
An Experimental Testbed for Evaluation of

Trust and Reputation Systems

Reid Kerr and Robin Cohen

David R. Cheriton School of Computer Science,
University of Waterloo, Waterloo, Ontario, Canada

{rckerr,rcohen}@uwaterloo.ca

Abstract. To date, trust and reputation systems have often been evalu-
ated using methods of their designers’ own devising. Recently, we demon-
strated that a number of noteworthy trust and reputation systems could
be readily defeated, revealing limitations in their original evaluations.
Efforts in the trust and reputation community to develop a testbed have
yielded a successful competition platform, ART. This testbed, however,
is less suited to general experimentation and evaluation of individual
trust and reputation technologies. In this paper, we propose an exper-
imentation and evaluation testbed based directly on that used in our
investigations into security vulnerabilities in trust and reputation sys-
tems for marketplaces. We demonstrate the advantages of this design,
towards the development of more thorough, objective evaluations of trust
and reputation systems.

1 Introduction

The area of multiagent systems is concerned with scenarios where a number of
agents (who may be acting on behalf of different users) must interact in order
to achieve their goals; often, an agent must depend on other agents in order to
achieve its objectives. In such scenarios, trust can be an important issue—an
agent’s ultimate success may depend on its ability to choose trustworthy agents
with which to work. For this reason, trust and reputation systems (TRSes)1

have received much attention from researchers. Such systems seek to aid agents
in selecting dependable partners (or in avoiding undependable ones).

A particular focus for researchers has been on the electronic marketplace
scenario, a well-established and important example of a multiagent system. In
this setting, agents act as traders, buying and selling amongst one another. The
ability to find trustworthy partners is critical to an agent’s success, because an
untrustworthy agent may deliver an inferior good (or fail to deliver at all), or may
not pay for goods purchased. The nature of electronic marketplaces complicates
the evaluation of trustworthiness: identity is difficult to establish (because new
accounts can be created easily), agents may not engage in repeated transactions

1 For convenience, we use the abbreviation TRS, for ‘Trust/Reputation System’, in
reference to both trust systems and reputation systems.

E. Ferrari et al. (Eds.): TM 2009, IFIP AICT 300, pp. 252–266, 2009.
c© IFIP International Federation for Information Processing 2009



An Experimental Testbed for Evaluation of Trust and Reputation Systems 253

together (because of the size of the market and the diversity of products), and
an agent may have an advantage over another during a transaction (for example,
when a buyer must pay in full before a seller ships (or fails to ship) the good).

Along with the multitude of TRS proposals have come a similarly large num-
ber of methods to evaluate the proposals. It has been widespread practice for
researchers in the field to develop their own testing methods. A common ap-
proach has been to conduct simulations using a scenario of the authors’ own
devising to show the value of their model, often achieved by pitting their new
proposal against their implementations of other existing models. There is nothing
fundamentally unreasonable about this approach, in the absence of established
testing tools. Unfortunately, there have been significant limitations in the evalu-
ations typically used by authors. It is not surprising that testing scenarios used
by authors often favour their own work. This is not to suggest any misdeeds
on the part of these authors; when designing a system, it is natural to have a
particular scenario in mind, and for subsequent tests to reflect that scenario.

Members of the trust and reputation community have invested significant ef-
fort in developing the Agent Reputation and Trust (ART) testbed [1]. A primary
purpose of ART is to serve as a competition platform, and it serves this purpose
well [2]. While ART is a valuable contribution, a number of design choices make
it less appropriate for broad use in the experimental evaluation of TRSes. We
discuss these issues in Sect. 2.1.

Perhaps more important than issues of bias, the evaluation procedures typ-
ically used obscure critical problems that have received insufficient attention
to date by trust and reputation researchers. Simulations typically make use of
agents that are simple or naive in their dishonest activities. For example, many
simulations (e.g., [3,4]) are populated by random selections of agents that either
always cheat or always behave honestly, or by agents whose cheating is governed
by simple probability distributions, where each time step is independent of pre-
vious ones. Such simulations ignore the possibility that cheaters might behave in
a more sophisticated manner—for example, trying to identify and exploit a spe-
cific weakness in the system—providing little comfort to those who might wish
to consider these proposals for real-world use. In earlier work [5], we identified
a number of common vulnerabilities that might allow attackers to defeat the
protection offered by TRSes, and argued the critical importance of security in
TRSes. Recently [6], we demonstrated the practicality of such attacks by soundly
defeating a number of noteworthy TRS proposals. These results demonstrate the
need for more rigorous tests, and more objective tests, of TRSes.

