, it only requires their distance
(measured by d) be less than a constant δ.
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Step 4: formulating assessability scores. Given the probabilities obtained in Step 3,
the expected number of true positives, false positives and false negatives can be cal-
culated as the number of tuples (say N ) times the respective probability as following:
TP (TB �=A, A) = N×(p(1−p)+p2c1); FN(TB �=A, A) = N×p2(1−c1); FP (TB �=A, A)
= N × (1 − p)p; The expected assessability scores for TB �=A can then be obtained by
plugging these numbers into Equation 1, 2 and 3. Since N appears both in the numera-
tor and denominator, it will cancel out, resulting in the effectiveness formulas in Table
2 (Section 4.2).

Using Lookup Tables. For an attribute with a standardized (and finite) domain, such
as country name or postal code, a common DQ technique is to check its values against
a lookup table for the attribute. Attributes with enumerated value domains (such as
gender) also offer this possibility.

Step 1: setting the stage. Given the original schema S and an attribute A in S, we are
interested in DQ design proposals of the form Plookup(S, TLA), where TLA is the DQ
technique that detects errors in A values using a lookup table LA. In what follows, we
illustrate the formal approach for this type of DQ techniques.

Step 2: making probabilistic assumptions. We make two passes through this analysis,
in order to account for two different sources of problems. First, we assume as before
there is a probability p that the recorded value of t.A is incorrect. In this case, error
masking occurs when this erroneous value is still a valid value in the domain of A
(e.g., “Australia” vs “Austria”) – an event to which we assign probability c2. If we
use V alidt.A to name the event that the value t.A is valid and Invalidt.A to mean the
converse, we can represent these assumptions using following conditional probabilities:
pr(V alidt.A|Errt.A) = c2 and pr(Invalidt.A|Errt.A) = 1 − c2.

Second, we consider the possibility of the lookup table being imperfect, which is
another type of confounding factors. In particular, we allow a probability s that some
value (e.g., the name of a newly independent country) is missing from the lookup table
LA

4. If we use Lt.A
A to name the event that the value t.A is contained in LA, and L¬t.A

A

to mean the converse, we have pr(Lt.A
A ) = 1 − s and pr(L¬t.A

A ) = s. Notice here we are
implicitly assuming that pr(Lt.A

A ) is independent from the characteristics of t.A values
(e.g., name values of different length or in different languages).

Step 3: calculating probabilities for the events of interests. In the first case (i.e., assum-
ing a perfect lookup table), true positives occur when t.A is incorrect and the value is not
in the lookup table LA (therefore t.A must be invalid, since all valid values are in LA);
this has probability: pr(Errt.A

∧
Invalidt.A) = pr(Errt.A) × pr(Invalidt.A|Errt.A)

= p × (1 − c2).
False negatives occur when the error is masked (i.e., when t.A is incorrect but hap-

pens to be valid, and therefore is in LA); this has probability pr(Errt.A
∧

V alidt.A) =
pr(Errt.A) × pr(V alidt.A|Errt.A) = p × c2.

Finally, in this case, there can be no false positives: every A value not in LA is an
incorrect A value.

4 A more thorough, but complex, analysis would allow errors in the table values themselves or
extra/out of date values.
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In the second case (i.e., assuming a imperfect lookup table), false positives show up
when t.A is correct, yet the value is missing from LA; this has probability: pr(Cort.A
∧

L¬t.A
A ) = (1 − p) × s.

For true positives, another source is possible, i.e., when an incorrect t.A value is valid
(due to error masking), but is accidentally missing from LA; the total probability for
true positives is therefore the one obtained in the first case plus following probability:
pr(Errt.A

∧
V alidt.A

∧
L¬t.A

A ) = pr(Errt.A
∧

V alidt.A) × pr(L¬t.A
A ) = (p× c2)× s.

For false negatives, we need to multiply the probability obtained in the first case by
(1 − s), since they require the masking values also be in LA .

Step 4: formulating assessability scores. Given the probabilities we obtained in Step
3, the expected assessability scores for TB �=A can be calculated in the same way as for
the case of TB �=A. See Table 2 (Section 4.2) for the resulting effectiveness formulas
for TLA .