In this paper, we propose a testbed formulation designed to support diverse,
flexible experimentation with TRSes, and more thorough, objective evaluation
of such systems. This formulation is based directly on the platform used in our
experimentation in [6], which was designed to be a general-purpose experimental
platform for both of these purposes. Our experience and results have shown it
to strongly support both goals.

The design has a number of important advantages making it well suited for
its intended purposes, including:



254 R. Kerr and R. Cohen

– It models a general marketplace scenario, allowing systems to be tested under
realistic conditions. This includes reasonably large marketplace populations,
turnover in the agent population, a large number of products/prices, etc.

– It is modular, allowing new TRSes, buying and selling agents, instrumenta-
tion, etc., to be added easily.

– It can support a wide range of trust/reputation approaches (for example,
both centralized and decentralized models). It does not impose any particular
view of trust on agents, nor does it impose a particular protocol or trust
representation on agents.

– It allows collusion to be incorporated into agent behaviour.
– It allows individual marketplace ‘components’ to be tested in isolation. For

example, it allows the protection a TRS provides buyers from cheating sellers
to be evaluated, without being obscured by other potentially irrelevant issues
(for example, whether or not sellers are dishonest with one another). In
contrast, the success of an agent in ART requires competence in a number
of abilities.

– Given the standardized platform, as new agents/TRSes are developed, they
can be evaluated against all existing implementations; at the same time,
new implementations constitute new tests for all of the existing systems. In
this way, a continually improving battery of rigorous tests can be developed,
which can be broadly used by researchers to evaluate their work. (The ‘smart’
cheating agents used in [6], for example, constitute an initial set of tests that
have proven extremely difficult for existing proposals.)

– Standardization also allows for objective benchmarking, permitting mean-
ingful comparison between systems. Moreover, the availability of components
allows for results to be reproduced by other investigators.

We believe this testbed to be a valuable tool in its own right; moreover, we
believe it to be an important step towards thorough, objective evaluation of trust
and reputation systems.

2 Related Work

The majority of TRS proposals applicable to marketplaces have been evalu-
ated using methods of their authors’ own devising. (Subsequently, these systems
might appear as comparison data points in later proposals’ own self-devised
tests.) Methods used have included mathematical analysis of properties (e.g.,
[5,7]) and simulation (e.g., [3,4,8]). Both of these approaches are reasonable.
The evaluations performed, however, have proven to be problematic. Because
each evaluation is different, results presented by different authors are not com-
parable. The evaluations presented are often quite brief, leading one to question
whether the results thoroughly reveal the performance of the systems in ques-
tion. Indeed, our investigations [6] revealed numerous ways in which the systems
cited above can be defeated—issues that were not revealed in the authors’ own
analyses. These issues highlight the need for more thorough, objective testing
of TRSes, ideally using tools that allow comparison and reproducibility of test
results.



An Experimental Testbed for Evaluation of Trust and Reputation Systems 255

2.1 The ART Testbed

A standardized, common testing platform can potentially address the issues
noted above. The Agent Reputation and Trust (ART) Testbed [1] is the only
well-known trust and reputation testbed of which we are aware. ART has been
well supported by the community, and has been used as a competition testbed
at a number of conferences.

In ART, agents are art experts, each with varying levels of expertise in dif-
ferent eras. Agents are periodically asked to appraise pieces of art by clients.
The accuracy of the appraisals given to clients determines how much business
each agent will receive in the future, according to a fixed mechanism used by the
testbed. The agent can choose how much to invest in generating its appraisal—
greater investment yields greater accuracy. If an agent is asked to evaluate a
piece from an era about which he is not knowledgeable, he can seek appraisals
from other agents. Agents can also share information with one another about
the reliability of other agents’ appraisals.

ART is very well-designed for its primary purpose: evaluating agents (who
use a number of abilities) in a competitive manner, using a small social trust
scenario. ART has a number of desirable properties for a testbed. It offers a well-
specified, standardized testing scenario and set of rules. It allows new agents to
be easily implemented and plugged into the system; agents can then be used by
others for future experimentation. It provides objective metrics for comparison
between systems. That said, ART has a number of features that make it less
suited for general-purpose trust and reputation experimentation. Other authors
(e.g., [9,10]) have noted obstacles to using ART for evaluating their own work.

Under ART, the distinction between buying and selling agents is unclear,
making some forms of experimentation problematic. The ultimate purchasers of
appraisals (the ‘clients’) are buyers, and as such, agents serve as sellers for these
transactions. Note, however, that clients’ method of choosing appraisers (based
on past performance) is fixed by the ART specification, precluding experimen-
tation with buyer-side modelling of sellers for these transactions; similarly, it
obviates investigation of sellers modelling potentially unreliable buyers. In con-
trast, as agents buy and sell appraisals with one another, each agent acts as both
buyer and seller. Success under these circumstances requires skill in several areas:
determining when to make do with your own knowledge, and when to seek help;
determining how much to invest in appraisals; determining whom to trust when
seeking appraisals; and determining whether or not to be honest when another
agent asks you for help. While this is a demanding test, and one appropriate
for a competition testbed, it can also obscure the role of each individual skill
in an agent’s performance. This makes it difficult to isolate individual market-
place components for evaluation. For example, if a researcher wishes to evaluate
the performance of a system intended to allow sellers to model untrustworthy
buyers, it may not useful to have the results clouded by the same agent’s per-
formance in the unrelated task of deciding whether or not to make honest sales
to other agents.



256 R. Kerr and R. Cohen

In its role as a competition testbed, ART requires a very well-defined scenario.
Unfortunately, this requirement seems to limit the flexibility of the system for
experimentation. A number of design choices limit the range of investigations
that can be performed using ART. For example, the ART architecture allows
decentralized and direct experience models, but precludes testing of centralized
models, because the method of sharing information amongst agents is specified
by the testbed. It also prevents experimentation with models that regulate an
entire marketplace (e.g., mechanism-design based approaches). Features of the
chosen scenario prevent investigation of important issues. For example, each ap-
praisal has a fixed price under ART, preventing exploration of vulnerabilities
such as Value Imbalance (where a seller builds reputation by honestly execut-
ing small-value sales, then uses the reputation gained to cheat on larger ones
[5]). The quality of an agent’s appraisal is reflected in clients’ decisions in the
next timestep, preventing exploration of vulnerabilities such as Reputation Lag
(where a seller can cheat a large number of sellers for a period of time before his
reputation is updated to warn other potential victims [5]).

ART provides a heterogeneous environment where agents share reputation
information with agents using other trust and reputation models. To permit
communication between agents with different internal models, the format of
communication is determined by the ART specification. This imposes a specific
trust representation for communication between agents (if not for agents’ internal
use); the imposed format may not map well to the TRS’s native representation,
potentially disadvantaging the TRS.

Seeking to clarify why ART is not well-suited for some forms of experimenta-
tion, we have focused on a number of it limitations. After so doing, we wish to
reiterate that ART is an excellent competition testbed for decentralized social
trust and reputation models.

In contrast to the competition focus of ART, the testbed formulation we propose
is designed specifically to support general-purpose experimentation and evalua-
tion of trust and reputation technologies. Our proposal is based directly on the
platform used in our study of the security of TRS proposals [6]; pertinent aspects
of this study are discussed later in the paper.

3 Testbed

We sought to formulate a testbed that would support flexible experimentation
and meaningful evaluation of trust and reputation technologies. Complete mar-
ketplaces may have many TRS components, from a range of possibilities: agents
who have individual (and heterogeneous) internal models of other agents’ trust-
worthiness, networks of agents that share reputation information, centralized
repositories of reputation data, market-wide mechanisms that regulate trading
between agents, etc. A potential adopter of a TRS may have to choose between
multiple proposals, despite the fact that the proposals use very different methods
internally. An adopter may have to assemble multiple TRS technologies to meet
the needs of their complete working system, and may need to understand how



An Experimental Testbed for Evaluation of Trust and Reputation Systems 257

well these components work together. For these (and other) reasons, a testbed
will ideally support experimentation with a wide variety of such components.
Thus, we set out to design an architecture that was quite flexible.

At the same time, too general a testbed formulation might also be difficult to
apply in practical terms. At best, it may be of little benefit to the researcher,
leaving much work to be done simply in preparing the testing platform. Worse,
a formulation that is too general can make evaluation of TRSes and compari-
son of results problematic: different researchers are likely to use very different
instantiations of the testbed scenario, raising many of the same issues as the
author-devised testing that has occurred to date. For this reason, we have spec-
ified a well-defined scenario that we believe is useful for a wide range of exper-
imentation. We believe that this is an appropriate and useful balance between
flexibility and standardization.