4.2 What-If Analysis

The results of the formal approach are formulas representing the expected assessabil-
ity scores for DQ techniques. These formulas are useful for several reasons. First, they
identify conditions (e.g., parameters p and s in Table 2) that affect the effectiveness of
a DQ technique. Second, as we show below, they allow us to perform trade-off analysis
concerning different scenarios that involve one or more DQ techniques. (Each scenario
produces a plot of effectiveness scores by fixing most parameters and allowing the oth-
ers to vary.)

The formulas that represent expected precision, recall and F-measure (when β = 1)
for the DQ techniques TB �=A and TLA , together with a summary of the parameters used
in these formulas, are shown in Table 2. In what follows, we first show how these two
techniques are evaluated individually (in Scenarios 1 - 4) and then show how they are
compared with each other (in Scenarios 5 - 10).

Scenarios 1 - 4: Evaluating Individual DQ Techniques. Scenarios 1 and 2 consider the
impact of “error masking” (varying c1) on the effectiveness of TB �=A, while Scenarios 3

Table 2. Expected assessability scores for TB �=A and TLA

Technique: TB �=A Technique: TLA

Assessability Scores: Assessability Scores:
precision(TB �=A, A) = 1+(c1−1)p

2+(c1−2)p
precision(TLA , A) = 1+(s−1)c2

s/p+(s−1)(c2−1)

recall(TB �=A, A) = 1 + (c1 − 1)p recall(TLA , A) = 1 + (s − 1)c2

F1(TB �=A, A) = 2+2(c1−1)p
3+(c1−2)p

F1(TLA , A) = 2+2(s−1)c2
1+s/p+(s−1)(c2−1)

Parameters:
p: the probability that an A value is erroneous

c1: the probability that both A and B values in a tuple are erroneous, but contain different errors

c2: the probability that an erroneous A value is valid in the domain of A

s: the probability that a valid A (with or without error) is not contained in the lookup table LA
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(a) Scenario 1: a relative clean database (b) Scenario 2: a dirty database

Fig. 1. Evaluation of TB �=A

and 4 consider the impact of LA’s “coverage” (varying s) on the effectiveness of TLA. For
each technique, the evaluation is carried out with respect to a relatively clean database
(p = 0.05, in Scenarios 1 and 3) and a dirty database, (p = 0.3, in Scenarios 2 and 4).

The results for Scenarios 1 and 2, as given in Figure 1(a) and 1(b), show that the
precision and recall of TB �=A decrease when the chance of “error masking” increases
(i.e., as c1 decreases). This corresponds to our intuition. However a comparison of these
two figures also reveals that, in a dirty database (i.e., with a larger p), the effectiveness
of TB �=A decreases more precipitously as the chance of “error masking” increases. For
example, as c1 decreases from 1 to 0, the recall of TB �=A decreases by only 0.05 in the
clean database, but by 0.3 in the dirty database.

The results for Scenarios 3 and 4 are shown in Figure 2(a) and 2(b) respectively. In
both cases, as the “coverage” of the lookup table decreases (i.e., as s increases), we
notice an intuitively expected decrease in precision; however, the dramatic nature of its
drop is not so easily predicted by intuition, and is therefore a benefit of this analysis. We
also note that recall is much less affected by the “coverage”. Moreover, by comparing
these two figures, we observe that the probability of errors in A has much greater im-
pact on precision than on recall. More specifically, the recall of TLA remains the same
when comparing the clean and dirty databases; however, in the dirty database, the pre-
cision decreases considerably slower as the “coverage” decreases. For example, when
s increases from 0 to 1, the precision of TLA decreases by 0.95 in the clean database,
and by only 0.7 in the dirty database.