3.1 Nature of Tests

For a competition testbed, it is sufficient to supply the testing platform itself;
competitors supply the agents, which seek to defeat one another. In contrast,
a testbed intended for evaluation and benchmarking requires meaningful tests
for candidates to perform. In some fields (for example, computer component
benchmarking), a typical approach would be to develop a set of standardized
tasks to perform, with well-defined metrics used for comparison. Ideally, the
tasks would be representative of real-world demands. For TRSes, however, it is
difficult to envision representative ‘tasks’ that do not involve actual interaction
with other agents. The most illuminating tests are likely to be those conducted in
a realistic scenario, interacting with other agents. Thus, in our formulation, tests
consist of two components (in addition to the TRS technology being evaluated):
a well-defined marketplace scenario, and a population of agents with which the
candidate TRS must cope.

This formulation provides a great deal of flexibility, as well as the ability to test
specific components under controlled circumstances. For example, to test TRSes
that attempt to allow buyers to cope with cheating sellers, a test would consist
of a set of market parameters, and a population of sellers with specific cheating
behaviours. These components are experimental controls; each TRS would then
be tested against the same scenario, allowing comparison of the results. (This
was the approach used in our study [6].) In comparison, to test TRSes that allow
sellers to cope with untrustworthy buyers, a test would include a set of buying
agents.

Beyond the benefits noted above, this approach has a number of advantages.
First, as agents are developed (both TRS technologies, and ‘tests’), they can be
made available to other researchers. This allows the test suite to grow, increasing
in thoroughness and rigour, as understanding of TRSes increases. (Our set of
cheating agents constitutes an initial set of tests, as outlined in a later section.)
Second, the standardization of the platform and the availability of agents allows
results to be reproduced by other researchers.



258 R. Kerr and R. Cohen

3.2 Scenario

We sought to develop a testbed that employs a reasonably general scenario, one
in which a variety of roles and strategies can be evaluated. For tests to be mean-
ingful, the platform should model as realistic a scenario as practically possible. In
the following, the parenthesized parameter values represent settings for a reason-
able scenario, one that might constitute a basis for test sets. (These values were
used in our own experimentation [6].) While a test specification would include a
set of parameter values, the values can be adjusted for experimentation.

We model an ‘advertised-price’ marketplace: sellers offer goods for sale, and
buyers choose whether or not to make purchases, and from whom. A fixed set
of products (1000) is available for sale. Because we wish to study trust pri-
marily, and not other price-/cost-based forms of competition, the cost to pro-
duce/acquire any given good is the same for all sellers. A typical marketplace
will have more inexpensive items for sale than expensive ones. To reflect this,
the cost of each good is randomly determined using the right half of a Gaussian
distribution (i.e., the median occurs at $0, and probability decreases as price in-
creases). Again, to remove focus from price-based competition, all sellers apply
a fixed markup (25% of selling price)—for a given good, all vendors charge the
same price.

Each seller is assigned a random number of products that she is able to
produce, selected from a uniform distribution (maximum of 10). To reflect the
greater availability of less expensive products, the products are again randomly
assigned using the right half of a Gaussian distribution (i.e., the median occurs
at the least expensive product, with declining probability as price increases).

A simulation run can be populated by an assortment of agents, as desired by
the researcher, or as defined in a test specification.

Marketplaces are usually dynamic—traders join and leave regularly. This is
important for TRSes, because new agents are unknown (and have no knowledge
of other agents), and departing agents result in obsolete knowledge. For efficiency,
agents join/exit the market at specific intervals (100 days). After each such
interval, each agent departs the marketplace with a fixed probability (0.05).
That said, it may be undesirable for the performance of TRSes to be clouded
by changes in market size (e.g., profits increasing because the number of buyers
increases.) Thus, for every departing agent, one agent of the same type joins,
keeping the participant count constant.

3.3 Architecture

The testbed architecture is designed to be quite versatile for experimentation,
within the constraints of the defined scenario. The architecture is depicted in
Fig. 1. In this diagram, BA and SA refer to Buying Account and Selling Account
respectively. BE and SE refer to Buying Entity and Selling Entity respectively.
All components labelled in boldface italic text are components that are intended
to be provided/modified by investigators making use of the testbed. The grey
box denotes those components that are observable by marketplace participants,



An Experimental Testbed for Evaluation of Trust and Reputation Systems 259

although this does not imply complete visibility. For example, seller accounts
may be visible to buyer accounts, but this does not imply that all seller account
data is visible. Such limitations are described in more detail below.

Fig. 1. The Testbed Architecture

A Simulation Controller is responsible for actual execution of the simulation.
The controller is responsible for triggering each of the day’s events in turn,
signaling the appropriate parties when they are required to take action. For
example, the controller cues sellers to make product offers at the appropriate
times, cues buyers to select products/sellers when offers have been posted, etc.

The scenario makes use of a single centralized marketplace model, represented
by a Marketplace object. All offers, acceptances, and payments are made through
the Marketplace. All accounts reside in the Marketplace, and requests to open
accounts are processed through it.

One important aspect of the testbed is the role of TRSes and agents. Some
TRSes are implemented entirely centrally, some entirely within the agents; many
fall between these two extremes. The use of both agents (represented by accounts



260 R. Kerr and R. Cohen

and entities, as described below), and TRS objects, facilitates a wide range of
approaches. A TRS object implements those components of a TRS that are
shared by multiple agents. For example, in a model that makes use of a central-
ized repository of reputation information, the TRS object would provide that
service. TRS objects are useful even in fully decentralized systems, if only to
coordinate trust-related actions. For example, when a buyer requests reviews
from other buyers, this request would be processed through the TRS, which
co-ordinates such communication.

Some important points should be made regarding TRSes. First, as depicted
in the diagram, multiple TRSes may be in use simultaneously, for example, by
a heterogeneous population of agents. Second, in order to implement a system
for experimentation, matching TRS objects and entities typically must be de-
veloped. The role of each component is dependent on the characteristics of the
TRS in use. For example, in a completely decentralized model, entities may do
all reputation tracking and computation; in this case, the TRS might simply
serve as the communication channel between agents. At the other extreme, with
a completely centralized model, the TRS may perform all reputation-related
functions, while entities simply make use of the services provided. This model
seems to provide a great deal of flexibility, without undue complication. Third,
in some cases (e.g., a market-wide mechanism), a TRS is tightly integrated into
the operation of the marketplace itself. For example, Basic Trunits [5] controls
what offers may be made by sellers. TRS objects interface with the Marketplace
to allow this.

Note that no particular trust representation, or communication protocol is
enforced between agents. In fact, it is up to the designer of the TRS component,
along with the associated agents, to determine exactly how (or if) communication
takes place between agents. This provides support for a wide range of approaches
to trust. Note, too, that communication between heterogeneous agents can be
supported. Certainly, mapping from one agent’s trust representation to another’s
may be necessary, but the method for doing so is up to the designer of the TRS
component used for communication. (This, in turn, also allows experimentation
with different means of allowing heterogeneous agents to interact.)

Another important feature of the testbed is the separation of the agent roles
into two components: accounts and entities. Accounts represent actual user ac-
counts within the marketplace; these are the identities that are observable by
other parties in the market. Entities, however, represent the actual agents per-
forming actions by using the accounts. Entities are not observable by marketplace
participants, reflecting the fact that identity is difficult to establish, particularly
in large electronic marketplaces. This distinction is important for a number of
reasons. It allows the re-entry phenomenon to be incorporated into experiments
(where agents can simply open new user accounts to shed a disreputable iden-
tity). It allows for a single agent to control multiple user accounts (as they may
in real-world scenarios), as used in attacks demonstrated in our study [6]. It also
allows for investigation of collusion. In the case of perfectly loyal and coordi-
nated collusion, a single entity can represent the entire coalition; in the case of



An Experimental Testbed for Evaluation of Trust and Reputation Systems 261

less perfect coalitions, entities can be implemented that communicate with one
another outside the observable marketplace. Note that although buying and sell-
ing entities are shown as distinct in our architecture diagram, a single entity can
play both roles—for example, when controlling both buying and selling accounts
to engage in ballot stuffing.

For different components of the marketplace testbed to communicate with
one another, certain aspects of communication must be standardized. In our for-
mulation, communication for actual market transactions (i.e., actual purchases)
is defined by the specification: the syntax and semantics of product offers, of-
fer acceptances, etc. These are items that are likely to be standardized in a
real marketplace situation. Note, however, that the characteristics of communi-
cations between TRS components (e.g., exchange of reputation information be-
tween agents) are not imposed by the specification, instead left to be determined
by those implementing TRS/agents for the system. This ensures maximum flex-
ibility and fair treatment of different TRS approaches, without undermining the
standardization of the TRS proposal. Using this architecture, we evaluated five
noteworthy TRSes [3,4,5,7,8]. These models use a variety of approaches, includ-
ing direct experience, witness information, and centralized mechanisms; for each
model, agents were able to represent and communicate trust in the native form
as described by the authors, without conforming to a specification imposed by
the testbed. This demonstrates the versatility of the platform.