Scenarios 5 and 6: Comparing DQ Techniques - The Impact of Errors. In this sub-
section, we compare DQ techniques TB �=A and TLA in two scenarios, by investigating
the impact of the probability of errors in A (varying p) on the effectiveness of these two
techniques in an optimistic and a pessimistic setting. In the optimistic case, the chance
of “error masking” is very small and the “coverage” of the lookup table is nearly per-
fect. More specifically, we assume that (i) in 99% of the cases, erroneous A and B
values in a tuple contain different errors (i.e., c1 = 0.99), (ii) only 1% of erroneous A
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(a) Scenario 3: a relative clean database (b) Scenario 4: a dirty database

Fig. 2. Evaluation of TLA

(a) Scenario 5: an optimistic view (b) Scenario 6: a pessimistic view

Fig. 3. Comparison of TB �=A and TLA - Impact of Errors

values happen to be other valid values (i.e., c2 = 0.01), and (iii) only 1% of the valid A
values are not contained in the lookup table LA (i.e., s = 0.01). In the pessimistic case,
we significantly increase the chance of “error masking” and decrease the “coverage” of
the lookup table. More specifically, we set c1 = 0.70, c2 = 0.30 and s = 0.30. Figure
3(a) and 3(b) compare the F-Measures of TB �=A and TLA in these scenarios.

We observe that in both settings, the F-measure of TB �=A increases as the number of
erroneous A values increases (i.e., p increases). A similar pattern can be observed for
TLA in the pessimistic setting; in the optimistic setting, the F-measure of TLA increases
dramatically when p < 0.05, and remains almost constant when p ≥ 0.05. These
two figures suggest under what circumstances one DQ technique is preferable to the
other one. More specifically, in an optimistic world, TB �=A outperforms TLA only when
the probability of erroneous A values is quite small (i.e., when p < 0.01), while in a
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pessimistic world, TB �=A is a more effective choice than TLA as long as the error rate
in A is less than 40% (i.e., when p < 0.4).

A briefer summary might be that in a typical situation, where the chance of “error
masking” is reasonably small (say, less than 5%) and the “coverage” of lookup table is
nearly perfect (say, more than 95%), a lookup-table based DQ technique is generally
more effective in detecting errors than a redundancy-check based DQ technique, as long
as the database is expected to have more than 5% erroneous values.

Scenarios 7 - 10: Comparing DQ Techniques - The Impact of “Error Masking”.
In this subsection, we compare the DQ techniques TB �=A and TLA in another four sce-
narios, by investigating the impact of the “error masking” (varying c1 and c2) on the
effectiveness of these techniques. The comparison is carried out with respect to a rel-
atively clean database, i.e., p = 0.05 (Scenarios 7 and 9) and a dirty database, i.e.,
p = 0.30 (Scenarios 8 and 10), and as well as with respect to a nearly perfect lookup
table, i.e., s = 0.01 (Scenarios 7 and 8), and an imperfect lookup table, i.e., s = 0.3
(Scenarios 9 and 10).

Figure 4(a) and 4(b) compare the F-Measures of TB �=A and TLA in Scenarios 7 and
8, while Figure 5(a) and 5(b) compare them in Scenarios 9 and 10. From these figures,
a dominant pattern can be observed: the chance of “error masking” has more impact
on TLA than on TB �=A, and this influence is independent of the probabilities of errors
in A and the “coverage” of LA. In other words, the F-measure of TLA increases more
precipitously than that of TB �=A does (in all four cases) as the chance of “error masking”
decreases (i.e., as c1 and 1 − c2 increases).

In addition to this general pattern, the following conclusion can be reached according
to these figures. For relative clean databases with less than 5% of erroneous values, a
redundancy-check based DQ technique is always more effective than a lookup-table
based technique. When there are more than 5% of erroneous values, the redundancy-
check based technique still outperforms the lookup-table based one, unless a relatively
low chance of “error masking” is guaranteed and the “coverage” of the lookup table is

(a) Scenario 7: clean db, good lookup (b) Scenario 8: dirty db, good lookup

Fig. 4. Comparison of TB �=A and TLA - Impact of “Error Masking” (I)
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(a) Scenario 9: clean db, bad lookup (b) Scenario 10: dirty db, bad lookup

Fig. 5. Comparison of TB �=A and TLA - Impact of “Error Masking” (II)

nearly perfect. This conclusion, together with the one we made in Scenarios 5 and 6,
gives us a complete comparison of TB �=A and TLA .

The general point is that the mathematical assessment of the effectiveness of DQ
techniques based on probabilistic parameters allows us to make judgments about when
to use one technique vs. another, or whether to use one at all – we need to remember
that there is an overhead for putting into place a DQ technique.