Not shown in the diagram is the StatsKeeper module. StatsKeepers are used to
accumulate data from runs of the testbed. A default StatsKeeper implementation
was used in our experiments, and would be provided as part of this testbed. This
module accumulates sales/profit/cheating statistics, by agent group, over time
during testbed execution. (An chart illustrating the data accumulated by this
module is provided later in the paper.) New StatsKeeper modules can also be
easily developed. All objects in the marketplace are visible to StatsKeepers; full
data for every sale executed is provided by the Marketplace to the StatsKeeper,
so the desired data can be extracted.

Several architectural details are worth noting:

– Buyers do not know of selling accounts until that seller makes an offer. Sellers
do not know of the existence of a buying account until it makes itself known
by accepting an offer.

– At the time of making an offer, sellers do not know or control whether an
offer will be accepted, or by whom.

– A seller can only provide products that she is able to produce. A seller is
able to advertise and sell (dishonestly) any product, however.

– It is possible for an agent to connect to multiple TRS objects. This allows
experimentation with situations where, for example, an agent might make
use of shared reputation information with trusted neighbours, as well as
accessing data in a centralized repository (i.e., a different TRS).

– Entities can create new accounts at will.



262 R. Kerr and R. Cohen

3.4 Simulation Execution

Each round represents one day. Each round consists of the following steps (co-
ordinated by the System Controller):

1. After entering into a sale, a buyer will not know whether or not he has been
cheated until after some number of days has passed, reflecting processing,
shipping, etc; we refer to the rendering of feedback after this lag (14 days) as
the completion of the sale. At the beginning of each day, buyers are notified
whether each completing sale was executed honestly or not.

2. After learning about the outcome of each completing transaction, the buyer
determines its satisfaction with the transaction (and submits it to the TRS,
if using a system that requires immediate reporting.)

3. Upon receiving feedback (if the TRS requires it), the TRS processes incoming
feedback.

4. Each buyer’s needs are determined for the day. Each buyer is randomly
assigned a set of products (up to 5) that it needs to purchase that day;
again, these are selected using the right half of a Gaussian distribution, so
there is a greater likelihood of needing lower-priced items.

5. Sellers make offers, submitting them to the marketplace. No limits are placed
on sellers’ capacity or inventory. If a TRS in use regulates market activity, the
marketplace consults the TRS for the validity of each order, before posting
it.

6. Buyers select the products they wish to purchase, from which sellers, by con-
sulting the posted offers. Buyers are free to consult their TRSes in so doing.
For each purchase they decide to make, an offer acceptance is communicated
to the corresponding seller account, via the marketplace.

7. Sellers receive the offer acceptances, and have the opportunity to decide if
they wish to complete each such sale. Sellers may consult their TRSes to
make the decision. For each sale that the seller agrees to make, it decides
whether or not to fulfill it honestly or dishonestly. Acceptances are commu-
nicated to the marketplace, which forwards each to the corresponding buyer
account.

8. Payment is transferred from the buyer account to the seller account, for each
sale.

9. Each sale’s status (honest or dishonest) is communicated by the seller to the
marketplace for storage. This value is not observable by any other market-
place participant, until the buyer is notified during Step 1 of a later round.

3.5 Initial Test Set

Much of the value to be gained from an evaluation testbed such as this is the
value of the tests: their difficulty, their breadth, and their representativeness of
the sorts of issues TRSes might face in a real environment. As an initial set of
tests, we provide the set of agents used in our earlier investigations [6]. These
agents employ a number of different tactics (consisting only of honest/dishonest
transactions that can be executed within the marketplace) based in part on the



An Experimental Testbed for Evaluation of Trust and Reputation Systems 263

problems described in [5]. These agents were designed to test the robustness of
TRSes that attempt to cope with dishonest sellers; as such, each agent described
below is a seller. They seek to cheat profitably, despite the use of the TRS in
question. This test set is far more extensive and difficult than any we have seen
used for evaluation of TRSes to date.

The test set includes the standard, randomly cheating agents employed in so
many evaluations. Beyond this, it includes the following agents:

– The Proliferation agent, who seeks to win an abnormally large portion
of sales by offering products through many user accounts simultaneously,
crowding competitors out of the market.

– The Reputation Lag agent depends on the delay that exists in many mar-
ketplaces between the time he is paid by the buyer, and the time that his
reputation is updated to reflect the outcome of the transaction. This agent
seeks to build a positive reputation, then use this reputation to cheat as
many buyers as possible in the brief period before his reputation is updated
to warn other buyers of the change in behaviour.

– The Re-entry agent, who creates a new account, attempts to use the non-
disreputable status of this new account to cheat as many buyers as possible,
then abandons the account and creates a new one, to begin the cycle anew.

– The Value Imbalance agent, who seeks to gain good reputation through
honest small-value sales, then use that reputation to cheat buyers on large-
value sales.

– The Multi-tactic agent, who knows how to use all of the tactics described
above, and attempts to profitably wield the entire portfolio. This agent is
especially intended to undermine the notion of ‘security by obscurity’, that
a TRS might be safe from such tactics if the would-be cheater doesn’t know
which TRS is in use (and hence its specific vulnerabilities).

As demonstrated in [6], this set of attacks was quite devastating to the set
of TRSes evaluated—all of the TRSes were defeated by numerous attacks, and
none withstood the Multi-tactic agent.

In actual implementation, we found it useful to decompose our entities into
two parts: the actual entity itself, and tactic modules. Each tactic module con-
tains a particular behaviour, for example, the method for launching a particular
attack. An entity, then, makes use of one or more tactics to execute its trading
activity. This design allows tactics to be re-used. More importantly, it facilitates
the design of agents that employ multiple tactics. As noted above, our multi-
tactic agents provide an extremely difficult (but realistic and practical) test for
TRSes.

Figure 2 depicts one run of the testbed, pitting the Basic Trunits TRS against
the Multi-tactic agents. This figure illustrates some of the data generated by the
default StatsKeeper module. In this chart, ‘smart’ agents are those employing
the multi-tactic approach. Honest sellers, and sellers who cheat randomly are
included for comparison. The dashed lines represent the revenue from sales for
the day in question (smoothed for presentation), while the solid lines represent
profit (i.e., revenue less the cost incurred to furnish the goods). There are an



264 R. Kerr and R. Cohen

0 200 400 600 800 1000
0

2000

4000

6000

8000

10000

12000

14000

16000

18000
$,

 M
ov

in
g 

av
er

ag
e 

ov
er

 6
0 

da
ys

Day

 

 

"Smart" sales
"Smart" profit
Honest sales
Honest profit
Random sales

Fig. 2. Basic Trunits, vs. Multi-tactic cheating sellers

Table 1. Sales/profit for sellers using multiple attacks

TRS
Cheater sales Cheater profit
(% of honest) (% of honest)

Tran & Cohen 1775.3% 6765.1%
Beta 107.1% 288.3%
TRAVOS 274.6% 613.0%
Yu & Singh 274.9% 723.4%
Basic Trunits 181.8% 577.7%

equal number of agents in each group. Note that the multi-tactic agents are far
more profitable than the other groups—cheating is by far the most profitable
policy, meaning that the TRS has failed this test.

Table 1 shows the results obtained by the multi-tactic agent against all of
the TRSes tested. The first column in each table represents the average sales
(in dollars) per multi-tactic cheating agent, relative to those of an honest seller.
The second column reflects the profit realized by a cheating agent, relative to
an honest one. (Sales are generally more profitable for cheating agents, because
they do not incur the cost of honestly furnishing the good.) Results greater
than 100% mean that the average multi-tactic agent makes more money than
an honest agent. For example, a value of 124% would mean that cheating agents
earned 24% more than honest agents per capita. Here, the cheating agents make



An Experimental Testbed for Evaluation of Trust and Reputation Systems 265

far more money than honest ones—quite troubling, because this means that a
profit-maximizing agent should choose to cheat rather than be honest. All of the
TRSes have failed the test.

This set of tests is certainly not exhaustive. Further, it only tests TRSes
against dishonest sellers, rather than dishonest buyers, agents that lie to one
another about their opinions of other agents, etc. Nonetheless, it constitutes a
substantial initial test suite for this important aspect of TRS operation.

4 Conclusions and Future Work

The trust and reputation testbed described in this paper allows a breadth of
experimentation and a thoroughness and objectivity of evaluation that have
previously been unavailable from publicly-available, standardized testing tools.
The design of this testbed is a proven one, having been used to shed light on
important issues that had previously been unexplored experimentally—in partic-
ular, the degree to which existing TRS proposals can withstand cheating agents
that actively attempt to circumvent the protections of the system. The platform
has shown itself to be flexible, supporting experimentation with TRSes using a
variety of approaches.