5 Related Work

Software engineering researchers and practitioners have been developing and using nu-
merous metrics for assessing and improving quality of software and its development
processes [8]. In comparison, measures for DQ and DQ techniques have received less at-
tention. Nevertheless, significant amount of effort has been dedicated to the classification
and definition of DQ dimensions. Each such dimension aims at capturing and represent-
ing a specific aspect of quality in data, and can be associated with one or more measures
according to different factors involved in the measurement process [1]. Measures for
accuracy, completeness, timeliness dimensions have been proposed in [9,10,11].

Although to the best of our knowledge no general measurement framework exists for
DQ techniques, performance measures have been proposed and used for certain types
of techniques (such as Record linkage). Performance measures in this case are often de-
fined as the functions of the number of true positives, false positives, etc [12,13]. For
example, in addition to precision, recall and F-measures, the performance of a record
linkage algorithm can also be measured using Accuracy = (TP + TN) / (TP + FP + TN
+ FN), among others [13]. In these proposals, performance scores are obtained for par-
ticular applications of a record linkage algorithm on actual data sets, and are mainly used
as a mechanism to tune the parameters (e.g., matching threshold) of the algorithm. The
present paper focuses on the estimation of expected effectiveness scores and the com-
parison of DQ techniques under different scenarios. The formal techniques and what-if
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analysis presented in this paper are therefore complementary to the existing performance
measures used for record linkage algorithms.

As we have discussed, the schema of a database plays a significant role in ensuring
quality of data in the database. Researchers in conceptual modeling have worked on
the understanding and characterization of quality aspects of schemas, such as (schema)
completeness, minimality, pertinence [14,1]. Moreover, quality measures have been pro-
posed for ER schemas; for example, the integrity measure in [15] is defined using the
number of incorrect integrity constraints and the number of correct ones that are not en-
forced. Quality measures for logical schemas have also been developed in [16,17,18,19].
The question that remains is — if quality of schema influences that of data, how is this
influence reflected in their quality measures. The present paper can be seem as one step
toward answering this question. Since DQ techniques rely on changes to the structure
and elements of schemas (and the specifiable constraints according the changes), their ef-
fectiveness measures contribute to the measurement of schemas′ controllability on DQ
problems, another quality measure for schemas yet to be explored. Our effectiveness
measures therefore help us to understand the relationship between the ability to con-
trol DQ problems at the schema level and the actual manifestation of these problems at
instance level.

6 Conclusion

In this paper, we have proposed a quantitative approach for measuring the effectiveness
of DQ techniques. Inspired by Information Retrieval, we started by proposing to calcu-
late numeric effectiveness scores for a DQ technique by comparing its performance on
a database instance with that of humans, who are assumed to have perfect knowledge of
the world represented by that instance. As in Information Retrieval, this has the weak-
ness of depending on the particular database instance used, and may require significant
human effort in evaluating the actual data.

We therefore generalized the idea by introducing probabilistic assumptions concern-
ing the occurrence of errors in data values and confounding factors that may render the
DQ technique less effective. These assumptions are expressed in terms of probability dis-
tributions for various events, each characterized by certain parameters. We then showed
with several examples how one can obtain mathematical formulas for the effectiveness
of a DQ technique, which involve the parameters of the above-mentioned distributions.
This is a significant advance, because it provides a way for the effectiveness of a DQ tech-
nique to be evaluated over a range of possible values for the parameters. This allows us for
the first time to compare in a mathematically precise way different DQ techniques, and
talk about the circumstances when one becomes better than another. Moreover, it lays the
foundations for future research on optimal allocation of resources for DQ enforcement.

Ongoing and future work is needed to fulfill the promise of this approach. This in-
cludes to identify classes of DQ techniques (integrity constraints and workflows) for
which the formal approach for deriving effectiveness formulas, as illustrated in this pa-
per, can be mechanized or at least reduced to a systematic methodology. This will likely
include a comprehensive classification of DQ techniques, and will result in a library of
DQ techniques augmented by their effectiveness formulas. The next stage is to also make
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the process of generating interesting scenarios more systematic. Finally, while this paper
concentrated only on error detection, there are many other aspects, such as error correc-
tion and monitoring, that can be brought into this more precise, mathematical approach.
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