With this design, we have attempted to allow the greatest degree of flexibility
of experimentation possible, while still providing ease-of-use and the ability to
generate meaningful benchmarks and comparisons. As a result, not every TRS
can be tested using this platform: for example, ones that do not function in
marketplace environments.

The testbed is intended to allow more thorough testing than has typically
been performed for TRSes in the past. As TRS researchers develop new agents,
the test suite will grow, increasing the rigour of the evaluations, and the insights
provided.

While we believe this testbed to be an important tool in itself, and a signif-
icant step towards improving the evaluation of TRSes, we do not contend that
it is perfect or complete in its current formulation. We hope that this proposal
serves as a basis for discussion and development within the trust and reputation
community. The value of this tool will increase with input from other researchers,
ensuring that the platform is complete, and flexible enough (within the limits
of practicality) to meet their needs. Future work includes consultation with re-
searchers to identify potential refinements and achieve consensus regarding:

– Scenario;
– Architecture;
– Recommended parameter values for benchmarking;
– Range of support for agents, and trust and reputation technologies.

Through these consultations, we will be diligent to ensure an effective balance
between the complexity that might be introduced with increased flexibility, and
the standardization that facilitates benchmarking and usability.



266 R. Kerr and R. Cohen

References

1. Fullam, K.K., Klos, T.B., Muller, G., Sabater, J., Schlosser, A., Topol, Z., Bar-
ber, K.S., Rosenschein, J.S., Vercouter, L., Voss, M.: A specification of the Agent
Reputation and Trust (ART) testbed: experimentation and competition for trust
in agent societies. In: AAMAS 2005: Proceedings of the fourth international joint
conference on Autonomous Agents and Multiagent Systems, pp. 512–518. ACM,
New York (2005)

2. Teacy, W.T.L., Huynh, T.D., Dash, R.K., Jennings, N.R., Luck, M., Patel, J.: The
ART of IAM: The winning strategy for the 2006 competition. In: Proceedings of
the Sixth International Joint Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2007) Workshop on Trust in Agent Societies, Honolulu, Hawaii,
USA (2007)

3. Teacy, W.T., Patel, J., Jennings, N.R., Luck, M.: Travos: Trust and reputation
in the context of inaccurate information sources. Autonomous Agents and Multi-
Agent Systems 12(2), 183–198 (2006)

4. Yu, B., Singh, M.P.: Distributed reputation management for electronic commerce.
Computational Intelligence 18(4), 535–549 (2002)

5. Kerr, R., Cohen, R.: Modeling trust using transactional, numerical units. In: PST
2006: Proceedings of the Conference on Privacy, Security and Trust, Markham,
Canada (2006)

6. Kerr, R., Cohen, R.: Smart cheaters do prosper: Defeating trust and reputation sys-
tems. In: Proceedings of the Eighth International Joint Conference on Autonomous
Agents and Multiagent Systems (AAMAS 2009), Budapest, Hungary (2009)

7. Jøsang, A., Ismail, R.: The beta reputation system. In: Proceedings of the 15th Bled
Electronic Commerce Conference e-Reality: Constructing the e-Economy (June
2002)

8. Tran, T., Cohen, R.: Improving user satisfaction in agent-based electronic market-
places by reputation modelling and adjustable product quality. In: AAMAS 2004:
Proceedings of the Third International Joint Conference on Autonomous Agents
and Multiagent Systems, Washington, DC, USA, pp. 828–835. IEEE Computer
Society, Los Alamitos (2005)

9. Hang, C.W., Wang, Y., Singh, M.P.: An adaptive probabilistic trust model and
its evaluation. In: AAMAS 2008: Proceedings of the 7th international joint confer-
ence on Autonomous Agents and Multiagent Systems, Richland, SC, International
Foundation for Autonomous Agents and Multiagent Systems, pp. 1485–1488 (2008)

10. Harbers, M., Verbrugge, R., Sierra, C., Debenham, J.: The examination of an
information-based approach to trust. In: Noriega, P., Padget, J. (eds.) International
Workshop on Coordination, Organization, Institutions and Norms (COIN), pp.
101–112. Durham University, Durham (2008)


	An Experimental Testbed for Evaluation of Trust and Reputation Systems
	Introduction
	Related Work
	The ART Testbed

	Testbed
	Nature of Tests
	Scenario
	Architecture
	Simulation Execution
	Initial Test Set

	Conclusions and Future Work



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (Photoshop 4 Default CMYK)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




